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Coulomb drag between parallel two-dimensional electron systems
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The Coulomb contribution to the temperature-dependent rate of momentum transfer, 1/~D, between
two electron systems in parallel layers is determined by setting up two coupled Boltzmann equations,
with the boundary condition that no current flows in the layer where an induced voltage is measured.
The effective Coulomb interaction between the layers is determined self-consistently, allowing for the
finite thickness of the layers. As T~O, we find that 1/~DT' approaches a constant value. At higher
temperatures, 1/DDT exhibits a maximum at T= T,„and then decreases as 1/T with increasing tem-
perature. The value of T,„depends on the layer separation d according to T „~d, where +=0.8.
The overall magnitude of the calculated 1/~D is approximately one-half of the results of a recent experi-
ment, suggesting that other mechanisms of momentum transfer may be important.

I. INTRODUCTION

It is well known that the electron-electron scattering
rate 1/r(E) in a three-dimensional electron gas at zero
temperature depends on the electron energy c according
to 1/r(E) ~ (s —

p, ), where p is the chemical potential. '

At finite temperatures this characteristic energy depen-
dence yields relaxation rates that are proportional to T .
The effects of electron-electron scattering on the trans-
port properties of ordinary metals is usually weak com-
pared to the competing effect of electron-impurity and
electron-phonon scattering. The T dependence associat-
ed with electron-electron scattering has been observed in
metals at relatively high temperatures by measuring devi-
ations from the Wiedemann-Franz-Lorenz law (for a dis-
cussion of this and other consequences of electron-
electron scattering, see, e.g. Ref. 2). At low temperatures
the effects of electron-electron scattering on various
transport properties are often dificult to separate from
the effects of other inelastic processes. The phase break-
ing due to electron-electron scattering has important
consequences for the localization phenomena occurring
in disordered systems and it has been investigated exten-
sively in this context.

The characteristic energy dependence of the electron-
electron scattering rate is due to the phase-space restric-
tions that apply to the mutual scattering of particles in a
nearly degenerate gas. These restrictions are different in
two and in three dimensions. For a two-dimensional elec-
tron gas one finds that the scattering rate at zero temper-
ature is proportional to (E—p) ln~E —p~, as shown by
Hodges, Smith, and Wilkins and, independently, by Cha-
plik. At finite temperatures the corresponding relaxation
rates become proportional to T lnT. The nonanalytic
temperature dependence can be traced to a logarithmic
singularity for values of the momentum transfer Aq,
which are near either zero or 2Akz, where kz is the Fer-
mi wave vector. The logarithmic energy dependence
(e —p) ln~E —

p~ was recently confirmed experimentally

by measurements of quantum interference in a two-
dimensional electron gas.

In a recent experiment Gramila et al. measured the
mutual friction between two parallel two-dimensional
electron systems as a function of the temperature and the
distance between the two layers. The systems investigat-
ed consisted of modulation-doped GaAs/Al Ga, As
double quantum wells, grown by molecular-beam epitaxy.
The observed frictional drag was interpreted as being due
to the Coulomb interaction between the two separate
electron systems. Gramila et al. also performed a calcu-
lation of the drag in the low-temperature limit, and found
the rate of momentum transfer to be proportional to T ~

Although the overall temperature dependence of their
calculated rate was in qualitative agreement with experi-
ment, there remained significant differences, in particular
for samples with large values of the layer separation.

The purpose of the present paper is to investigate the
Coulomb drag problem in detail by calculating the rate of
momentum transfer as a function of temperature. In the
limit of very low temperatures we find that the rate of
momentum transfer is proportional to T, in agreement
with the result obtained in Ref. 7. At temperatures
which are somewhat higher (but still small compared to
the Fermi temperature TF) our calculated temperature
dependence differs from T . As we shall see, the devia-
tion from the T dependence is in qualitative, but not
quantitative, agreement with the one observed experi-
mentally in Ref. 7, where the momentum relaxation rate
divided by T was found to exhibit a maximum around
T =2 K, which is about 30 times less than TF.

Although the indirect electron-electron interaction
caused by the virtual exchange of phonons may also
affect the observed friction, ' the scope of the present
work is limited to evaluating the temperature dependence
arising from the Coulomb interaction and comparing the
calculated relaxation rate with the one measured experi-
mentally. Our formulation is, however, sufficiently gen-
eral that other coupling mechanisms besides the direct
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Coulomb interaction may be incorporated.
The possibility of observing the Coulomb drag effect in

heterostructures was suggested by Price. A theoretical
formulation of the drag problem was given by Pogrebin-
skii. ' The effect has been considered in both one-, two-,
and three-dimensional systems by a number of different
authors, cf. Refs. 11—16. Most of these calculations treat
only high- or low-temperature limits, and to our
knowledge the full temperature dependence of the
Coulomb drag has not been considered before. Momen-
tum transfer between two coupled electron-hole gases
was studied recently by Sivan, Solomon, and Shtrik-
man. '

The plan of the paper is as follows. In Sec. II we define
the drag resistivity and the associated momentum relaxa-
tion rate in terms of experimentally observable quantities.
The theoretical model used for calculating the momen-
tum relaxation rate is treated in Sec. III, where we set up
the two coupled Boltzmann equations and derive a gen-
eral expression for the momentum relaxation rate. We
also discuss the screening of the Coulomb interaction be-
tween electrons in the two layers. The resulting effective
interaction enters our expression for the momentum re-
laxation rate, which in general must be evaluated numeri-
cally. In Sec. IV we perform an analytic evaluation of the
rate of momentum relaxation at very low temperatures
and exhibit the results of the numerical calculation at ar-
bitrary temperatures. The theoretical results are com-
pared to the measured momentum relaxation rate, in re-
gard to its absolute magnitude as well as its dependence
on temperature and layer separation. The detailed
derivation of the screened Coulomb interaction is de-
ferred to the Appendix.

II. DRAG RESiSTIVITY

Let us consider two parallel layers each containing a
two-dimensional gas of electrons, as illustrated in Fig. 1.
The perpendicular distance between the midpoints of the
two layers is denoted by d. In the experiment performed
by Gramila et al. a current I2 is driven along layer 2,
and one measures the voltage difference V, which is in-
duced in layer 1 under the condition that no current
Aows in this layer. The current per unit width, j2, in lay-
er 2 is given by jz =I&/W, while the magnitude of the
electric field strength, which prevents the electrons in lay-
er 1 from being dragged along by the current in layer 2, is
E& = V&/l. Here 8' is the width of layer 2, while l
denotes the distance between the potential probes shown
in Fig. 1. The drag resistivity pD is then defined by

Ei
PD

J2

8'V)

I2l

Following Ref. 7 it is convenient to translate the drag
resistivity into a momentum relaxation rate 1/~D by
defining the drift velocity u z according to

j2 =n2eu~,

where n2 is the number of electrons per unit area in layer
2, while e is the elementary charge. Experimentally, the

FIG. 1. Schematic drawing of the experimental geometry.
The current I2 is driven through layer 2, and the voltage
difference V& is induced in layer 1. Also illustrated is the finite
extent of the wave functions in the direction perpendicular to
the layers.

electric field E, is found to be proportional to u2. The
coefficient relating the two quantities is the drag mobility

pD, which is defined by

e
PD ~D ~

where m is the effective mass of the conduction electrons
(in the case of Al Ga& As/GaAs, the eff'ective mass m

is 0.067 times the electron mass m, ). The drag resistivity

pD, which has the dimension of a resistance, may thus be
written as

Pl
PD

n2e vD
(5)

In summary, the ratio between the observed voltage V,
and the imposed current I2 is expressed in terms of the
drag resistivity pD by the definition

(6)

where pD according to (5) may be written in terms of the
momentum relaxation rate 1/rD. Equations (5) and (6)
are simply a definition of a convenient quantity ~D, which
we determine in the following section as a function of the
temperature T and the distance d separating the two lay-
ers, starting from the Boltzmann equation for the distri-
bution function of the electrons.

III. THE MOMENTUM RELAXATION RATE

The momentum relaxation rate is determined by using
the linearized Boltzmann equation to derive a balance
equation between the induced electric field and the drag
due to the drive current. In the presence of an electric

Q2
PD= E 1

The mobility pD may in turn be expressed in terms of the
momentum relaxation rate 1/~D, defined according to
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field E1 this linearized Boltzmann equation is Ak, = —eE1,
gf 0

' ak,

where

Bf,
7

co»
while f is the equilibrium distribution function (we label
quantities referring to layer 1 by 1, 1', etc. and similarly
for layer 2). The linearized collision integral is

af, dkz dk,j ~ j w(1, 2; I', 2')(Q, +Pp —
itji

—
gp )f,f~o(l —fo )(1—fo~ )5(s, +a~ —s, —e~. ) .

(9)

Here the function w ( 1,2; 1',2') determines the probability
that two electrons in states k, o. , and kzo. z will scatter to
k, .o-1. and kz.o.z. Due to momentum conservation, we
have kz =k, +kz —k1. In the Born approximation m is
proportional to the square of the Fourier transform of the
eftective interaction as specified below. The deviation
function P has been introduced by the definition

dk, ( e)E, —

dk, Bf,
k,

(2 ) Bt
(13)

f f'=f '(1—f')it— (10)

implying that g vanishes in equilibrium.
The current flowing in layer 2 is assumed to be limited

by impurity scattering, corresponding to the deviation
function

U2x U2'x U 1'x U 1x (12)

since the e6'ective masses m are assumed to be identical in
the two layers. We now multiply both sides of (7) by ki
and sum over the states k10.1. This yields

1
2
=

k
%2eU2 E2kT

where Ez is the electric field in layer 2, directed along the
x axis, and wi is a (energy-independent) moinentum relax-
ation time, which determines the electron mobility pz ac-
cording to pz=e~z/m. Since no current is flowing in lay-
er 1, the electron distribution in this layer is taken to be
the equilibrium one, corresponding to p&=1ti =0. Ac-
cording to (7)—(9) the electric field Ei then balances the
drag resulting from the fact that gz and gz. are nonzero.
In order to determine E, we insert the nonequilibrium
distribution function given by (11) into (9). Due to
momentum conservation we have

The left-hand side of (13) then becomes eE, n, /i' after use
of partial integration, with n, being the electron density,
which is related to the Fermi wave vector kF according
to

q=k, —k, . (15)

This allows us to further simplify the right-hand side of
(13):

CF
n1=

2~

We assume in this section that the electron number densi-
ty is the same in the two layers, n1 = n z. It is straightfor-
ward to generalize our treatment to the case where the
two densities difFer.

The right-hand side of (13) may be simplified, as the
quantity k i (k i

—k i ) in the integrand may be replaced
by —( k i

—k i ) /2, because of the symmetry of the
remaining part of the integrand with respect to the inter-
change of 1 and 1'. Furthermore, since the calculated
momentum relaxation rate is independent of whether the
electric field is taken to be along the x or the y axis, we
add the corresponding contributions and divide by 2, re-
sulting in the replacement of (k, .„—k, ) /2 by q /4,
where q is the wave-vector transfer given by

e F2~2
4 kT ..&. dk1 dkz dk1'

M 1,2;1',2'qz 01 02 1 —
01

(2m ) (2n. ) (2ir)

X (1 f~ )5(s, + s~ —e, , —s~, ) . — (16)

We shall make the simplifying assumption that w only depends on q (and possibly s, —si, ). Then we introduce q as an
integration variable in (16). It is convenient' to express (16) in terms of the two-dimensional susceptibility function
y(q, co), defined by



47 COULOMB DRAG BETWEEN PARALLEL TWO-DIMENSIONAL. . . 4423

f'(E, ) —f'(E1)
x(q, ~)=-

(2ir)2 E, —E, +A'co+i'

The imaginary part of the susceptibility, Imp, is given at zero temperature by

(17)

mkF 1—
2~% q

mkF 1—
Imp(q, co) = 2rrfi q

mkF 1—
2~Pi q

0 otherwise .

VFq

UFq

VFq

2 1/2
q

2kF
2 1/2

q
2kF

2 1/2
q

2kF

CO

UFq 2kF

2 1/2

for q & 2k~, 0 & co & UF q (1 q /—2kF )

f«q & 2kF, U~q ( I q /2—k~ ) & co & UF q ( I +q /2k~ )

(18)
f«q & 2kF, U~q (

—1+q /2kF ) & co & U~q ( 1+q /2kF )

Strictly speaking we should here use the finite-temperature expression' for Imp. This, however, would only affect the
momentum relaxation rate to higher order in T/TF, and we may therefore use the zero-temperature expression, since
we are not interested in variations on the scale of the Fermi temperature, but on a much smaller temperature scale set
by the distance between the two layers. As we shall see in Sec. IV below, this characteristic temperature scale is given
approximately by TF /(kFd), where a =0.8.

By using the identities

5(E, +E2—E, —
E2 ) =A' f dco 5(E, —e, .—iiico)5(e2 —e2. +irico) (19)

and

f ( 8 ) [ 1 f ( s+ irico—) ]= [f ( 8 ) f ( E—+%co ) ] /[ I —exp( fico/k T )]—
we may transform the expression (16) into

dk, c)f,
k1

,
f( )'

eA' E2~22

8~ mkT X dg 2

f f dco[lmy(q, co)] w(1, 2;1',2')
(2ir ) o sinh (irico/2kT)

(21)

277e q/q TF
e q =

qTF g12 (g11+q/qTF ) g12
(22)

by using that the integrand is an even function of m.
To proceed further we must specify the effective in-

teraction. Our starting point is the direct Coulomb in-
teraction between electrons in each layer, suitably
modified by the screening in the two-dimensional electron
gas. For simplicity we assume static screening, treated in
the Thomas-Fermi approximation, which in two dimen-
sions yields the same result as the random-phase approxi-
mation provided the wave-vector transfer in the collisions
between electrons is less than twice the Fermi wave vec-
tor. The effective interaction is obtained by solving
Poisson's equation for the potential due to a point source
situated in one of the two layers. When the wave-vector
transfer is much larger than both the inverse distance be-
tween the two layers and the Thomas-Fermi screening
wave vector, the Fourier transform e1I}(q) of the effective
interaction reduces to that of the bare Coulomb interac-
tion between charge densities localized at the two quan-
tum wells. In the general case treated in the Appendix, P
is shown to be of the form

(A17), while qrF is the Thomas-Fermi screening wave
vector appropriate to two dimensions,

2me
qTF =

~A
(23)

K being the dielectric constant (for GaAs K= 13).
The simplest case to consider is that in which the

width I, of the quantum wells is effectively zero, which
corresponds to treating the two layers as mathematical
planes. Then the functions g» and g, 2 reduce to

g11=1 g12=e (24)

We may take into account the finite width of the quan-
tum wells by assuming a specific form of the electron
wave function in the direction perpendicular to the lay-
ers. If the latter is approximated by the ground-state
wave function of an infinitely deep well, the functions
G11(q) and G12(q) become those given by (A16) and
(A 17).

When the collision probability is obtained from the
effective interaction by use of the Born approximation
(or, equivalently, the golden rule), we get

Here g» = —2qG» and g»= —2qG» are functions of q,
where G, 2 and G» are form factors given by (A16) and o.

&,
o.

&, a&, , cr&,

w (1,2; 1', 2') = 4~eg(q) ~
(25)



4424 ANTTI-PEKKA JAUHO AND HENRIK SMITH 47

~
"

4sinh'xy2
="~" (28)

p. 6 i

p. 4

p. '~

The remaining integral over q involves the interaction
matrix element P(q), which is determined self-
consistently in the Appendix. For simplicity we assume
for the moment that the width L of the two layers may be
set equal to zero (cf. Fig. 6, in which the effect of a finite
layer thickness is illustrated), corresponding to the ex-
pression (A18),

q

2q i „»nhqd + (2qq» +q')expqd
(29)

FIG. 2. The q and cu dependence of the integrand in (27) for
T=10 K.

Since the important contributions from the q integration
come from the region, in which q is comparable to or
smaller than d ', and since d ' is much smaller than
both kF and q&F under the experimental conditions of
Ref. 7, we may neglect the second term in the denomina-
tor of (29) and thus use the simple form

The factor of 4 arises from doing the spin summations,
taking into account that w vanishes when 0. .&o. and1' 1

cr;Wo,
Collecting these results and using (2)—(4) together with

u 2
=e~2E2/m we can express the ratio between the elec-

tric fields in layers 1 and 2 in terms of the momentum re-
laxation rate 1/~D according to

E (26)

where

dq de q e q Imp q, co

1

sinh (he~/2kT)
(27)

IV. RESULTS AND DISCUSSION

In this concluding section we shall first consider the
limit of very low temperatures, in which an analytic re-
sult may be extracted. Then we exhibit the results of our
numerical calculation and compare with the experiments
of Ref. 7.

A. The temperature-dependent rate of momentum relaxation

Note that the factor q, which enters the momentum re-
laxation rate under consideration, removes the singulari-
ty at small q.

We have exhibited in Fig. 2 the q and co dependence of
the integrand in (27). Note that the integrand vanishes
for q =0, while it is nonzero for co~0, q&0, since Imp
depends linearly on co for small values of co.

The remaining task is now to carry out the integrations
in (27), which we shall discuss in the following section.

eP(q) =
q~„sinhqd

(3O)

The final integration over q may now be carried out, us-
ing (28). This results in

g(3)vr k T 1 1

«F (kFd) (qr„d)
(31)

1.0

0.0-

0.6-
CO

0.4—

~ 0.2—

0.0
5 10 15 20 ~5
Temperature (K)

Our low-temperature result (31) agrees with Ref. 7 apart
from being a factor of 2 larger.

The quadratic temperature dependence given by (31)
only applies to the low-temperature limit. At higher tem-
peratures the integration must be carried out numerical-
ly. In the following we present a set of curves that illus-
trate the behavior of 1/~D as a function of temperature
and layer separation. In Fig. 3 we plot 1/~DT as a func-
tion of temperature for two different values of the layer
separation, d =375 and 425 A, with the parameter L
describing our model wave functions taken to be L =200
A, appropriate to the experiments reported in Ref. 7.
Note that 1/~D T at higher temperatures decreases with2

At sufficiently low temperatures we may approximate
Imp by its low-frequency expansion, Imp

2 3=m co/2~% qkF, valid for q &&k~. This allows one to
complete the integration over co, since

FIG. 3. The calculated values of I/~D T as functions of tem-
perature, for the parameters d =375 and 425 A appropriate to
the experiment of Crramila et al. (Ref. 7). The value of L is 200
A.
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increasing temperature. By performing a high-
temperature expansion (with the restriction that T «TF)
of (27), using 1/sinh (A'co/2kT) =4k T /fi co —

—,', one
finds that I/rD ~ T co—nst/T, which is consistent with
the observed fall-off at higher temperatures.

To gain a better understanding of the physics underly-
ing the nonmonotonic temperature dependence of
I/r~ T, we rewrite Eq. (27) as

I/DDT = J dq q~eP(q)~ Fz(q), (32)

where FT(q) is the result of the co integration in (27). The
two factors in the q integral have different physical ori-
gins: the P term describes the q dependence of the in-
teraction, while the FT(q) piece is related to the phase
space corresponding to momentum transfer Aq; these two
terms are plotted in Fig. 4. The function FT(q) is strong-
ly temperature dependent, with a maximum which
broadens and moves towards higher temperatures, as the
temperature is increased. This behavior is a consequence
of the interplay of the co dependence of the thermal factor
sinh (trito /2k T) /T, and the susceptibility function
q Im y(q, ro). At a certain temperature (T =10 K in the
present example), the maxima of q~eP(q)~ and FT(q)
coincide, the interaction term and the phase-space term
have a maximal overlap, and a maximum in the calculat-
ed value of 1/~D T results.

In Fig. 5 the dependence of d /~DT on T is plotted
for three different values of d. The curves illustrate that
the momentum relaxation rate is proportional to d
only in the low-temperature limit. Note that the temper-
ature T,„, at which the curves have their maximum,
shifts to lower temperatures when d is increased. In the
T~0 limit, the analytic formula (31) gives
~D 'd /T ~ 1.38 X 10 m /K s, which is slightly
larger than the extrapolated value from Fig. 5. This re-
sult can be understood by examining Fig. 7, where one
observes that the approximate effective interaction (30) is
slightly larger than the full expression (22) used in the nu-
merical calculation of Fig. 5.

The general shape of the curves depicted in Fig. 5 can

c,) rg
c . ')

8.0

1.0

0.5

0.0
5 10 15 20
Tenzperature (K)

FIG. 5. The curves show the dependence of the scaled quan-

tity d /DDT on temperature for three different choices of d:
375 A (full curve), 700 A (dashed curve), and 2100 A (dot-
dashed curve). The value of L is 200 A.

B. Comparison with experiment

The experimental data obtained in Ref. 7 have a form
similar to our theoretical curves in Fig. 3, but the temper-
ature at which 1/~DT has its maximum is significantly
less, about 2.5 K in the experiment of Ref. 7. The Fermi
temperature corresponding to the experimental value of

also be understood based on Fig. 4. For an increasing
layer spacing d, the maximum of q~eP(q)~ moves to-
wards smaller q's, and hence the maximum in 1/~DT
moves towards lower temperatures.

Our numerical calculation shows that T „is approxi-
mately proportional to d, where a is close to 0.8.
This power-law behavior is illustrated in Fig. 6 for two
different choices of the parameter L. The exponents ob-
tained from the fit to a power law are nearly the same:
a=0. 81 and 0.76 for L =200 and 1 A, respectively. Fi-
nally we show in Fig. 7 how ~P(q)~ depends on q, for
different forms of the effective interaction considered in
the Appendix.

1.0

0.8

0.6
2 0-

1.5-

1.0—

().0
0.() 0. 1

($/; lw 1,

0.(l () . f3

I. . . ~ I

6.5 7.0
ln(d [A])

8.0

FIG. 4. The interaction term q~eP(q)~' (full curve; see also
Fig. 7), and the phase-space term FT(q) for temperatures T=1
K (dot-dashed curve), T = 10 K (dashed curve), and T =20 K
(dotted curve).

FIG. 6. The dependence of T „on layer separation d for
0 0

two different L values: L =200 A (crosses) and L =1 A (aster-
isks). The fitted values of the exponent o. are 0.81 and 0.76, re-
spectively.
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1.0 V. CONCLUSION

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.0 1.0

q/-I~F

FIG. 7. The square of the matrix element, lP(q) l', as a func-
tion of momentum transfer. The full curve is obtained from
(22), the dashed curve from (30), and the dot-dashed curve from
(29). The units have been chosen such that lP(q =0)l' is unity
for the dashed curve.

T kFe
960 TF q~F, kF qd e

(33)

In obtaining this result we have used the interaction (30)
with qz„& replaced by the classical expression
2~nI, e /~kT. Further, Imp for the holes was evaluated
in the classical limit, i.e., using Maxwell-Boltzmann dis-
tribution functions rather than Fermi-Dirac distribu-
tions. At T =10 K and for densities n, =2X10" cm
and nI, =5 X 10' cm, this yields pD ——4 0, while the ob-
served value' of pD is about 10 0 at this temperature.
We stress that the result (33) is derived under the condi-
tion that the electrons are completely degenerate, and the
holes behave as classical particles. A more detailed com-
parison with the experimental results of Ref. 17 requires
a numerical evaluation of (27), taking into account the
full temperature dependence of the susceptibility function
(18).

the number of electrons per unit area is 62 K. The max-
imum of the theoretical curves occurs around 10 K for
the values of d shown in Fig. 3. Furthermore the ob-
served rate is about a factor of 2 larger than our calculat-
ed values, suggesting that other mechanisms of momen-
tum transfer may be important.

The expression (27) for the momentum relaxation rate
may readily be generalized to the case where the densities
and masses of the two systems of charge carriers differ.
The experiment by Sivan, Solomon, and Shtrikman' in-
volves a hole gas coupled to an electron gas. Since the
hole mass is nearly seven times larger than the electron
mass, the Fermi temperature TF & for the holes is typical-
ly much less than the Fermi temperature TF, for the
electrons. This allows one to identify a temperature re-
gime in which the electrons can be treated as a degen-
erate gas, while the holes behave as classical particles
( TF ~ && T && TF, ). Under such conditions one finds
from (27) that the drag resistivity is
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APPENDIX:
THE EFFECTIVE COULOMB INTERACTION

The momentum relaxation rate depends on the
effective Coulomb interaction between the electrons in
the two planes. We shall now determine this interaction,
starting from the Poisson equation and treating the
screening in the Thomas-Fermi approximation.

The collision probability entering the Boltzmann equa-
tion is determined by matrix elements ( 12

l P l

1'2' ) of the
form

(12lyll'2'& =&)+~,)+, f« f «'Ix&(z)l' lx&(z')I'

XP(z, z', k, —k, ) . (A1)

Here 1,2 and 1', 2' are shorthand notations for the two-
dimensional wave vectors k, , k2 and k, k2, with the sub-
script "1" referring to layer 1, and the subscript "2"
referring to layer 2. The function P(z, z', k&

—k, ) is the
two-dimensional Fourier transform of the potential at z
due to a test charge situated at z'.

Screening in heterostructures has been treated exten-
sively in the literature (see e.g. , Ref. 21). The Poisson
equation for the potential P(z, z') =P(z, z', kt —k&, ) is

In this paper we have considered the rate of momen-
tum transfer between two nearby electron gases, which
are coupled via the screened Coulomb interaction. This
system is of particular interest, because it provides a way
of probing electron-electron interactions in two dimen-
sions, which play a crucial role in many problems of
current interest. It is well known that going from three
to two dimensions may change qualitatively predictions
based on phase-space arguments, the classical example
being the logarithmic energy, or temperature, depen-
dence of the electron lifetime. These effects can be relat-
ed mathematically to logarithmic singularities in the
phase-space integral, which determines the lifetime, or
scattering rate. The phase space corresponding to the
momentum transfer rate is different from the phase space
related to the lifetime: the singularity corresponding to
small momentum transfer is removed, and the 2kF singu-
larity is strongly suppressed due to the effective interac-
tion, which decays exponentially for large momentum
transfer. Thus it might seem that there is no reason to
expect deviations from a T temperature dependence. It
was therefore a significant surprise when recent measure-
ments revealed a nonmonotonic temperature dependence
of the momentum transfer rate (when scaled by T ). To
account quantitatively for the experimental observations,
it is likely that other mechanisms than the direct
Coulomb coupling must be considered. However, as we
have shown in this paper, the Coulomb coupling itself
yields a nontrivial temperature dependence, which bears
a clear resemblance to the one observed experimentally.
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—
q p(z, z')=2qTplg](z)l p](z')

dz2

+ 2'qTF IX2(z) I
'42(z

]t](z,z')= f dz G(z —z) 2qTply](z)l P](z')

+2q Tp Ix2(z ) I'&2(z')

ti(z —z'),
K

where we have defined P, (z') by

y;(z')= fdzlx;(z)l'y(z, z') .

(A2)

(A3)

6(z —z')
K

We now introduce the definitions

G, (z)= f dz G(z —z)ly;(z)l'

(A6)

(A7)

d —
q G(z —z')=5(z —z') .

dz2
(A4)

It is readily verified that (A4) has the solution

The solution of (A2), which requires the self-consistent
determination of p](z') and $2(z'), may be conveniently
performed by introducing the Green function G(z —z')
as a solution of the equation

and

GJ = f dz f dz'ly, (z)l le(z')I G(z —z') .

This allows us to write (A6) in the compact form

]]]](z,z') =2qTFP](z')G](z)+2qTFG2(z)$2(z')

4vre

(A8)

(A9)

G(z —z') = — e
1

2g

Therefore we have

(A5) It is now straightforward to determine ]]]]] and $2 by mul-

tiplying (A9) by Iy](z)l and Iy2(z)l, respectively, and in-

tegrating over z. This yields

and

4vre G](z')(1 —2qTFG22)+2qTFG]2G2(z')
P](z') =—

(1—2qTpG]] )(1—2qTpG22) —4q TpG]2G2]

4me G2(z')(1 —2qT„G» )+2qT„G,2G, (z')
$2(z') =—

(1—2q TF G» )(1—2q TFG22 ) —4q TFG]2G2]

(A10)

(Al 1)

The matrix element (Al) is therefore obtained by multiplying, e.g. , ])]](z') with Iy2(z')I and integrating over z'. We
get

4rre G2] (1 2qTF G22 ) +2qTF G]2G22

(1 —2qTpG„)(1 —2qT„G22) —4q TFG, 2G2,

Since G12 =G2, this may be written in the simpler form

&»lyl12 & =~]+2,]+2y(q),
where

4m.e G 12

2'qTFG]1 )( 1 2'qTFG22 ) 'qTFG]2G21

(A12)

(A13)

(A14)

&2/L cos for lzl (—7TZ L
L 2

y](z) = '

0 for Izl &—
2

(A15)

In order to evaluate the form factors G; it is necessary
to specify the form of the wave functions g, . We assume
that the quantum wells are identical, and thus G» =G22.
As an example, we shall take the wave functions g, and

y2 to have the form
1 —qd qi 877

e q sinh
2q 2 qL(4' +q L )

2

(A16)

while

while y2(z) is given by a similar expression, centered at
z = —d. It is then straightforward to calculate G11 and
G12. We find
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1 2 qL
11

zq qL 4~22+ q2L2

2
8m. .

h qL ql. /2
2

S1Il e
qL(4vr +q L )

(A17)

In the limit L ~0 the form factor 6,2 becomes equal to

—exp( —qd)/2q while G» becomes —1/2q. This is the
limit in which the layers are treated as mathematical
planes, corresponding to taking ~y&(z) ~

=5(z) and
~y2(z)i =5(z+d). If these expressions are inserted into
(A14), one obtains

eP(q)=. . . (A18)
2qTFsinhqd+(2qqTF+q )expqd

which is the result given in (29) of the main text.

*Also at Microelectronics Centre, Technical University of Den-
mark, 2800 Lyngby, Denmark.
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