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Quantized Hall effect and quantum phase transitions in coupled two-layer electron systems
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We study the nature of the many-body electron states (and quantum phase transitions between them)
in a double-quantum-well structure under a strong external magnetic field as a function of the materials
parameters that define the two-layer system, namely, the thickness of individual layers, the separation
between them, the individual well potentials confining the electrons, and the potential barrier between
them. Motivated by two recent experiments, we consider two different situations, one with (almost) no
quantum tunneling between the wells, and the other with substantial interwell quantum tunneling. We
use the spherical system finite-size exact diagonalization technique for our calculations. By calculating
the overlap of our exact small-system numerical wave functions with various {postulated) analytic wave

functions, we comment on the nature of the incompressibility for various Landau-level filling factors (v).
We investigate, in particular details, the possibility of v= —' (i.e., —' average occupancy in each well), and,

1 (i.e., —' occupancy in each well) incompressible states where v is the total filling factor for the system.

We also provide results for the v= —, situation. Our conclusion, based on our use of realistic system pa-

rameters in our calculations, is that in both the recent experimental realizations of the v= —' fractional

quantum Hall effect, the relevant ground state is the so-called 331 state which is stabilized by the com-
petition between intrawell and interwell electron-electron correlations. We calculate for various
double-quantum-well structural parameters and magnetic fields the v= —,

' excitation spectra and the ener-

gy gaps, and compare it with the recent experimental data, obtaining excellent quantitative agreement.
We provide a detailed quantum phase diagram for the v= 1 state as a function of the interwe11 Coulomb
interaction and the symmetric-antisymmetric single-particle gap, and find that the v=1 quantum Hall
effect observed in the two recent experiments, in contrast to the v= —' effect, belongs in some sense to two

different universality classes. We also predict the existence of a reentrant v=1 quantum Hall effect in

double-quantum-well systems.

I. INTRODUCTION

Laughlin's theory' for the fractional quantum Hall
effect (FQHE) is based on the following Jastrow-type
many-particle wave function:

N

(u„. . . , utv)=Q(u; —u, ) exp —
—,
' g u, ~

for the ground state. Here, u =x —iy is the complex
representation for the two-dimensional (2D) coordinates
(x,y ) of the jth electron, m =v ' is an odd integer
where v is the filling factor, v=eB /(chN) with B the per-
pendicular magnetic field, and Ã the 20 electron density.
Throughout this paper we neglect any explicit considera-
tion of electron spin assuming that the magnetic-field B is
always high enough to totally spin polarize the system
due to a large Zeeman splitting and our interest is in the
lowest spin-split state. We also ignore any effects of
Landau-level mixing and higher subbands, working ex-

elusively in the lowest spin-split Landau level of the
lowest subband. (All the experimental work to be dis-
cussed and compared with our theory in this paper
satisfies these conditions. ) Laughlin s wave function de-
scribes an incompressible liquid state at the magic filling
factors v =m '

3 5 7
. , where the system develops

an excitation gap separating the ground state from the
excited states. The ground-state energy itself has cusps at
these primary fractional fillings v= —,', —,', etc. , which (once
one invokes some mechanism, such as localization, to al-
low the chemical potential to move smoothly through the
excitation gap) is sufficient ' to produce FQHE. The
theory was later generalized to include other fraction-
al states of the form v=p/q with q odd (e.g. , v= —,', —,',
etc.). The essential theory based on the wave function de-
scribed by Eq. (1) is universally accepted (and, has been
verified in many direct numerical calculations) to be the
theoretical explanation for the FQHE in a single-layer
2D system.

The key element in the physics of the FQHE is the in-

47 4394



47 QUANTIZED HALL EFFECT AND QUANTUM PHASE. . . 4395

compressibility (equivalently, the excitation gap or the
cusp in the ground-state energy as a function of v) in-
duced by short-range correlations due to electron-
electron interaction. The integral quantum Hall effect
(IQHE) phenomenon is also due to incompressible states
at integer v=1, 2, 3, . . . , which, however, arise not from
electron correlation effects, but from the excitation gaps
associated with the quantization of the noninteracting ki-
netic energy into distinct Landau levels. The angular-
momentum quantum number m in Eq. (1) is necessarily
an odd integer due to the needed antisymmetry of the fer-
mion wave function arising from the Fermi statistics.
Thus, the incompressibility of the FQHE state arising
from short-range electron correlations exists only at odd
denominator fractional fillings v=m ', immediately "ex-
plaining" the early puzzle of why the FQHE does not
happen at even denominator fractions (e.g. , v= —,

' ).
Following Laughlin's work, Halperin pointed out that

it should be possible to observe even fractional states
v=p /q with q an even integer, provided one considers a
multicomponent 2D electron system where electrons car-
ry (at least) one additional quantum index associated with
some other (i.e., in addition to the orbital motion) degrees
of freedom. Specifically, the introduction of spin degrees
of freedom into the problem (explicitly ignored in our dis-
cussion and in Laughlin s original work) would, in princi-
ple, allow the possibility of even denominator fractions
where states of mixed spin polarization can exist where
two or more orbital Landau levels are nearly degenerate.
Because of the small g factor in GaAs, the most obvious
possibility for the realization of such a multicomponent
2D system occurs in a weak magnetic field where the Zee-
man splitting is small, making the spin degrees of free-
dom relevant. The incompressibility responsible for the
FQH state arises from there being a maximum filling fac-
tor at which the possibility of any pair of electrons being
in a state of some low relative angular momentum can be
avoided. In the absence of any Zeeman energy, electrons
can gain considerable correlation energy by reversing half
of their spins. In the presence of Zeeman energy, it be-
comes a quantitative question whether reversed spin
states can be incompressible ground states for some even
denominator fractions at weak enough magnetic fields.
This issue has been addressed in detail " in the theoret-
ical literature. In fact, it has been suggested' '" that the
weak v= —,

' FQHE originally observed' by Willett et al.
in a tilted magnetic-field experiment is such a spin-singlet
ground state. Thus, the odd denominator rule for the
FQHE can be relaxed by introducing new quantum num-
bers associated with additional degrees of freedom. We
will not discuss these spin-unpolarized (or, partially po-
larized) states any more except to mention that there is
substantial theoretical literature " on the subject and
quite a few puzzling experimental observations' '' in
higher Landau levels (i.e., v) 1) have been interpreted us-

ing spin generalizations of the Laughlin state. Our
reason for mentioning the mixed spin states is to point
out that, in the presence of new degrees of freedom, it is
possible to relax the odd denominator requirement of the
original Laughlin incompressible state because the an-
tisymmetry requirement of the wave function is more

complicated than that in Eq. (1) in the presence of addi-
tional quantum numbers.

In this paper, we provide a detailed quantitative
theoretical study of FQHE states in a two-component 2D
quantum plasma where the additional degree of freedom
arises from having two parallel 2D electron layers which
are separated by a distance in the third (z) direction.
Two-layer (or, more generally, multilayer) structures
have attracted considerable attention over the years both
theoretically' and experimentally' for their electronic
properties, particularly in the context of plasmon disper-
sion studies' ' in low-dimensional systems. These
double-layer structures are clearly well suited for study-
ing generalized incompressible states in a two-component
strongly correlated 2D system. While there is much
superficial similarity between the two-spin and the two-
layer systems (in fact, one can think of the layer index as
a pseudospin index' to emphasize this formal similarity),
there are significant differences as well. In the spin prob-
lem the electron-electron interaction is spin independent
(i.e., Coulomb interaction between two electrons is the
same for spin up and spin down) while in the layer prob-
lem the interaction is pseudospin dependent because the
intralayer and interlayer interactions are obviously
different. Thus, in the spin problem the system wave
functions must be eigenstates of both the total spin and
the z component of the spin angular momentum, whereas
in the layer problem neither the total pseudospin nor its z
component (in the presence of tunneling between the lay-
ers) is conserved. In the absence of any actual interlayer
electron hopping or tunneling, the z component of the
pseudospin is conserved in the double-layer problem, but
the total pseudospin is still unconserved because it does
not commute with the Hamiltonian which is now pseu-
dospin (i.e., layer) dependent.

The model for the double-quantum-well (DQW) system
considered (Fig. 1) in this paper consists of two identical
finite-width (with an individual well width in the z direc-
tion denoted by D ) square quantum wells separated by a
barrier of width DI, . The center-to-center distance or the
well separation (d) between the two wells in the z direc-
tion is, therefore, d=D +Db. We model each well of
the DQW structure by a finite "asymmetric" square-well
potential of depth V (and of width D ) and the potential
barrier separating them be a square barrier of height Vb

(and of width Db ). For V = Vb, a situation we study in

Db
DW W

FIG. 1. Shows the schematic potential diagram for the DQW
structure used in the calculations.
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some detail, each well becomes a symmetric finite square
well. The materials parameters for the DQW structure in
our calculations are, therefore, D, Db, V„, and Vb. We
assume a symmetric or balanced situation with equal
electron density X/2 in each well with a total density of

In addition to these four independent materials pa-
rameters (or three, if V„=Vb) defining the DQW itself,
there is an additional length (or energy) parameter associ-
ated with the intrawell Coulomb interaction, given by the
magnetic length or the cyclotron radius i, =(cubi/eB)'~
with the intrawell Coulomb correlation energy being of
the order of e /cI, for each well, where c, is the back-
ground lattice dielectric constant. When the interlayer
Coulomb interaction energy, given approximately by
e /2cd, is comparable to the intralayer correlation ener-
gy, i.e., when 1, -d /2, one expects a new ground state for
the system. For d « l„ the system behaves as a single
2D layer with a filling factor v whereas for d ))l, the
DQW system consists of two isolated 2D layers each with
a fractional filling of v/2. Our main interest is in investi-
gating the possible (experimentally realizable) existence of
incompressible FQH states for intermediate values of the
DQW separation d.

The qualitative discussion' given above, where one ex-
pects some incompressible ground state for d-2l„ is
based' on there being no other length scale in the prob-
lem (i.e., in addition to d and l, ). But, in reality (and in
our realistic model as well), there is an additional length
scale A. -D defining the width or the thickness of each
2D layer in the DQW structure. Obviously, A, softens the
intralayer Coulomb correlation' —in fact, it is possible
to completely destroy' ' the incompressibility by in-
creasing X which preferentially enhances the relative con-
tribution of the long-range part of the Coulomb interac-
tion compared to the short-range part. Thus, in real sys-
tems, due to the finite thickness of each electron layer,
the approximate equality of the intralayer and correla-
tions occurs at a larger value of the interwell separation
d —2(l, +k ). '~ Another complication in real systems is
the presence of interwell electron tunneling due to the
overlap of the z wave function in the individual wells. In
the presence of tunneling, the z component of the pseu-
dospin is not conserved. Clearly, for small enough values
of d (and, for a finite barrier height Vb), tunneling is
quantitatively significant and must be included in the
theoretical calculation. As the well separation d (or Vb)
increases, tunneling is exponentially suppressed and our
simple qualitative consideration applies. Tunneling intro-
duces another energy scale 6„„the so-called symmetric-
antisymmetric energy gap, in the problem —6„, is the
energy splitting between the 2D subbands in the two
wells (which are degenerate in the absence of tunneling)
due to the overlap of the z wave functions. For large 5„„
the FQH states are destroyed. (We find that for small
values of b,„„the v= —,

' FQHE is quite robust and sur-
vives the effect of interwell tunneling. )

The first systematic investigation of possible FQHE in
DQW structures was carried out ' by Yoshioka, Mac-
Donald, and Girvin following an earlier suggestion' by
Haldane and Rezayi mentioning the possibility of in-
teresting FQH states in DQW structures. An early nu-

merical study on a DQW structure using rectangular
geometry was also carried out in Ref. 22 for the v=1 sit-
uation, suggesting the possibility of an incompressible
state where each individual layer has a filling factor of —,'.
In all of these references, ' ' ' a highly idealized DQW
model was used in which each well is taken to be a purely
6-function-like ideal 2D layer with zero thickness. Thus,
the model is characterized by only two length scales, the
layer separation d and the magnetic length l, with the
physics of finite layer thickness and interwell tunneling
both neglected completely. Using a finite-size diagonali-
zation study, Yoshioka, MacDonald, and Girvin investi-
gated ' the nature of the ground state as a function of
d/l, for v=1, —,', —', , and —,'. In particular, the possible ex-

istence of a v= —,
' FQHE in a DQW structure around

d /l, -2 was pointed out in Ref. 21. Our primary interest
in this work is to investigate, in detail, the possible reali-
zation of FQH states in realistic DQW structures —we
are, therefore, mainly interested in the v= —,

' situation
which does not occur in single 2D layers. We present
some results for v= I as well —of course, v= I QHE reg-
ularly occurs in a 2D system, however, for a DQW struc-
ture v=1 implies that the average filling factor is —,

' in

each layer. Our most important difference with the ear-
lier theoretical work' ' ' on DQW systems is our use of
a realistic model with finite well widths and finite in-
terwell tunneling in contrast to the ideal systems studied
in Refs. 21 and 22. Using realistic values of D, Db, V,
and Vb (as we do) in the theoretical model has turned out
to be crucial in the experimental design of the DQW
structures for the eventual realization of the v= —,

' FQHE.
In fact, our calculations ' were used by the experimen-
talists in making the optimum choice for the materials
parameters (i.e., V, Vb, D, Db ) of the DQW struc-
tures for the eventual observation of the v= —,

' FQHE.
Neglect of finite layer widths and the well and barrier po-
tentials in the ideal model ' makes it quantitatively un-
suitable to be compared with the experimental ' re-
sults. The actual feasibility of observing the v= —,

' FQHE
in a DQW structure was, however, qualitatively estab-
lished by these idealized calculations. '

The predicted ' v= —,
' FQHE in DQW systems has

recently been observed ' by two different groups, using
DQW structures which are quite different in their
structural details. In the study by Eisenstein et al. , car-
ried out at AT&T Bell Laboratories, the sample is a trad-
itional symmetric DQW structure (Fig. 2) with V = Vb,
whereas in the work of Suen et al. , carried out at
Princeton University, the sample is actually a wide single
quantum well where the self-consistent electric field
arising from the presence of the electrons themselves
splits the well (Fig. 3) into two spatially separated (in the
z direction) electron layers, effectively creating a DQW
structure. Thus, even though the bare potential looks
substantially different in the two cases, the real self-
consistent potentials are not that different, and, in fact,
the electron charge-density profiles (in the z direction) in
the two cases (Figs. 2 and 3) are qualitatively similar.
Based on the fact that the experimental sample of Ref. 26
is a single quantum well, it has recently been argued
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FIG. 2. The DQW structure corresponding to Ref. 25 (AT&T
samples) used in the calculations. V = Vb =750 meV; D =120
or 180 A; Db =51 and 31 A (samples 3, 8, and C), and 99 A
(sample D). The electron charge density is also shown.
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FIG. 3. The DQW structure corresponding to Ref. 26
(Princeton sample) used in the calculations. The real structure
is a wide single quantum well where self-consistency effects pro-
duce an effective double-layer structure. The effective parame-
ters ( V =1.2 eV; Vb =25 meV; D =220 A; D„=120 A) used
in our calculations are such that the correct self-consistent
charge density (also shown) and the 6„, (=0.97 meV) are
reproduced.

that the v= —,
' FQHE observed in the Princeton sample

is qualitatively diferent from that observed in Ref. 25
(i.e., they belong to different universality class), because
the presence of tunneling in Ref. 26 makes the electron
species in the two layers essentially indistinguishable
whereas the more conventional DQW system of Ref. 25
with a high potential barrier (and, therefore, little tunnel-
ing) represents the standard theoretical model' ' ' of two
distinguishable species. We disagree with this
viewpoint and believe that the v= —,

' FQHE states ob-
served in Refs. 25 and 26 are qualitatively the same
ground state (namely, the 331 state first proposed by
Halperin) and we present numerical evidence that this
state is quite robust and survives some interwell tunnel-
ing. ' In fact, our numerical calculations using the ac-
tual materials parameters of the Princeton sample show
the v= —,

' FQHE in Ref. 26 to have the same 331 ground

state as the AT&.T sample. We will present these re-
sults later in this article, establishing that the v= —,

' FQH
states observed in Refs. 25 and 26 are in the same univer-
sality class. We believe that the bare A„„which is quite
large ( —10 K) in Ref. 26, is not the relevant parameter
determining the nature of the ground state in the strongly
correlated system. Electron-electron interaction strongly
affects the single-particle tunneling by broadening the in-
dividual symmetric or antisymmetric single-particle
states (in fact, for strong enough interwell Coulomb in-
teraction the single-particle tunneling gap vanishes), and
the correct parameter determining the nature of the
correlated ground state is the renormalized 6„,. Our
direct numerical calculations suggest that the renormal-
ized 5„, in Ref. 26 is small and the ground state is the
331 state which is exact in the limit of vanishing tunnel-
ing.

It may be worthwhile to discuss qualitatively' the two
experimental results ' in light of this apparent
difference between the two samples. In Fig. 4, we repro-
duce the main results of the two experiments, both clear-
ly showing the v= —,

' FQHE. (One can also see many oth-
er known integral and fractional QHE's of comparable
strengths in the plots of Fig. 4, demonstrating that the
v= —,

' FQHE in DQW systems is a strong, primary effect
and not a small detail. ) The v= —,

' FQHE in the two cases
can be seen to be quite similar qualitatively. There is a
substantial quantitative difference between the two exper-
iments in terms of the d/l, values at which the v= —,

'

FQHE shows up in the two experiments. In Ref. 25, con-
sistent with the earlier theoretical expectations and pre-
dictions, the v= —,

' FQHE occurs around d/I, —3, and is
clearly absent for d /l, ~ 4. In Ref. 26, on the other hand,
the v= —,

' FQHE occurs for d/l, —7. This large difference
can be understood on the basis of our earlier qualitative
discussion including the effect of finite layer width. The
effective layer width for the Princeton sample is quite
large, A, -3/„whereas in the ATILT sample the layer
width is smaller, A, —l, . Taking into account the soften-
ing' ' of the intrawell Coulomb correlation energy by
the finite layer thickness effect, it is easy to see that the
condition of the approximate equality of the intrawell
and interwell Coulomb interaction energies, which is
needed to stabilize the v= —,

' FQHE, will occur at much

larger relative values of d(-2[i, +A, I' ) for the sample
of Ref. 26 than that for Ref. 25. Even though the bare
tunneling effect is larger in the sample of Ref. 26
(b,„,-O. 97 meV) compared with that of Ref. 25
(b.„,-0. 14 meV), it is a small effect in both, and the
same robust v= —,

' FQH state (i.e., the 331 state of Halpe-
rin ) is the ground state in both samples. This conclusion
is borne out by our detailed numerical calculations.

While our main goal in this paper is to study in detail
the v= —,

' FQHE in DQW structures, we discuss some nu-

merical results for the v= 1 FQHE as well. One can
clearly see the v= 1 FQHE in the data (Fig. 4) of Refs. 25
and 26. As a function of the interwell separation d (with
fixed v), the v= —,

' and v= 1 FQHE have a qualitative
difference with respect to the comparative roles of 5„„
the interwell electron tunneling effect, and the interwell
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FICx. 4. Shows the DQW experimental QHE data for Ref. 25 (a) and Ref. 26 (b). The v= —,', —,, and 1. QHE can clearly be seen in
both experiments.

Coulomb interaction energy. As d~0, v= —,
' FQHE is

necessarily destroyed, because the single-layer 2D system
is compressible at v= —,'. The v= 1 QHE in a DQW sys-

tem, on the other hand, is the strongest in the d ~0 limit.
Thus, b,„, always hinders the v= —,

' FQHE in a DQW
whereas the v= 1 QHE is stabilized by b,„,in the small-d
limit. As d increases, an exponential decrease in 6„,
eventually destroys ' the regular v= 1 QHE. Curiously
enough, however, there is a possible many-body v=1
QHE which may exist even for b,„,=O. In particular, for
d large enough so that the intrawell and inter well
Coulomb correlation energies are comparable, i.e., for
d =2l, (for a zero well-width model), the so-called 111
many-body state ' which exhibits v=1 FQHE may be
stabilized even when b.„,=O (in fact, finite values of b,„,
hinder this ill state, just as it does the v= —,

' 331 state).
Thus, the v= 1 effect in a DQW structure can arise from
two different physical origins —one, the usual single-
particle QHE, is stabilized by the symmetric-
antisymmetric gap for large b,„,(and, therefore, small d)
and, the other, a many-body QHE, is stabilized by a
many-body gap at small values of 5„,. Note that for
large d, the v= 1 DQW system splits into two isolated 2D
layers, each with v= —,

' showing no FQHE. The destruc-
tion of the odd-integral QHE by the relative decrease of
6„,has been experimentally observed ' recently.

Coming back to the data of Refs. 25 and 26, we believe
that there is a qualitatiue diQerenee between these two ex-
periments with respect to their observation of the v=1
QHE. We believe (and our numerical results strongly
suggest) that the v= 1 QHE observed in Ref. 25 corre-
sponds to the 111 many-body ground state whereas that
in Ref. 26 corresponds to the finite 6„,stabilized single-
particle ground state. Thus, the v= 1 QHE in the two ex-
periments belong to different universality classes. While
this conclusion is based on our finite-size diagonalization
numerical results, we make some qualitative remarks in
support of this conclusion. One can see the following
from the data (Fig. 4): (1) the v= 1 effect is substantially
stronger in Ref. 26 than in Ref. 25; (2) the data of Ref. 26
show both v= 1 and v=3 QHE while in Ref. 25 v=3 is
absent; and (3) the estimated value of b,„,=13 K (Ref.
26), 3 K (Ref. 25) is substantially larger in Ref. 26 than in

Ref. 25. The conclusion from these qualitative considera-
tions is that the nature of the v= 1 QHE in Refs. 25 and
26 is qualitatively different: In Ref. 25, the incompressi-
ble 111 state, stabilized by a many-body gap created by
interwell Coulomb correlation, is observed whereas in
Ref. 26, the single-particle v= 1 QHE, stabilized by the
b,„,gap created by interwell tunneling, is seen. (This is in

sharp contrast to our earlier assertion that the nature of
the v= —,

' FQH states in the two experiments is the same,

namely, the 331 many-body state which is robust in the
presence of some interwell tunneling. ) Later in this arti-
cle, we present our calculated phase diagram for the tran-
sition between these two v= 1 ground states in the

6„,—d/l, space. Our phase diagram, based on the exact
diagonalization of small systems, is qualitatively different
(i.e., has a different topology) from earlier published re-
sults using a single-mode approximation.

The rest of this article is organized as follows. In Sec.
II we describe our theoretical calculations. In Sec. III we
present and discuss our numerical results (mostly for the
v= —,

' case, some results for the v= 1 and —,
' cases as well).

We conclude in Sec. IV with a discussion.

II. THEORY

Our technique for studying the FQHE in DQW struc-
tures is the exact finite-size diagonalization ' of few
electron spherical systems. This extensively used numeri-
cal technique has been very successful in the theoretical
studies of many different aspects of FQHE. A particular-
ly appealing aspect of the finite-size diagonalization cal-
culation, that we will exploit in this paper, is that by cal-
culating the overlap between the exact numerical (few-
electron) many-body wave function and a proposed (or
guessed) analytical many-body wave function, one can
make a reasonable inference about the nature of the in-
compressible ground state. (In fact, this technique has
been instrumental in establishing the quantitative valid-
ity of Laughlin's wave function for the FQHE problem. )

All our calculations are for the "balanced" ' situa-
tion where the average electron density (N/2) in each
well is equal. The generalized X-electron Jastrow-type
incompressible Laughlin wave function for the DQW sys-
tem can then be writtin as (in the planar geometry)
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where u;=x; —iy; and, u; =x;.—iy;. denote the complex
2D coordinate of an electron in the two wells, respective-
ly. The total 2D wave function is obtained by properly
antisymmetrizing the orbital part given by Eq. (2),

~ '
~ ll+mmn ~ 1 ~, mnm(u 1 » ' '

» uN/2»W1» ' » WN/2)

XI I r . . rIt
1 El~/2 w

1 1V /2
(3)

2v=
(m +n) (4)

The wave function also has the property that the elec-
trons with the same pseudospin have relative angular mo-
menta at least m, and those with opposite pseudospin
have relative angular momenta at least n. Note also that

where l„and r„are the pseudospin parts (i.e., the well in-
dex) of the wave function for the left and the right wells,
respectively, and A is the antisymmetrization operator.
The exponents m and n appearing in Eq. (2) are integers
which describe the intrawell and interwell Coulomb
correlations, respectively (i.e., the interaction between the
same and different pseudospins). It is clear that this vari-
ational 3astrow wave function, which we will equivalently
refer to as the mmn state or the %' „state, has many-
body correlations, similar to that in the original Laughlin
wave function, built into it in the multicomponent con-
text. It is also obvious that this DQW incompressible
wave function is strictly valid only in the limit of vanish-
ing interwell tunneling (i.e., b,„,=O) because it treats the
electrons (with coordinates denoted by u and w) in the
two wells (1 and r) as distinguishable species, a picture
that breaks down with increasing tunneling. But, as em-
phasized in the Introduction, the crucial physics underly-
ing FQHE is the incompressibility (i.e., the existence of a
gap in the excitation spectra) induced by short-range
electron correlations, and, therefore, ground-state wave
functions such as the one defined by Eqs. (2) and (3) are
quite robust and can be a very good variational ground
state even in the presence of some interwell tunneling.
The two-component wave function, defined by Eqs. (2)
and (3), was first written down by Halperin in the con-
text of the spin generalization of Laughlin's wave func-
tion. The applicability of such wave functions to the
DQW problem, with the interpretation of the layer index
as a pseudospin, was first noted in Ref. 16.

It is obvious that the Pauli principle or Fermi statistics
restricts m to be an odd integer. On the other hand, the
electrons in the two wells being distinguishable, n can be
odd, even, or zero (it cannot be a fraction for reasons of
analyticity). The wave function %' „,just as the Laugh-
lin wave function, is explicitly constructed to be entirely
in the lowest Landau level and it is easy to show that it
corresponds to a total filling factor given by

I

the wave function, by construction, is an eigenstate of the
"z component" of the pseudospin (by taking the two
eigenstates of the z component of the pseudospin to
represent electrons localized in the left and the right
wells, respectively), but not, in general, that of the total
pseudospin except for the special situations m = n + 1 or
n Th. us, only for these special values of m and n (i.e.,
m =n or m =n +1) can this state be considered to be a
good candidate for a pseudospin-conserving interaction
Hamiltonian because only under those conditions does
the wave function defined by Eqs. (2) and (3) obey the
Fock cyclic condition. This makes it problematic' '" to
use such wave functions in the problem of (real) spin-
induced anomalies' around v =

—,
' (in the single-layer

problem) because the Coulomb interaction being spin in-
dependent, the ground-state wave function must be eigen-
states of both the total spin and the z component of the
spin and, therefore, no good v= —,

' state can be written
down which satisfies Eqs. (2) —(4) and these conditions
(i.e., m =n + l, m =n). For the DQW problem, howev-
er, the Hamiltonian explicitly depends on the pseudospin
index because the intrawell and interwell Coulomb in-
teractions are different, and therefore, the DQW states
need not be eigenstates of total pseudospin (and we do
not need to worry about the Fock condition). Thus, m
and n are, respectively, allowed to be any odd integer (m)
and any integer or zero (n) in the DQW problem. In par-
ticular, the state with m =3, n =1 (i.e., %331), which we
will also refer to as the 331 state, is an allowed state at
v= —,'. Similarly, m =1 and n =1, corresponding to the
111 state, is an allowed state at v= 1, and, m =3, n =0,
corresponding to the 330 state, is allowed at v= —,'. These
are the three analytic states of the type defined by Eqs.
(2) —(4) we consider and compare with our numerical
wave functions in this paper.

The many-body Hamiltonian employed in our finite-
size diagonalization studies can be written in the second
quantized representation as

2

+ —,
'

m
1 a]m2Q2
I I I t

m 10.1m 2cx2

( m 1 aim 2a2l Ulm1aim2a2)

XC t tC Cm ~ Cm
1&1 m 2~2 2 2 1 1

where c (c ) is the creation (destruction) operator for
an electron in the single-electron state lma) where m is
the orbital angular momentum specifying the single-
particle wave function on the sphere and a ( =s, a )

denotes the symmetric and the antisymmetric states (with
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e2

s[R (0,—A2) +(z, —z~) ]' (7)

where R is the radius of the sphere and 0] p are unit vec-
tors on the sphere defining the positions of the two elec-
trons. The spherical electron-electron interaction U be-
comes the planar Coulomb interaction V, for the infinite
system.

The single-electron states ~ma) are obtained by solv-
ing Schrodinger's equation for our model potential (Fig.
1) defined in the Introduction. Since we use a finite
spherical geometry to describe the electron motion in the
2D x-y plane, the single-particle eigenstates ~ma) in the
lowest Landau-level approximation can be written as

(r~ma) —=y (n, z)=f (z)Y (n), (8)

where Ys z ( II ) is the monopole spherical harmonic
with —S ~ m ~ S (with 2S =0,1,2,. . . , as the number of
quantum fiuxes through the surface of the sphere), and
f (z), the eigenfunction for the z part of the single-
electron Hamiltonian, satisfies the equation

co, d f (z) + V(z)f (z ) =E f (z),
2 dz2

(9)

where we use l, and e /El, as the length and energy
units, respectively, and ~, is the Landau-level spacing in

the tunneling-induced symmetric-antisymmetric
single-particle gap) associated with the z motion of the
two wells. Putting 6„,=0 will give us the model Hamil-
tonian considered earlier in Refs. 21 and 22 (where addi-
tional approximations were made on the interaction term
as well). The electron-electron interaction U in Eq. (5) is
the spherical representation of the Coulomb interaction
V, (r„r2) [with r—= (R, z), as the three-dimensional elec-
tron coordinate vector],

2

E[(R,—R~) +(zi —zq) ]'i

The spherical representation U for the electron-electron
interaction is given by

this energy unit. The potential V(z) is that defined by
Fig. 1,

V. , z~ ~b

V(z)= . Vb, ~z ~a (10)

0, a ~/z/ &b,

In order for the confinement potential V(z) given in
Eq. (10) to describe a real DQW, the eigenequation, Eq.
(9), must have at least two bound-state solutions corre-
sponding to the symmetric (a —=s ) and the antisymmetric
{a=a)states, with b,„,=E, E, as —the energy difference
between them. In any case, we are interested in the two
lowest bound solutions (a=s and a) of Eq. (9).

The symmetric bound state is given by

A, cosh(p, z), ~z ~a

f, (x)= B,sin(k, z)+C, cos(k, z), a ~
~z~ ~b

D, exp( —
q, lz I ),

(12)

where A„B„C„andD, are constants to be determined
by boundary conditions and normalization. The parame-
ters k„p„and q, are related to the eigenenergy Eb by

2E,
k, =

2 2
p,'= ( Vb

—E, ),
COc

(14)

q, = 2 (v E, ), —

Using boundary conditions on the wave function f„we
obtain the following eigenvalue problem for the above pa-
rameters:

where the lengths a and b are related to the barrier thick-
ness DI, and the well width D depicted in Fig. 1,

Db
a =Dt /2; 6 = +D

[p, tanh{p, a )sin(k, a ) —k, cos(k, a )][q,cos{k,b )
—k, sin(k, b )]= [p, tanh(p, a )cos(k, a )+k, sin(k, a ) ]

X[k,cos(k, b)+q, sin(k, b)] .

The eigenvalue problem defined by Eq. (16) can be solved by iteration.
Similarly, the antisymmetric bound-state wave function f, (z) is given by

sgn(z)A, cosh(p, z), ~z~ ~a

f, (z)= sgn(z)[B, sin(k, z)+C, cos(k, z)], a ~
~z~ ~b

sgn(z)D, exp( —q, (z(), ~z~ ~b .
(17)

The parameters k„p„and q, are given by

2E,
k, =

Ci)
(18)

(19)
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q, = IV E-,2= 2

N
(20)

The eigenvalue equation for the antisymmetric state, also to be solved by iteration, is

[p, coth(p, a )sin(k, a )+k, cos(k, a )][q,cos(k, b )
—k, sin(k, b )]= [p, coth(p, a )cos(k, a ) —k, sin(k, a ) ]

X[k,cos(k, b)+q, sin(k, b)] . (21)

1

[S[(Q,—Sl ) +(z, —z ) I
]' (22)

The many-body Hamiltonian of Eq. (5), being completely
defined in this manner, can be used to carry out exact
finite-size diagonalization of small systems (N =6 —10
electrons) on the sphere within the lowest Landau level
and the lowest symmetric-antisymmetric bound-state ap-
proximation as outlined above. To compare the analyti-
cal wave functions defined by Eqs. (2)—(4) with our nu-
merical wave functions, we need to transform the pro-
posed planar Jastrow-type many-body wave functions of
Eq. (3) to the spherical geometry, which we do using the
standard stereographic mapping technique.

Before presenting our numerical results in the next sec-
tion, we make several remarks regarding the calculation.
Our single-electron wave function of Eq. (8) can be writ-
ten in terms of the "well wave function" g& and g„(with
l,r denoting the left and the right well, respectively)
where,

(23)

The symmetric-antisymmetric gap entering the Hamil-
tonian of Eq. (5), 6,„,=E, E—, =—(co, /2)(k, —k, ), is the
energy difference between these lowest symmetric and an-
tisymmetric states for the z motion in the DQW. Because
the single-particle states ~ma) are known, the matrix ele-
ments (m', a', mzaz~ U~m, a, m2az) can be explicitly cal-
culated using the spherical representation, Eq. (7), which
in the reduced energy variables becomes

U —= U(Q„z, ; 02, z~ )

(m', a', mza2~ U~miaim2a&) =0

unless m &+mz =rn&+m2 . (25)

d dV(z)= —V 5 z+ —+5 z ——
0 2 2

(26)

where V0 )0 is the strength of the 6-function
confinement potential and d is the interwell separation.
The Schrodinger equation for f (z) as given in Eq. (9) can
be easily solved for this confinement, obtaining (in re-
duced units with l„e /cI, as units of length and energy,
respectively) for the ground state the following sym-
metric even-parity state:

A, cosh(k, z), ized ~d/2

B,exp( —k, ~z~ ), ~z~
~ d/2 .f (z)= ' (27)

One last remark is that in all earlier DQW calcula-
tions, ' ' ' ' the overlap between envelope functions
centered at different wells was neglected in the calcula-
tion of the matrix elements of U. In fact, in all of these
earlier calculations, either one explicitly assumed '
b,„,=0 [and approximated f (z) as 5 functions centered
at each well], or parametrized ' b,„, as a model input
variable, still neglecting wave-function overlap between
the two wells. In addiiton, the existing v= 1 DQW calcu-
lations for b,„,&0 employ the single-mode approxima-
tion in contrast to our exact numerical calculations.

Before concluding this section, we provide the formu-
las that one obtains for the simplified double-6-potential
model of the DQW system. (We use this'simpler model
for some of the v=1 calculations discussed later in this
paper. ) The double-6-potential model for the DQW struc-
ture can be written as

When the two quantum wells are very well separated, the
well index (l, r) becomes a good quantum number and the
single-particle eigenstates are extremely well approximat-
ed by the quantum-well wave function

The eigenenergy is

co k /2 (28)

4' m a g a ~s, s, m (24)

where k, is given by the equation

tanh(k, d/2) =2Vo/k, co, —1 . (29)

where o.= l, r denotes the well index. Note that, in princi-
ple, one can consider a—= (s, a) or (l, r) as equivalent sets
of pseudospin indices. In the presence of finite interwell
tunneling (6„,%0), the correct pseudospin label is obvi-
ously (s, a), but for weak tunneling [where the mmn-type
many-body states defined in Eqs. (2)—(4) are strictly val-
id], the well index also serves as a good pseudospin index.
Our second remark is regarding the interaction matrix
elements (m', a', mza~~U~m, a, m~a2). From symmetry
arguments, it is obvious that

The first excited state is the antisymmetric state, which
has the odd-parity wave function

A, cosh(k, z), ized
~ d/2

sgn(z)B, exp( —k, (z
~ ), ~z( ~ d/2, (30)f, (z)= '

where k, is given by the equation

coth(k, d/2)=2VO/k, co, —1 . (31)

The eigenenergy for the antisymmetric state E, for this



SONG HE, S. Das SARMA, AND X. C. XIE

double-6-potential model is given by

0 C 0 (32)

12

10—

Note that one must have Vod/m, ) 1 for there to be at
least two bound states (the s and a states) in this model.

The coefficients A, (A, ) and B,(B, ) in the above equa-
tions are determined, as usual, by boundary conditions
and normalization. The symmetric-antisymmetric gap

0.6

0.4

0.2

can be determined for this model from Eqs. (27)—(32)
which are just the simplified double-6-potential model
versions of the more general Eqs. (12)—(21) which are val-
id for the realistic DQW model. Note that the double-5-
potential model is totally defined by the two parameters d
and Vo, whereas the realistic DQW model has, in general,
four parameters, V, Vb, D, Db. Note that for the 5-
potential model, one can equivalently consider d and 6„,
as the independent input parameters (instead of d and
Vo) characterizing interwell Coulomb interaction and in-
terwell tunneling, respectively. (This, in fact, is the mod-
el we use for calculating our v= 1 phase diagram. ) Note
that the 6 charge-density model, ' the simplest model
for DQW structures, is characterized by only one param-
eter, namely, d.

In the next section we present our numerical results
and discuss them (for v= —,') in light of the recent experi-
ment results in DQW systems. ' We use the actual ex-
perimental well parameters corresponding to Refs. 25
and 26 as shown in Figs. 2 and 3, respectively, for our
v= —,

' DQW calculations. Our v= 1 and —', calculations
are done for experimentally accessible model parameters,
but the emphasis is more on qualitative aspects. We
present the excitation spectra based on our direct diago-
nalization (for N=6 —10 electron spherical systems) cal-
culations. We also calculate the overlap between our nu-
merical finite-system ground-state wave function and
various (proposed) analytical wave functions of the mmn
type [Eqs. (2)—(4)j to investigate the nature of our in-
compressible state, and, if possible, to map out the phase
diagram (as a function of system parameters) for fixed
values of v.

III. RESULTS

We present our numerical results in subsections A —D,
dealing, respectively, with v= —,

' FQHE for the ATILT ex-
periment of Ref. 25, v= —,

' FQHE for the Princeton exper-
iment of Ref. 26, the v= 1 situation using model parame-
ters, and the v= —,

' situation using model parameters. In
the first two subsections, we use the actual sample param-
eters used in the experiments of Refs. 25 and 26 as given
in our Figs. 2 and 3, respectively. Our results, therefore,
can be compared directly with the experimental data.
We use the CzaAs effective mass and lattice dielectric con-
stant in our numerical calculations —our dimensionless
energy is expressed in units of e /c. l, and dimensionless
length in units of l, . The presented results, unless other-
wise stated, are for N =6 electron systems.

0.0
10 110 210 310 410 510 610

c (A)

FIG. 5. Calculated overlap between the proposed wave func-
tion '033] and the first few lowest-energy exact finite-system nu-
merical states as a function of the magnetic length I, for the
ATILT sample (Ref. 25). The sample parameters of the double
quantum well (Ref. 25) used in the calculation (Fig. 2) are the
following: D =120 A, Db=51 A, V = Vb =750 meV. This
gives 6„,=0.14 meV. (1—5 in the figure correspond to the
ground state up to the fourth excited many-body state, respec-

0
tively. ) In Ref. 25, v= —,

' FQHE is observed for I, -90 A where

the overlap is large.
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FIG. 6. (a) The calculated roton gap as a function of the
magnetic length I, in the sample specified in Fig. 5. (b) The cal-
culated excitation gap for creating a well-separated
quasiparticle-quasihole pair as a function of the magnetic length
I, in the sample specified in Fig. 5.
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A. v= —' FQHE in the AT8'r T samples (Fig. 2)
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The sample parameters, as given in Fig. 2, are
Vb = V~ =750 meV, D = 120 or 180 A, and Db =51, 31,

0
or 99 A (depending on the situation). This leads to a
6„,-0. 1 meV for the AT&T samples. In Figs. 5 —9, we
show our numerical exact diagonalization results for a
few difFerent AT&T samples, all of which are character-
ized by a high and narrow barrier ( V = Vb =750 meV)
separating the two wells. In Figs. 5 —8 we use D„=120
A, Db = 51 A while in Fig. 9, D = 180 A and D& = 31 and
91 A.

In Fig. 5, we plot the calculated overlap of the exact
numerical wave function with the 331 state as a function
of the magnetic length I, for a fixed set of sample parame-
ters (D„=120A, Db =51 A). We show the overlap be-
tween the proposed %33] wave function with the five

lowest-energy states of our numerical calculation. As one
can see for l, =50—300 A, the overlap between +33/ and
the numerical exact ground state is large (almost unity),
indicating that the system is very well approximated by
the 331 incompressible state exhibiting v= —,

' FQHE in

this parameter range. Note two significant features of the
results depicted in Fig. 5, which seem to be general
characteristics of all the DQW incompressible states in-

vestigated by us. One feature is that the 331 state
remains a reasonable approximation to the exact numeri-
cal state (i.e., the overlap is large) ouer a range of values of
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FIG. 7. Calculated excitation spectra for the sample specified
in Fig. 5 as a function of the total angular-momentum quantum
number L. Energy is measured in units of e /cl, . The calcula-
tions are for (a) l, =30 A, (b) 100 A, (c) 220 A, and (d) 420 A.

FI&. 8. (a) Calculated excitation spectra for the same sample
as in Figs. 5 —7 with two additional quasiparticles (l, =100 A).
(b) Same as in (a) with two additional quasiholes.



4404 SONG HE, S. Das SARMA, AND X. C. XIE

1.0

0.8— Db=31A

0.6—
8

0.4—
t4

CI

0.2—

0.0
0 l00 200 300 400

FIG. 9. Calculated quasiparticle-quasihole excitation gap as
a function of the magnetic length I, for the samples (A, B, C,
and D) used in the experiment of Eisenstein et al. (Ref. 25).
The sample parameters (Fig. 2) are the following: well width
D =180 A, barrier height and well depth Vb = V =750 meV.
The samples are different in their barrier thicknesses as indicat-
ed in the figure. The experimentally measured approximate
gaps are also shown. (The experimental points should be taken
to imply the strength of the gap, rather than an absolute rnea-

surement. )

l, —this is a general feature of incompressibility, once the
condition for incompressibility is satisfied, it remains val-
id over a range of values of the system parameters (ex-
plaining why, as we will see later, the 331 state is robust
even in the presence of finite values of b,„,). The second
noteworthy feature is that the region of Fig. 5 where the
overlap of the numerical ground state with the 331 state
is high (for l, —50—300 A) is roughly the same region
where the overlap of the 331 state with the numerical ex-
cited states is small and vice versa, as it should be if the
331 state is the correct ground state for the system. We
point out that experimentally, the strongest v =

—,
'

FQHE is observed around l, =90 A which is roughly
where the overlap of the exact ground-state wave func-
tion with the 331 state is the maximum in Fig. 5, indicat-
ing clearly that the 331 state is being observed in Ref. 25.

In Fig. 6(a), we show, as a function of l„our calculated
"optical" excitation gap at the roton minimum (i.e., the
roton gap) which is the minimum energy required to pro-
duce a neutral collective excitation in the v= —,

' state of
the sample of Fig. 5. The numerically calculated gap is
appreciable only in the region where 331 is a good ap-
proximation to the ground state of the system, reinforc-
ing again the fact that the system is an incompressible
v= —,

' state only in the region l, —50—300 A. In Fig. 6(b),
we show the calculated transport excitation gap needed
to produce well-separated quasiparticle-quasihole
pairs —this is presumably the gap measured as the ac-
tivation energy in transport experiments. The calculated
activation gap is of the order of 1 meV, quite comparable
to the strength of the very best primary single-layer odd-
denominator FQH states (i.e., the v= —,

' FQHE). The ac-
tivation gap, as one expects, is appreciable only for a
range of values of l, where the system is in the in-
compressible 331 v= —,

' FQH state.
In Fig. 7, we show our calculated excitation spectra as

a function of the total angular-momentum quantum num-
ber L for (a) l, =30 A, (b) 100 A, (c) 220 A, and (d) 420 A
(and for the same sample as in Figs. 5 and 6). Note that
our units are reduced units with energy expressed in
e /c. l, and length in I, .

In Figs. 8(a) and 8(b), we depict the calculated excita-
tion spectra (for the same sample) in the presence of two
additional quasielectrons and two additional quasiholes,
respectively.

Finally, in Fig. 9, we provide a direct comparison of
our numerical results with the experimental data ' of
Eisenstein et al. by showing the measured excitation en-
ergies (obtained via the usual activated transport studies)
at the v= —,

' FQHE on our theoretical plots for four
different samples with two different barrier thicknesses of
31 A (data points A, B, C corresponding to samples with
three different carrier densities) and 99 A (data point D),
respectively. The agreement between theory and experi-
ment ' is particularly remarkable because the th-ory
contains no adjustable parameters and used the materials
parameters of the experimental DQW sample. We be-
lieve that such an excellent agreement between theory
and experiment shows unambiguously that the theory of
FQHE in DQW structures (and, by implication, the mul-
ticomponent generalization of the Laughlin theory as car-
ried out in this paper) is quantitatively and qualitatively
accurate.

These results (Figs. 5 —9) establish that the v= —,
'

FQHE observed in the DQW structures by the AT&T
group is the 331 multicomponent generalized Laughlin-
type incompressible ground state. Not only was the v= —,

'

FQHE in the DQW system predicted ' by the theory,
the theoretical results are in excellent quantitative agree-
ment with experiment without adjusting any parameters.

B. v= —' FQHE in the Princeton samples (Fig. 3)

As discussed in Sec. I, the Princeton sample (Fig. 3) is
actually a wide single quantum well where the self-
consistent electric field created by the electrons produces
an effective DQW system with the electrons accumulat-
ing near the two edges of the well with the charge density
showing a double-humped structure. The model parame-
ters for this effective DQW system used in our FQHE cal-
culations can easily be obtained from a self-consistent cal-
culation and one gets the following (Fig. 3): D =220
A, Db=120 A, V =1.2 eV, and Vb =25 meV, which are
substantially different from those used for the ATILT
samples. (As mentioned in Fig. 2, our parameters are
somewhat different from those in Ref. 26—our neglect of
self-consistency effects in the z part of Schrodinger's
equation, Eq. (9), demands that we use modified values of
the DQW parameters to reproduce the correct self-
consistent charge density and the 6„,value of Ref. 26.)
The main qualitative difference between the two samples
is a substantially lower (but somewhat wider) potential
barrier V„separating the two electron layers in the
Princeton sample compared with the AT%T samples.
This leads to enhanced interwell tunneling in the Prince-
ton sample, producing a rather large symmetric-
antisymmetric gap of 6„,-1 meV (compared with
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FIG. 10. Calculated overlap between the %331 state and the
exact numerical ground state as a function of the magnetic
length l, for the Princeton sample (Ref. 26) (Fig. 3). In Ref. 26,
v= —' FQHE is observed for 1, —70 A where the overlap is large.

b„,-0. 1 meV for the AT&T samples). We show, in
Figs. 10—12, that the 331 incompressible state survives
this level of interwell tunneling, and the v= —,

' FQHE ob-
served in Ref. 26 is qualitatively the same 331 ground
state seen in Ref. 25. As emphasized before, short-range
correlation-induced Laughlin-type incompressible states
are often robust and can usually survive (up to some ex-
tent) physical mechanisms which oppose incompressibili-
ty.

In Fig. 10, we show, as a function of l„our calculated
overlap between the exact numerical ground state and the
331 state for the Princeton sample. The overlap is quali-
tatively similar to that (Fig. 5) for the AT&T sample ex-
cept that the range of the magnetic length (l, —50—100
A) where the overlap is large (i.e., close to unity) is sub-
stantially smaller than that (l, -50—300 A) for the
ATILT sample. We therefore conclude that the Princeton
sample should exhibit a v= —,

' FQHE corresponding to
the 331 state in a narrow range of magnetic field values
around l, =50—100 A and, in fact, in Ref. 26 the v= —,

'

FQHE shows up for l, —70 A (B=14—15 T) which is
roughly where our calculated overlap with the 331 state
is a maximum in Fig. 10I This excellent agreement ob-
tained without any adjustable parameter makes us
confident that the FQH state observed in Ref. 26 is
indeed the 331 state, just as it is for the experiment of
Ref. 25, in spite of the presence of substantial interwell
tunneling in the Princeton sample (which, of course, our
numerical calculation includes exactly). This point is fur-
ther reinforced by the density dependence of the observed
effect. Our results (Fig. 11) predict that the v= —,

' FQHE
will become weaker if the electron density is increased,
which is precisely the experimental observation. If the
pairing mechanism of Ref. 28 is operative, an increase of
density should enhance the v= —,

' FQHE, contrary to the
experimental finding.

In Fig. 11 we show, as a function of I„our calculated
activation gap for the sample of Ref. 26. The experimen-
tally measured activation gap, also shown in Fig. 11,
agrees well with our theoretical calculation (again, with
no adjustable parameter), showing the quantitative validi-
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FIG. 11. Calculated excitation gap as a function of the mag-
netic length l, for the Princeton sample (Ref. 26) (Fig. 3). The
experimentally measured excitation gap is shown in the figure.

ty of the calculation.
In Fig. 12, we show the calculated excitation spectra at

v= —,
' for the sample corresponding to Fig. 3 and for (a)

I, =60 A, (b) 100 A, (c) 150 A, (d) 200 A, (e) 300 A, and
(f) 400 A.

The qualitative similarity between the results for the
samples of Figs. 2 and 3 shows that the same ground state
(viz. the 331 state of Halperin) occurs in both experi-
ments. ' The substantial overlap between the numeri-
cal ground state and the 331 state around the experimen-
tal magnetic-field values where the v= —,

' FQHE is ob-

served ' establishes that the observed v= —,
' FQHE is

due to the theoretically predicted 331 incompressible
state in both ' experiments. We note that the large
bare value of 6„, in Ref. 26 does not rule out the ex-
istence of the 331 state because Coulomb interaction may
strongly renormalize 6„,and the renormalized 6„,is the
relevant parameter determining the nature of the DQW
ground state. Our numerical results suggest that the re-
normalized 6„, in Ref. 26 is small enough for the 331
state to be the ground state.

Finally, we show in Fig. 13 the calculated excitation
spectra as a function of the magnetic length in the total
angular momentum L =0 sector of the Hilbert space for
the experimental samples of Refs. 25 and 26 in the v= —,

'

situation. (The incompressible ground state is expected
to belong to the L =0 subspace for our finite spherical
system calculation. ) For each magnetic length, the spec-
tra have been shifted so that the ground-state energy is
always zero, showing the excitation energy as a function
of l, . The level crossing behavior in Fig. 13 provides
direct information about the nature of the strongly corre-
lated states and the quantum phase transition between
them in the v= —,

' DQW problem. The structure of the
level crossing (and, in particular, anticrossing) depends
on the local symmetry of the Hilbert space. If, due to
some local symmetry, the Hamiltonian at the would-be
crossing point does not couple the two (almost degen-
erate) states, the crossing will be a direct one and the de-
generacy will not be lifted. Otherwise, there will be an
anticrossing, signifying a quantum phase transition, if it
happens for the ground state, at the value of I, . In both
Figs. 13(a) and 13(b), there are two anticrossings for the
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ground state, signifying two quantum phase transitions.
It is significant that these anticrossings occur around the
same values of l, ( —80 and 180 A) in both Refs. 25 and
26. The first anticrossing occurs at around I, =80 A, in-
dicating a transition from. a compressible state to the in-
compressible 331 state. The second transition, occurring
at around l, = 180 A, denotes a transition from the 331
state to another compressible state. The remarkable
qualitative similarity of Figs. 13(a) and 13(b) reinforces
our earlier assertion that the v= —,

' FQHE observed in
Refs. 25 and 26 belong to the same universality class,
namely the 331 state of Halperin. [We point out that
our calculated overlap between the exact ground state

and the 331 state, as shown, for example, in Figs. 5 and
10, has a substantial overlap (for the sample in Ref. 25 as
shown in Fig. 5) for a wider range of I, —50—300 A, indi-
cating the stability of the 331 state over a wider range of
magnetic-field values than that implied by our results
(l, —80 —180 A) shown in Fig. 13. This is due to finite-
size effects which, for small system sizes (%=6) used in
our calculations, keep the overlap large even outside the
331 regime. ]

C. v= 1 QHE in DQW systems

As mentioned in Sec. I, the v= 1 QHE may arise in
DQW structures from two distinct physical mechanisms.
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For the very small interwell separation d, or equivalently,
for the large interwell tunneling, the v= 1 QHE is stabi-
lized by the symmetric-antisymmetric gap 6„,. This is
the usual single-particle QHE where electron correlation
effects do not play any central role. In this case, the
lowest pseudospin state, i.e., the symmetric state s, is to-
tally occupied (v, =1) and the antisymmetric state is to-
tally empty (this is formally identical to the usual QHE in
single-layer 2D structures in the presence of spin split-
ting, where the spin-up state is totally occupied and the
spin-down state empty at v=1)—the excitation gap be-
ing the single-particle gap 6„,. We call this 6„, stabi-
lized (single-particle) incompressible state the qi"

i state,
implying that all the symmetric states (in the lowest Lan-
dau level) are occupied. As d increases and b.„, goes
down, this incompressible state is destroyed ' by
Coulomb interactions (equivalently, keeping d fixed and
increasing the magnetic field also destroys this state be-

cause the relative magnitude of 6„, goes down with
respect to the Coulomb correlation energy).

In Figs. 14(a) and 14(b), we show the destruction of the
v= 1 QHE in a DQW structure due to increasing (de-
creasing) d (b,„,) by depicting the calculated variation of
the overlap between our nuinerical ground state (for
N=8 electrons) and the 4'

i incompressible state as a
function of d/l, (and b„,/[e /El, ]). Note that the over-
lap remains at unity for d /l, ~ 1 and it is essentially zero
(of course, it does not quite go to zero because our system
is small) for d/l, ~2. Thus, the 5„,stabilized v= 1 QHE
is destroyed for d 52l, (and for b,„,&0.04e~/El, ). Re-
sults for Fig. 14(a) are obtained for the double-5-potential
model system as described in Eqs. (26)—(32). In Fig. 14(b)
we show our calculated excitation (activation) gap as a
function of the magnetic length for a real DQW struc-
ture with D =140 A, D&=40 A, V = Vb =250 meV.
One can see that for small magnetic lengths (i.e., a large
magnetic field), the 'Ii,", incompressible QHE state is
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FIG. 13. Calculated excitation spectra (measured with
respect to the ground-state energy which is the horizontal line
at zero energy) in the zero total angular-momentum sector of
the Hilbert space as a function of the magnetic length l, for the
v= —' DQW structure: (a) the sample 3, 8, C (Fig. 2) of Ref. 25;
(b) the sample of Ref. 26 (Fig. 3). The level anticrossing behav-
ior for the ground state around l, —80 A and 180 A indicates
first-order (quantum) phase transitions from a compressible Fer-
mi liquid state to the 331 incompressible state (I, —80 A) and
then from the 331 state to another compressible liquid state
(l, —180 A).
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FIG. 14. (a) Calculated overlap between the exact numerical
ground state and the +'='& state as a function of the well separa-
tion d for the v=1 situation, showing the destruction of in-
compressibility for large values of d/l, . The inset shows the
overlap as a function of 6„,/(e /cl, ) for fixed d/l, =0.50. (b)
Calculated excitation gap as a function of the magnetic length
in the v = 1 situation for the well parameters (Fig. 1)
V = V&=250 meV; D =140 A, Dl, =40 A. The +'='& state is
more stable for higher values of l, .
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destroyed. This is the many-body interaction-induced de-
struction of the QHE investigated experimentally in Ref.
29. Experimentally, the QHE is destroyed around
I, —100 A which compares favorably with our numerical
result of Fig. 14(b) where the gap vanishes for I, & 120 A.

The physics responsible for the destruction of the 4"'
I

QH state in DQW systems is the exponential decrease in

6„,with increasing well separation d so that eventually
electron-electron correlation becomes the dominant ener-

gy scale, destroying the individuality of the symmetric
and antisymmetric single-particle states (i.e. , broadening
them). Conversely, decreasing l, (by increasing the mag-
netic field) accomplishes the same by making
6„,/(e /el, ) smaller. The destruction of the 4", state
occurs when the renormalized 6„, vanishes due to
Coulomb interaction.

It turns out, however, that, even for b,„,=0 (which
means 4", incompressibility is nonexistent), one may
have a many-body v= 1 QHE where the competition be-
tween the interwell and intrawell Coulomb correlation
produces an incompressible excitation gap. This happens
when the correlation effect drives the system into the 111,
i.e., the +», many-body ground state which has v=1 and
a many-body excitation gap. Clearly, 4»& (which is qual-
itatively similar to the %'33/ state) can be stabilized only at
finite values of d/I, (whereas 4"

&
is stable at small

d/I, ). We emphasize that the nature of the %'&&& ground
state is qualitatively different from that of the
ground state, even though both exhibit v= 1 QHE in
DQW structures —the v=1 effect for the 4&&& state is
really a v= 1 FQHE whereas the v= 1 effect for the 4',",
state is the usual IQHE! Electron-electron interaction
destroys the 4", state, and is responsible for stabilizing
the %'», state.

Since there are two qualitatively different ground states
producing the v= 1 QHE in DQW structures, we can try
to calculate the phase diagram for the v=1 filling in a
DQW structure in the relevant d —b,„,parameter space.
We have carried out such an extensive calculation and
the result is shown in Fig. 15. We use the simplified
double-6-layer model for this study by considering each
well to be a 6 layer separted by a distance d and by intro-
ducing 6„,as a parameter (i.e., the four parameters V,
V„, D, Db of the realistic DQW model are replaced by
two parameters b,„,and d in the Hamiltonian). The cal-
culation is done by a finite-size diagonalization of an
eight-electron system with v=1. For each value of d and
h„„we numerically calculate the overlap of the exact
finite-size many-body wave function with the analytical+", state and with the +&&& state. If the overlap with a
proposed state exceeds 0.9, we consider the system to be
in that incompressible state. The result of this exhaustive
numerical study is shown as the phase diagram in Fig. 15.
The two solid lines represent the boundary of the regions
where the overlaps with the 4""

&
and %'&&& states are 0.9.

Thus, to the right of the lower 0.9 line, the system is in
the 4", incompressible state, exhibiting v= 1 IQHE.
This is the region of large tunneling [i.e., "high" values of
b,„,/(e /el, )]. To the left of the upper 0.9 line, the sys-
tem is in the 4& & &

incompressible ground state, exhibiting
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FIG. 15. Calculated phase diagram for the v= 1 QHE in

DQW systems as a function of model parameters d//, and 5„,
(measured in units of e /c, l, ). The solid lines marked 0.9 denote
the boundaries of the phases corresponding to incompressible
ground states +(;

&
(to the right of the lower line) and +l» (to

the left of the upper line). The other regions of the phase dia-

gram correspond to compressible liquid states. The solid lines

indicate that the calculated overlap of the exact numerical
ground state with the %"'='& (4'&l&) state is higher than 0.9 to the
right (left) of the lower (upper) line.

v= 1 FQHE. This is the region of small tunneling. We
surmise that there is no other region of QHE in the rest
of the phase diagram which is filled with compressible
states.

A number of comments about our phase diagram of
Fig. 15 are in order. While experiments should be carried
out to directly test our pedicted phase diagram, the exist-
ing experimental data ' ' in DQW systems qualitative-
ly support our results. The agreement here is only quali-
tative due to our use of the double-6-layer model and the
neglect of well widths in the calculation of the phase dia-
gram. We also point out that our phase diagram is quali-
tatively different from that obtained in Ref. 30 by a
single-mode approximation. In particular, the v= 1 QHE
phase corresponding to the 4'&&& state was not considered
in Ref. 30. As mentioned in Sec. I, we believe that the
v= 1 QHE observed in Ref. 25 corresponds to the 4&&&

universality state and that observed in Ref. 26 corre-
sponds to the +"

&
universality state. This conclusion is

consistent with our phase diagram and also with the fact
that an in-plane magnetic field, which suppresses A„„has
little effect on the v= 1 QHE in Ref. 25 while destroying
it in Ref. 26. In Ref. 29, the phase transition between the
%"", state and the compressible region was observed by
changing the magnetic field I which decreases
b,„,/[e /(el, )] and increases d/l, ). Note that the
theoretical phase diagram makes a striking prediction of
a reentrant v= 1 QHE in a DQW structure either with in-

creasing d at very samll A„„or, with decreasing 5„,at a
fixed value of d. To the best of our knowledge, this reen-
trant v=1 QHE in DQW systems has not yet been ob-
served experimentally. We believe that it should be ob-
servable in a systematic experimental study.
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D. v=
3 FQHE in DQW systems

The v= —', FQHE in a DQW structure is qualitatively
different from both the v =

—,
' and v = 1 cases studied

above because in both the limits of d =0 and d = ~, one
gets an incompressible many-body state for v= —,': At
d =0, it is the 4"—2/3 state where the symmetric state is
totally occupied with v= —,'producing the usual —', FQHE,
and, at d = ~, one gets two isolated v= —,

' single-layer 2D
systems with the usual —,

' FQHE. The interesting ques-
tion is what happens in between.

In Fig. 16, we show our calculated overlaps between
the exact numerical many-body wave function with the
two proposed states, 4~—2/3 and % 330 which are expected
to be exact for small d and large d, respectively. (Note
that the 330 state describes two isolated single 2D layers
with —,

' occupancy each. ) The calculation is carried out for
a model system with two 6 layers separated by a distance
d representing the DQW structure and a fixed value of
6„, introduced as an input model parameter. One can
see that for small separations, the +'—2/3 state is the
ground state, and for large separatins, the 'P33O state is
the ground state with a direct transition from one to the
other driven by the interwell Coulomb correlation around
d —l, . We surmise that the v= —', DQW structure always
exhibits a FQHE (either a v= —,

' FQHE at small separa-
tions corresponding to the %"'—2/3 state, or, two indepen-
dent v= —,

' FQHE at large separations corresponding to
the tI133p state) and the phase diagram consists of only two
incompressible phases, both exhibiting the same FQHE.
There may, however, be a sharp change in the activation
energy as one crosses the phase boundary because, once
Landau-level coupling, etc. , are included, the v= —', and

3

FQHE may have different excitation gaps. An experi-
mental search should be made for the transition shown in
Fig. 16.

IV. CONCLUSION

In this paper, we have considered DQW structures in
strong external magnetic fields for three different values
of the tota1 filling factor v= —,', —,', and 1, studying in de-
tails the nature of the many-body ground state and the
excitation spectra using the finite-size spherical system
exact numerical diagonalization technique (in the lowest
spin-split Landau level). Using a realistic model of
confinement, we have analyzed the role and the interplay
of the three relevant energy scales, viz. the intrawell
Coulomb interaction, the interwell Coulomb interaction,
and, the tunneling-induced symmetric-antisymmetric
single-particle gap, on the nature of the DQW ground
state. [The three energy scales are related to the three
important length scales in the problem: The magnetic
length (l, ), the interwell separation (d), and, the thick-
ness of each layer (A, ), which, in turn, are determined by
the sample parameters V, Vb, D„, Db, and, the applied
magnetic field B.j Wherever possible, we have compared
our results with the existing experimental data
on FQHE in DQW systems. In general, both qualitative
and quantitative agreement between our theory and ex-
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FIG. 16. Calculated overlap of the exact numerical ground
state with the g",=p/3 state and the tI'33O state as a function of
well separation d/I, for the v= —, situation.

perimental results is very good. We have also made ex-
perimenta11y verifiable predictions about the phase dia-
gram of DQW quantum Hall states as a function of sys-
tem parameters.

We have considered only the lowest spin-sp1it state in
the lowest Landau level, neglecting Landau-level cou-
pling and assuming complete spin polarization. We also
consider only the ba1anced situation where the two we11s
are identical and the average occupancy in each well is
the same, namely, v/2. While the experiments ' ' we
are primarily interested in satisfy these conditions, relax-
ing these conditions (i.e., having unequal electron densi-
ties in the two wells, including Landau-level coupling,
and considering both the spin states) should lead to a rich
and complex DQW phase diagram consisting of many
different FQH states. Considering systems with more
than two layers should also lead to many interesting pos-
sibilities. Our theoretical technique of using finite-size
spherical diagonalization, while being a well-established
and well-tested numerical method for studying FQHE,
does suffer from the usual problem of any small-system
simulation. The results should be taken with some cau-
tion, but we believe that our finite-size calculations are
qualitatively reliable and well suited for pedicting the
various incompressible states in the DQW systems stud-
ied in this paper and recently observed experimentally.

The three filling factors v= —,', —', , and 1 considered by
us in this article have the following qualitative difference.
The v= —,

' state is compressible both in the d ~0 and the
d —+ ~ limit, because neither single 2D layers with v= —,

'

(i.e., the d =0 limit), or, two isolated 2D layers, each with
v= —' (i.e. , the d= ~ limit), exhibit no FQHE. On the
other hand, for intermediate values of the layer separa-
tion d, the v= —,

' DQW system does have an incompressi-
ble FQH state which is stable over a finite range of d/l,
where the competition between intrawell and interwell
Coulomb correlation energies produces the 331 many-
body ground state of Halperin. The v = 1 state in a
DQW, on the other hand, is the incompressible regular
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IQHE state (the 4"
&

state) in the d~0 limit (corre-
sponding to one completely filled Landau level in a 2D
layer), whereas in the d —+ ~ limit, the ground state must
be compressible with no QHE because it corresponds to
two isolated 2D layers, each with v= —,

' occupancy. For
intermediate values of d, however, our theoretical calcu-
lations suggest that the v= 1 DQW system may, for suit-
able values of d and A„„acquire an incompressible
ground state +»& which is stabilized by the interwell
Coulomb interaction. Finally, the v= —,

' DQW state is
different from both the v= —,

' and v=1 states, because it is

incompressible in both the d ~0 limit (the +"
~&3 state)

and the d ~ ~ limit (the %33o state). The v= —', DQW
system, according to our calculations, shows FQHE for
all values of d, going directly from the +"

2/3 incompres-
sible state to the %33O incompressible state at some finite
value of d/l, where the interwell Coulomb interaction
energy overcomes the 6„,tunneling gap.

Thus, schematically we may represent the university
class of various possible ground states (as a function of in-
creasing d or decreasing A„„keeping all other parame-
ters, viz. l, and A, , fixed) in the following way:

1

2

v=1

2
3

Compressible
Incompressible

( qy(~) )

Incompressible
( qg(~) )

d /l, finite

Incompressible
Compressible

[Incompressible ]
(+111)

Compressible

Compressible

Incompressible

(+330)

The incompressible many-body %'&
& &

state at v = 1 is
not accessible for all values of the well parameter, as is
obvious from the phase diagram of Fig. 15. Clearly, un-
der suitable conditions there is a very interesting possibil-
ity of a reentrant v=1 QHE in a DQW structure as a
function of b,„,(or d/l, ) where one goes from the 4',",
ground state to the 4& &&

state via a compressible non-QH
state in between. The search for this reentrant behavior
should be carried out in samples with small values of d by
varying an in-plane magnetic field which can drastically
suppress interlayer tunneling, making it possible to go
along a horizontal line in Fig. 15 where the transitions
v= 1 (IQHE), itj" &~compressible ~v= 1 (FQHE), '0»&
should be observable. The '4'&&& state would, in general,
have a lower activation energy than the 4"

&
state, and,

the compressible state in between obviously would not ex-
hibit any QHE.

The fact that incompressibility would be destroyed
with increasing layer separation (in a v= 1 DQW system)
was first pointed out by Fertig on the basis of a single-
mode calculation. The indication for a possible many-
body v=1 QHE in the b,„,=O situation in DQW struc-
tures was first obtained in Ref. 22 via finite-size numerical
calculations on a rectangular geometry (no contact with
the 4&» state was, however, made in Ref. 22). There
have recently been some attempts ' at elucidating the
nature of the compressible state the system goes into
when the v= 1 (or, v= —,') QHE (i.e., the incompressibility)
is destroyed by Coulomb interactions. Based on
Hartree-Fock calculations, ' it has been suggested that
these compressible states (for example, the region outside
the two solid lines in our Fig. 15 where the state is nei-
ther the 4"

&
state nor the 4'&

& &
state and is a compressi-

ble state with no excitation gap in our numerical calcula-
tion) are actually charge-density-wave states. We
disagree with these suggestions ' and believe that the

I

compressible states the DQW system goes into at finite
well separations are ordinary even-denominator (i.e. ,
v= —,

' or —,
' states in single-layer systems) liquid compressi-

ble states where the 2D charge density in each layer is
uniform. In fact, we believe that only when the average
occupancy (v/2) in each individual layer is quite low
(v/2~ 1/5) does one expect to see charge-density-wave
or Wigner-crystal-type states in DQW systems —the situ-
ation should not be too different from a single-layer sys-
tem where only for v~1/7, a charge-density-wave or
Wigner-crystal-type state is energetically favorable over a
liquid state. The presence of a second layer may help the
formation of a charge density wave to some extent by in-
creasing somewhat the value of the critical v ( 8 2/7) for
the instability but v=1 and —,

' states, in our opinion, are
unlikely to be charge-density-wave states. Our numerical
results are consistent with these conclusions —we find,
for v=1 and —,', the compressible states to have uniform

charge density in each layer, indicating that they are not
charge-density-wave states, but are most likely strongly
renormalized Fermi-liquid-type states. ' We have numeri-
cally calculated the pair-correlation function for the v= 1

situation corresponding to our Fig. 15, finding it to be
qualitatively the same in all parts of our phase diagram,
indicating that the compressible state for large d/l, are
liquid states. We believe that Hartree-Fock calcula-
tions ' which, in the absence of any kinetic energy (i.e.,
the lowest Landau-level approximation) always predict
charge-density-wave-type ground states, are not reliable
for v=1, —,', —,

' states considered in this paper where
Laughlin-type correlations, not included in the Hartree-
Fock theory, are dominant. We believe that the various
transitions between ground states in the DQW structures
which occur as some parameter (d or l, or b,„,) is varied
are all first-order transitions driven by energy differences
between various compressible and incompressible ground
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states. These transitions occur abruptly at some sharp
values of the system parameters as a particular ground
state is lowered in energy compared with some other due
to the competition among intrawell and interwell correla-
tion energies and the symmetric-antisymmetric gap ener-
gy associated with single-particle tunneling effect.

We conclude by summarizing what we believe to be the
important highlights of the theoretical results presented
in this paper. We have shown that, at least within the
numerical limitations of a finite-size exact diagonalization
calculation on spheres, the v= —,

' FQHE recently ob-
served ' in DQW structures by two different groups be-
long to the same universality class and are both due to
the stabilization of Halperin's 331 incompressible
ground state by interwell Coulomb correlation effects.
This is true for Ref. 26 even in the presence of substantial
interwell tunneling effects because the 331 state, as is true
for Laughlin-type correlated wave functions in general, is
robust, and remains the ground state of the system over a
range of values of system parameters and, also because
the bare tunneling gap is substantially renormalized by
Coulomb interaction. Our calculated excitation gaps and
the predicted values of l, where the v= —,

' FQHE is stable
(i.e. , the values of l, where the overlap between the 331
state and the numerical ground state is high) agree with
the experimental results. ' We have also shown that
the v= 1 QHE observed in Refs. 25 and 26 actually be-
long to different universality classes —in Ref. 26, one
sees the 6„, stabilized single-particle QHE whereas in
Ref. 25 one sees the many-body '+&» ground state which
is being stabilized by interwell correlation energy. We
have obtained the phase diagram for the v= 1 situation in
a DQW structure, where three different phases are possi-
ble depending on the relative values of d /l, and
b„,/(e /El, )—for large b,„, one has the g", ground
state with the v= 1 IQHE (this is the situation in Ref. 26),
for small 6„, and d/l, (1, it is possible to have the
many-body 4», ground state with the v=1 "FQHE".

For large d /l„we find compressible states at v = 1 which
exhibit no QHE. One interesting feature of our phase di-
agram is the prediction of a reentrant v=1 QHE in
DQW structures as a function of decreasing b,„,where
one should first see the destruction of the QHE at v= 1 as
the system undergoes a phase transition from the 4"

&

ground state to a compressible ground state, and, then at
small b,„, (but, for fixed d/I, & 1), the QHE at v= 1

should reappear as the system makes a phase transition
from the compressible state to the many-body 4'», state.
(Experimentally, one can change b,„,at a fixed d/l, by
applying a small in-plane magnetic field. ) It would be in-
teresting to experimentally observe this nontrivial reen-
trant behavior. At v= —', , we predict a quantum phase
tansition in the DQW structure where, at some finite and
sharp values of d /l„ the system goes directly from one
type of incompressible ground state (4'„'—2/3) to another
( 0 330 ) with a concomitant abrupt change in the activa-
tion energy. This should also be experimentally observ-
able according to our finite-size numerical calculations.
The various quantum phase tansitions between different
compressible and incompressible states at v=1, —', , and —,

'

discussed in this paper are all direct first-order transitions
driven by the competition between intrawell and interwell
Coulomb interactions, and, the interwell tunneling gap.
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We mention that if the quantum states are classified only by
their total pseudospins, then the +'='I state and the 0»& state
do not belong to different universality classes because they
both have the same total pseudospin S =(N —1)/2 which
means that they belong to the same irreducible representation
of the total pseudospin. (Their pseudospins are rotated with
respect to each other with the %'»

&
state having its

pseudospin pointing in the y direction and the 4"
~

state hav-
ing its pseudospin along the x direction. ) On the other hand,
physically these two states are quite different, particulary in
terms of the elementary excitations which determine their
thermodynamic properties. For example, in the absence of
any interwell tunneling, the %'»& state will have a gapless col-
lective mode due to the broken symmetry in the pseudospin
x-y plane whereas the %""

I state always has a finite energy
gap. Thus, the system is in diferent thermodynamic phases in
these two cases even if they belong to the same irreducible
pseudospin representation. In the presence of weak interwell
tunneling, an energy gap proportional to the square root of
the tunneling strength will open up in the 4I» state, and
again, the activation energies for the two states will be quite
different. Therefore, the different universality classes (and the
quantum phase transitions between them) being discussed
here are not defined by the total pseudospin, but by the ther-
modynamic behavior of the two phases. The same considera-
tion applies to the v= —, situation for the (II"=2/3 and the %'330

states.


