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We present a formalism for studying the disorder effects on electron tunneling through one-
dimensional double-barrier quantum-well structures based on the coherent-potential approximation.
This formalism enables us to calculate the configuration-averaged transmission coefficients in a nonper-
turbative way. It is shown that elastic scattering reduces and broadens the resonance peak, and also des-
troys its Lorentzian behavior. For sharp resonance structures, the transmission coefficient directly
reflects the structures in the density of states within the well. The result obtained using this method

agrees well with direct numerical simulation.

I. INTRODUCTION

The so-called peak-to-valley ratio of a tunneling
double-barrier quantum-well (DBQW) structure is one of
the most important parameters for its device applica-
tions. Since the first experimental realization of resonant
tunneling through DBQW structure by Chang, Esaki,
and Tsu,! it has been found that the peak-to-valley ratios
measured for real devices are much smaller than those
predicted from simple theory. Quantitatively under-
standing the measured peak-to-valley ratio raises a chal-
lenging problem to both the experimentalist and the
theoretician.

During the tunneling processes, electrons may be elast-
ically scattered by impurities, interface roughness, and
compositional disorder, and may also suffer inelastic col-
lisions, such as phonon-electron and electron-electron
scattering processes. In a series of recent experiments,
Gueret et al.? found that the longitudinal-optical (LO)
phonons only appear beyond the valley voltage, and that
the I-V characteristic within the negative-differential-
conductance (NDC) region is temperature independent.
This suggests that inelastic scattering is not important in
the resonant tunneling process, and the reduction of the
peak-to-valley ratio is mainly due to the elastic scattering
caused by various disorders within the structure. There-
fore, it is most desirable to have a theory that enables us
to calculate the effects of elastic scattering on resonant
tunneling through DBQW structures.

Recently, a number of publications on this problem
have appeared in the literature.>~’ In most of these stud-
ies, the disorder potential is treated as a perturbation.
Fertig, He, and Das Sarma* calculated the lowest-order
correction of the transmission coefficient due to disorder
within the well region using a tight-binding model. Leo
and MacDonald® proposed a systematic theory based on
an extended basis introduced by Duke, Kleiman, and
Stakelon.®? They obtained the leading-order correction to
the transmission coefficient due to interface roughness
scattering. Rudberg® and Vinter and Chevoir’ have also
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used the Fermi golden rule to calculate the interface-
roughness effects on tunneling. All these perturbation
theories successfully show that the disorder scattering
tends to reduce the peak-to-valley ratio.

Perturbation theories have a crucial disadvantage in
that they only work well for narrow barrier structures.
For DBQW structures with thick barrier widths, the per-
turbation theory may give unphysical results (for exam-
ple, the transmission coefficient may be larger than uni-
ty). The reason is that, as the barrier width increases, the
density of states within the well region becomes sharply
peaked at the resonant energy. The disorder scattering is
then very strong near the resonant energy even if the dis-
order potential is quite weak, which causes a breakdown
of the perturbation theory. Since in most experimental
studies, structures with quite thick barriers have been
used, one cannot expect to explain experimental results
by using perturbation theory.

In this paper, we present a formalism for calculating
the disorder effect on tunneling through one-dimensional
DBQW structures based on the coherent-potential ap-
proximation (CPA). In this formalism, we use the CPA
effective medium as the basis of our approach, and the
scattering due to disorder fluctuation from the CPA
effective medium is evaluated explicitly. This method al-
lows us to study disorder effects on resonance without
limitation with respect to the shape of the structures or
the strength of the disorder.

As an application of the method, we have calculated,
within effective-mass theory, the transmission coefficients
of GaAs/Al,Ga,;_,As DBQW systems. We take a
binary random-alloy model to mimic the compositional
disorder in the Al,Ga,_, As barriers and the disorder in-
troduced by impurities within the GaAs quantum well.
To examine the validity of the method, we have comput-
ed the transmission coefficient for a large number of dis-
order configurations by direct numerical simulation. The
total density of states (DOS) in the well region of the
disordered DBQW structure is also calculated within
CPA, and the relationship between the tunneling
transmission and the DOS is discussed.
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II. THE MODEL

Figure 1 shows an example of a disorder-free double-
barrier quantum-well structure. The Hamiltonian of the
system is

2 2
- 2% " : 5+ Vg X E barriers
m X
ho(x)= ﬁz d2 (2.1)
— —, X & barriers .
2m* dx?

where, for simplicity we assume that an electron has the
same effective mass m * in both the barrier and well re-
gions and V4 is the height of the barrier set by the
conduction-band offset between the barrier and well ma-
terials. For a more realistic DBQW structure, the Hamil-
tonian is given by

H(x)=hy(x)+Ax), (2.2)
where A(x) describes the disorder caused by interface

roughness, alloy disorder, and impurities. In the present
work, we assume that A(x) has the form

for 0<x <1,

N a;
AGoy= {200 |5 TR

0 otherwise , 2.3)
where N is the number of monolayers in the DBQW
structure of length /, x; is the central position of the ith
monolayer, a; is the width of the ith monolayer, and v; is
the deviation of the potential of the ith monolayer from
that of the perfect structure. In effect, the disorder po-
tential is averaged over the plane perpendicular to the
growth direction to maintain a one-dimensional model
system.

As long as we are only interested in the tunneling
through the lowest resonance state, the wavelengths of
the states considered are much larger than one-
monolayer width. As a good approximation, therefore,
we can write A(x) in a simplified form,

N
Sv;a;8(x —x;) for 0<x <1,
Alx)= 1 i

0 otherwise . 2.4)
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FIG. 1. A schematic diagram of a DBQW structure.
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III. THEORY

In order to study tunneling through disordered DBQW
structures, we consider the disorder-free structure first.
Following Duke, Kleiman, and Stakelon® and Leo and
MacDonald,> we choose a linearly independent set of
wave functions of the perfect structure as follows:

e+ roe " ** for x <0
YOUE,x)=1c;/ u (x)+e, u_(x) for 0<x <l (3.1)

nee’®* for x >1

Noe ~ % for x <0

YOE,x)=1c, u  (x)+c, u_(x) for 0<x </ (3.2)

r

e "t roe™ for x >1

12
2m*E

k= 7

(3.3)

In the above equations, u , (x) [u _(x)] is the decaying
(growing) solution within the barrier and well regions, 71,
and r; are the transmission and reflection amplitudes of
the disorder-free structure, respectively. ¢,(E,x)
[¢,.(E,x)] is the wave function of an electron incident
from the left (right) with energy E scattered by the per-
fect structure only. If we take into account the scattering
by the disorder potential A(x), the wave function in the
disorder system of an electron incident from the left is
given by the Lippman-Schwinger equation

)=+ [ [ Golxe,x )T (x",x" Wx"dx"dx""
(3.4)

where G(x,x’) is the Green’s function of the perfect
structure defined by

[E —hy(x)]Go(x,x")=8(x —x') (3.5)
and T (x,x") is the so-called T matrix defined as
T(x,x")=A(x)8(x —x")
+ [ A)Go(x,x")T(x",x")dx" . (3.6)

Gy(x,x') can be derived by solving the differential equa-
tion (3.5) directly to give

m* (0)( 4 71,/,(0) ,
7k Y (x), (%), x <x',
o
Gylx,x")= " (3.7
Fre T Px)P(x"), x>x'.
k1o

For the disorder potential defined in Eq. (2.3), we can
easily show that

T(x,x")=3T,,8(x —x,)8(x'—x,) , (3.8)
ij

J
with

(3.9)

T; ;=v;a;8; +v;8; 3Gy i Ty;
k
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where we have used the notation Gy, ; = Go(x;,x;).
The transmission coefficient of the state described by
the wave function in Eq. (3.4) is given by

d¢,(x)

1 *
Yrx)—

nzzlm

(3.10)

By substituting Eqgs. (3.7) and (3.8) into Eq. (3.4), and
then Eq. (3.4) into Eq. (3.10), we obtain the following ex-
pression for the configuration-averaged transmission

coefficient:
(p)=Inol*1+1,+1,), (3.11)

where 1), is the transmission amplitude of the perfect sys-
tem defined in Egs. (3.1) and (3.2), and

2m*
1125%1{6 {%lp(rm(xi )w(IO)(xj)(T,‘,j) (3.12)
I,= m” ¢r x,‘ )1//'(,0)()6 )
2 i,j,k,1 ﬁzk Mo k
XYr O YO ) THT,, ) - (3.13)

The complex nature of the T matrix makes it impossible
to calculate (T;;) and (T} Ty, exactly. For the case
where the dlsorder is weak and the resonance is quite
broad (i.e., for the thinner and lower barrier case), pertur-
bation theory, as applied by Leo and MacDonald,® can
give quite good results. However, for the sharp reso-
nance structure, multiple scattering becomes very impor-
tant. In such a case, perturbation theory becomes in-
valid.

We have applied the CPA to deal with this problem.
As the best single-site approximation for a disordered
system, the CPA self-energy renormalized transmission
coefficient gives a good first-order estimate. The two
terms in Eq. (3.11) containing (T;;) and (TXTy,),
caused by the disorder potential devtattng from the CPA
effective medium, are, therefore, much smaller than those
in the perfect structure basis, and can be easily calculated
within CPA.

We define an effective disorder-free structure described
by the Hamiltonian

hPAX)=ho(x)+ZFA(x) .

(3.14)

Here S°PA(x) is the position-dependent self-energy that
satisfies the single-site CPA condition

(tP4) =0, (3.15)
where
CPA __ [vi_ECPA(xi)]ai
T [0, — 3% 1a,Gy, (316
i i i 0i,i

Using this effective disorder-free Hamiltonian determined
by CPA as our starting point, we have ( TSP*) ~0. Then
the configuration-averaged transmission coefficient of the
disordered system may be written as
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m* 2
(Y =InSPARHInSPAR 3 | o | gPAsr,)
i,j,k,1 #kmng

(x;)

XYFPACe T (x,

X YFPAx,)

X{TEPA* TSR (3.17)

with

=[v;, —2°PA(x,)]a;;

TSA o0 —3FAx;)]a;

szCPATCPA (3.18)

Here, ¥HMx) and GPA are the wave function and

Green’s function of 4 “FA(x), respectively, and 5§¥4 is the
transmission amplitude of the structure defined by
RPA(x). In Eq. (3.17), |nGTA|* gives the CPA self-
energy renormalized transmission coefficient of the disor-
dered structure; the second term on the right-hand side
contains all other correction terms beyond the CPA self-
energy approximation.

To evaluate ( T TA*TET*) in Eq. (3.17), we write the T
matrix as in Ref. 9 (hereafter, all matrices are double un-
derlined):

lCPAzzchA (319)
The matrix QiCPA satisfies the following equation:
QiCPA=LCPA ;+QCPA§&CPA , (320)
JFI

where T-CPA is the T matrix for a single site given by

TCPA =1£PAS; 18, (3.21)

where t,.CPA is defined by Eq. (3.16). Using Eq. (3.19), we
obtain

!m’

"s,j

* * *
< T‘S_PA T;SfA ) — <tiCPA 81‘,1‘ + 2 GCPA cPA*
n?ﬁi

XIEPA 8k1+ 2 GISPA CPA

my

~—~——

m#k
(3.22)
Following the standard practice within CPA (Refs. 9 and

11), we replace the average of the product by a product of
averages as follows:

* *
(TEPATTEPA) = (1 CPA CPA)

CPA*

nsj

x( [8i+ SGE

n#:i

(3.23)

mr,I

X (st S 6ot |) .

m¥*k
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Noting that ¢FF4 are independent random variables with
zero mean, we see that (T,%PA* TCH™) is nonzero only
when i=k. Similarly, we can also show that
( T‘.,CjPA* TCH™) is nonzero only when i =j =k =1, i.e.,

<TISPA*TISIIJA)z'yisi,jsi,ksi,l ) (3.24)
where
ri=(ItPARY l1+ 3 GPATGSA
&h
n#i,m#*i
*
x (oSO .
(3.25)

Substituting Eq. (3.20) into (3.25), and taking the same
approximation as that used in obtaining Eq. (3.24), we
find

= AR |14 S IGSAK QAR [ . (.26
n#*i i
We then define a new matrix with elements
Fi,j=< IQ,?:)A12> . (3.27)

Using Eq. (3.20) and once again taking the approximation
used in obtaining Egs. (3.24) and (3.26), we show that

L= CIEPARY 18, + SIGTARIQRTA ") | (3.28)
nti
Comparing Eq. (3.26) with (3.28), we see that
vi=Ty; . (3.29)
Equation (3.28) gives a closed relation for I'; ;, hence we

can obtain all y;’s by solving this equation.

IV. RESULTS

In this section, we present some results obtained with
the method used in this paper. To make sensible contact
with experiment, we choose the parameters of the struc-
tures used for our calculation to be similar to that used in
the experimental study by Gueret et al.> The structure
consists of two Al,Ga,;_,As (x =0.15) barriers of identi-
cal width separated by a GaAs quantum well and
sandwiched between two GaAs electrodes. The well is 24
monolayer (~7 nm) thick, and the Al,Ga,_, As barriers
are 120 meV high. The effective mass of the electron is
taken to be 0.067 in units of free-electron mass. We take
the width of the barriers to be a variable. A simple
binary random alloy model is used to mimic the composi-
tional disorder in the barriers and the disorder caused by
impurities or other kinds of defects in the well. We as-
sume that v; is a random variable in the disorder region,
which is described by a distribution function

P, i=4A

1—P,, i=B @.1)

P(v;)=

and satisfies
(v;)=Pv,+(1—P,vg=0. 4.2)

We first consider a structure with only compositional dis-
order in its two barriers. The width of each of the two
barriers is 39 monolayers. The transmission coefficients
calculated for different degrees of disorder in the struc-
ture are presented in Fig. 2.

In addition to the results of our theory, Figs. 2(a)-2(d)
also show the transmission coefficients obtained by direct
numerical simulation. The procedure of the direct nu-
merical simulation is as follows. We generate a large
number of different sets of {v;} according to the distribu-
tion statistics described in Egs. (4.1) and (4.2). Each set
of {v;} gives one configuration of the disordered struc-
ture. The Hamiltonian of a given configuration is defined
by Eq. (2.2). The transmission coefficient for each disor-
der configuration is calculated by solving the Schrodinger
equation using the transfer-matrix method.!® The final
results are given by the average of the results for these
different  configurations. We have used 200
configurations to obtain the results shown in Fig. 2.

From Fig. 2, we see that the resonance transmission
peaks are lowered and broadened by disorder scattering.
As the disorder strength increases, the transmission
coefficient curve becomes less smooth and some new
features appear. Compared with the results from numeri-
cal simulation, the new theory gives physically reasonable
results for arbitrary degrees of disorder. For the weak-
disorder case, as shown in Fig. 2(a), the agreement be-
tween the result of the method used here and the numeri-
cal simulation is excellent. For strong disorder cases
shown in Figs. 2(b)-2(d), although this method cannot
reproduce the detailed structures appearing in the
numerical-configuration average transmission curve, it
still gives correct width and height for the main peak.

The structures in the configurational-averaged
transmission-coefficient curve correspond to similar
structures in the density of states. It is well known that
the rich structures in the density of states result from
compositional fluctuations.!! "!* The effect of composi-
tional fluctuations is strongest in one-dimensional
binary-alloy model. It is not surprising, therefore, that
our theory cannot reproduce these detailed structures,
since the CPA is only a single-site approximation, in
which the compositional fluctuations are not considered.
To include the compositional fluctuations, one may use
the so-called cluster-CPA,!* in which the short-range
compositional fluctuations within the cluster are treated
exactly. The compositional fluctuations become weaker
with increasing system dimensionality. Hence, one can
expect that a generalization of the present theory to the
three-dimensional case will give much better results.

Figure 3(a) shows the transmission coefficients calculat-
ed for four structures with different barrier widths and al-
loy disorder in the barriers. The disorder strengths are
the same in each case. The disorder effect on the
transmission coefficient is very weak for structures with
narrow barriers. For off-resonant transmission, disorder
scattering only slightly increases the transmission
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FIG. 2. Transmission coefficients calculated from the CPA method (solid line) compared with numerical simulation (dotted line)
for DBQW structures with different disorder strength in the barriers: P,=0.15, v ,=(a) 1.7 meV, (b) 4.25 meV, (c) 8.5 meV, and (d)
10.2 meV. Structural parameters: V ;=120 meV, the width of the barriers and the well are 39 and 24 (in units of monolayer width),
respectively.
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FIG. 3. Effect of alloy disorder on (a) the barriers on the transmission coefficients and (b) the DOS in the well region for structures
with the same disorder strength (P ,=0.15, v ,=8.5 meV, V=120 meV) and the same well width (/,, =24 monolayers) but different
barrier widths, /, =13, 26, 39, 52 monolayers from top to bottom. The results for disorder-free structures are also plotted with the
dotted line for comparison.
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FIG. 4. Effect of alloy disorder inside the well on (a) the transmission coefficients and (b) the DOS in the well region for structures
with the same disorder strength (P, =0.15, v, =8.5 meV, V =120 meV) and the same well width (/, =24 monolayers) but different
barrier widths, /, =13, 26, 39, 52 monolayers from top to bottom. The results for disorder-free structures are also plotted with the

dotted line for comparison.

coefficient. However, with increasing the barrier width,
the transmission coefficient curve near the resonant ener-
gy is drastically changed by the disorder scattering. For
structures with thick enough barriers, the disorder
scattering reduces the resonant peak exponentially with
increasing the barrier width, and broadens the resonant
peak to a fixed width. This is in complete contrast to per-
fect DBQW structures, where the resonance width de-
creases exponentially with increasing barrier width and
the resonant peak is constant at unity.

In order to understand the calculated results for the
transmission coefficient, we also present the total density
of states in the well region calculated within CPA in Fig.
3(b). In CPA, the total density of states in the well region
is given by

p(E)=—iIm IEG,C,-PA(E) , i€ well region. (4.3)
o i ’

Comparing Figs. 3(a) and 3(b), we can see that the width
of the resonant transmission is directly related to the
range of density of state in the well. As the barrier width
increases, the electronic state in the well becomes increas-
ingly localized, the density of state tends to a fixed distri-
bution, and consequently the width of resonant transmis-
sion tends to a fixed value.

We have also considered the case where there exists a
disorder potential in the well region. Figure 4 shows our
calculated results for both the transmission coefficients
and densities of states. In order to make easy compar-
ison, all the parameters used in Fig. 4 are the same as in
Fig. 3 except that the disorder is in the well region. We
find that the effects of disorder on transmission and densi-
ty of states in the well region are similar to those of disor-
der in the barriers. However, since the wave function is
concentrated in the well region near resonance, the effects
of disorder in the well are much stronger than those of
disorder in the barriers. Hence, disorder within the well,
arising from interface roughness or impurities, will have

the most important effect on resonant tunneling, especial-
ly for sharp resonant structures.

V. SUMMARY

We have described a theory for studying disorder
effects on resonant tunneling through a DBQW structure
based on the coherent-potential approximation. The ad-
vantage of this theory is that it enables us to calculate the
configuration-averaged transmission coefficient in a non-
perturbative way, and there is no limitation with respect
to the disorder strength and the structure parameters.

Our numerical calculation for a GaAs/Al,Ga,_ As
DBQW structure shows that the effects of disorder
scattering are mainly determined by the disorder strength
and the resonant width of the disorder-free structure.
Disorder scattering not only reduces and broadens the
resonance peak, but also destroys its Lorentzian behav-
ior, which is quite different from the inelastic scattering
case.!*!> For sharp resonant structures, the transmission
coefficients directly reflect the structures of the density of
states within the well.

Finally we want to point out that, although a one-
dimensional model has been used in this paper, the
present work provides a basis for the investigation of real
DBQW structures, since the theory can be generalized to
the three-dimensional case. On the other hand, in view of
the increasing interest in tunneling through quasi-one-
dimensional lateral semiconductor structures'® and po-
lymeric superlattices,!” the study of the one-dimensional
system presented in this paper will become more and
more important.
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