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Optically induced charge transport in a modulation-doped GaAs/Al,Ga,;_,As heterostructure is
studied theoretically. Intersubband excitation of electrons in the GaAs quantum well due to infrared ab-
sorption leads to their real-space transfer into the adjacent Al,Ga,_,As layer. We derive a system of
nonlinear model equations considering as relevant physical mechanisms the generation-recombination
processes in GaAs, longitudinal and transverse dielectric carrier relaxation, as well as resonant and non-
resonant tunneling across the interface, and analyze its behavior with the methods of nonlinear dynam-
ics. We predict optoelectronic bistability associated with different photoconductive responses between
the two locally stable steady states corresponding to different types of tunneling prevalent: the regime of
dominant resonant-tunneling currents shows negative differential photoconductivity, whereas the non-
resonant tunneling state is practically invariant with respect to changes of the IR intensity.

I. INTRODUCTION

Nonlinear transport and instabilities associated with
parallel charge transport in low-dimensional semiconduc-
tor structures have received much attention recently.!>?
One important effect is the real-space transfer of elec-
trons in modulation-doped GaAs/Al,Ga;_, As hetero-
structures. It can result from electron heating due to an
applied electric field whereby the electrons are thermioni-
cally emitted from the high-mobility undoped GaAs well
into the low-mobility n-Al,Ga,_,As barrier, thus pro-
ducing negative differential conductivity, in analogy with
the intervalley transfer in momentum space in the Gunn
effect. In this paper we show that real-space transfer can
also be induced by intersubband infrared excitation of
carriers in the GaAs quantum well and subsequent tun-
neling into the adjacent Al ,Ga,;_,As layer, instead of
field-induced carrier heating.

Electrically induced real-space transfer has been stud-
ied extensively both experimentally and theoretically.! >
ac-driven current oscillations® associated with negative
differential conductivity were observed. A physical
mechanism of a real-space transfer oscillator, which gives
periodic’ and chaotic®® self-generated oscillations under
dc conditions, has recently been proposed and numerical-
ly investigated. Also, using a reduced model, bistability
and hysteretic switching transitions between oscillatory
and stationary states were predicted.!°

Although direct infrared absorption experiments be-
tween quantum well (QW) states in GaAs/Al,Ga;_, As
heterostructures!! and intersubband-induced photo-
currents detected by applying a bias perpendicular to the
layers'? were reported a few years ago, static measure-
ments of optically induced photoconductivity parallel to
the layers were not reported until recently, with first re-
sults showing negative photoconductivity.!* Recent in-
terest has been focused on optical properties of electric-
field tunable quantum well structures, such as optically
ind\:“ced charge accumulation, optoelectronic bistability,
etc.

In the present paper we propose and numerically inves-
tigate a mechanism for intersubband excitation-induced
charge transport parallel to the layers of a modulation-
doped GaAs/Al,Ga,_,As heterostructure. Our aim is
to develop a dynamic theory of real-space transfer due to
the optically induced transitions between the two two-
dimensional (2D) subbands in the GaAs quantum well,
and subsequent resonant and nonresonant tunneling into
the Al,Ga,;_,As barrier whose potential profile is calcu-
lated self-consistently by considering the space-charge
dynamics. The model is analyzed using the tools of non-
linear dynamical systems.

The organization of the paper is as follows. After in-
troducing the relevant physical mechanisms (Sec. II), the
model equations are derived (Sec. III) and investigated
(Sec. IV). The resulting negative photoconductivity and
optoelectronic bistability are discussed in Sec. V. Finally,
in Sec. VI, we summarize.

II. THE RELEVANT PHYSICAL MECHANISMS

A sample as schematically shown in Fig. 1 will be con-
sidered. It consists of GaAs quantum wells of width 2L,
embedded in thick Al ,Ga;_,As barriers of width
2L,=2(LY+L9%), which are heavily n doped in the
center (width 2L%). The sample possesses a prism
geometry and is illuminated on the edge by polarized
monochromatic infrared radiation.!3

The band structure of a single GaAs/Al,Ga,_,As lay-
er sequence is shown schematically in Fig. 2. Since all
the sequences are considered to be dynamically
equivalent, we assume periodic boundary conditions.
Taking into account experimentally used layer widths,!3
the GaAs QW contains two parabolic two-dimensional
subbands, S{! and S{¥, occupied by an electron density
(dimension, 1/m?3) of n'V(x,t) and n¥(x,¢), respectively.
Separation of conduction-band electrons, which reside in
the GaAs channel at low bias U, and low intensity I of
the infrared (IR) irradiation, from their parent donors
leads to band bending in the Al ,Ga,_, As layer due to
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FIG. 1. Sample geometry (schematic): the sample is il-
luminated from the edge with IR radiation, which traverses the
GaAs/Al,Ga,_, As layers twice, and is connected to an exter-
nal circuit with bias voltage U, and load resistance R;. The
GaAs layers have a width of 2L,, the Al ,Ga,_,As layers
[width, 2L, =2(L$+L}%)] are center doped in a region of width
2L ¢ and undoped outside.

the buildup of an internal electric field €, perpendicular
to the layers, Wthh determines the interface potential
barrier &)= —e fo €,(x,t)dx and the potential loss in

the doped region ®,=— efLuslx t)dx. Within the

Al,.Ga,;_,As potential, only the energetically lowest
two-dimensional subband S,, assumed to be parabolic, is

S —| . - :
-2L, 0 LY L, =LY+L¢
GaAs Al Gaj_xAs AlyGaj_xAs  Al,Gap_yAs

(undoped) (undoped) (n—doped) (undoped)

FIG. 2. Band structure of a GaAs/Al,Ga,_,As layer se-
quence (schematic), illustrating the system’s relevant physical
mechanisms: (1) the generation-recombination processes be-
tween the GaAs subbands S{!’ and S{¥ with averaged occupa-
tion densities n{" and n{?, (2) the space-charge dynamics in the
Al,Ga,_,As layer determining the total potential barrier @,
and the potential loss in the doped region ®,, and (3) the tunnel-
ing currents which are responsible for the carrier exchange be-
tween the GaAs and Al,Ga,_,As region and thus determine
the averaged carrier density in Al,Ga,_,As, n,. The electron
temperature T, depends on the longitudinal electric field ¢.
(The GaAs and Al,Ga,_,As layers are denoted by subscripts 1
and 2, respectively, while different subbands are denoted by su-
perscripts.)
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considered to have a nonvanishing occupation density

n(x, t) whose spatial average is denoted by
n,= f o nix,t)dx /L,.

The circled numbers in Fig. 2 correspond to the
relevant physical mechanisms determining the system’s
dynamic behavior: (1) the generation-recombination ki-
netics between the two GaAs subbands, (2) the space-
charge dynamics in the Al Ga,;_,As layer, and (3) the
tunneling currents, which are responsible for the interac-
tion between the two layers. Additionally we consider
electron heating in the GaAs channel due to the applied
bias U,, resulting in an electron temperature 7, there
that depends on the longitudinal electric field €, parallel
to the layers. Thermionic emission across the barrier @,
can be neglected at the relatively small fields g, con-
sidered.

Based on the above physical mechanisms, we will
derive a set of nonlinear differential equations for the
spatially averaged carrier densities of the two GaAs
subbands, =%, nVx,0dx/L, and n

=%, nPx, t)dx /Ly, respectlvely, the dielectric relax-

ation of €, and the potential values ®; and @, in the fol-
lowing section.

III. THE MODEL EQUATIONS

A. Generation-recombination kinetics

The temporal evolution of n{! is governed by the rate
equation

AV=(x +S)fj°wi)(12>(E)f(E EX,T))
X[l—f(E—ﬁa),?,E}ll),Tl)]dE
—Xx* [* DNEfEER),T))
X[1—f(E +ha)]@,E}21),T,)]dE . (1)

DUE)=O(E —E\")m¥ /(7#*L,) is the quasi-two-
dimensional density of states corresponding to S\,

=1,2, where m | is the effective mass in GaAs, O is the
Heaviside function, and E{" and E{¥ are the minimum
energies of the ground and first excited subband, respec-
tively, where the energetic origin is defined to be the
value at the GaAs/Al, Ga,_,As interface. w; is the fre-
quency of the monochromatic infrared irradiation, whose
photon energy %iw; is assumed to be equal to E(lz’ —E.
FEEST)={1+exp[(E—Ef))/ky T 1} 7, i =1,2, is
the Fermi-Dirac distribution function with the
Boltzmann constant kg, quasi-Fermi energies E }il),

i =1,2, and electron temperature 7';. The carriers in the
GaAs channel can be considered thermalized at this tem-
perature, since intrasubband relaxation takes place on a
much smaller time scale than the relevant intersubband
processes,!® which are assumed to be photon absorption,
stimulated emission of radiation, and intersubband relax-
ation with corresponding transition coefficients X*, X,
and S, respectively.

If one further assumes spatial homogeneity of the elec-
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tron temperature inside the GaAs layer and small
transversal currents across the barrier, the convective,
diffusive, and electron-pressure-induced heat flow in the
energy balance equation'® can be neglected, and only the
terms describing Joule’s heating and the energy loss due
to polar-optical scattering remain. If j &, <<j, ¢, holds,
where j, and j, are the transversal and longitudinal
current densities, respectively, and the constant energy
relaxation time 7, is introduced, we can then roughly es-
timate T'; as a function of the applied electric field by

e T, 2

T,=T,+ % g ()

where g, is the electron mobility in the GaAs channel.

X* is calculated in the second quantization picture by
using Fermi’s golden rule!” and considering the dipole-
allowed transitions only. Assuming the direction of po-
larization to be perpendicular to the layers, which is a
good approximation for small angle a (cf. Fig. 1), we ob-
tain

e’n, o 2
Xr = 50} 7 ax xyPxwx) |'N, (3)
€7 Nnc —

where n, is the refractive index of GaAs, €, is the permit-
tivity of GaAs, and 9", i =1,2 are the wave functions of
the ground and first excited energy eigenstate of the
GaAs potential, respectively. Neglecting space charges,
they are given by the eigenfunctions of a square-well po-
tential with finite height. N is the total photon number
located within one GaAs layer. Applying the simple ap-
proximation that the intensity of the IR radiation is spa-
tially constant within each GaAs layer, whereas it de-
creases exponentially during its double passage through
all the layers, and taking into account the sample
geometry, we obtain

L,bln (T —1)
N=2 - I, (4)
fiwgc sina cosa InT

which allows us to express X * in terms of the intensity of
the incident radiation I if the optical transmission
coefficient T is known.

X is equal to X*.'7 Assuming the energy spacing
E® —E{V between the GaAs subband minima to be
bigger than the energy #w; o of LO phonons, polar opti-
cal scattering is the main intersubband relaxation mecha-
nism.!>!81% In a phenomenological approach, we will
thus assume S to be a constant given by experimental
data.'®

To deduce the final expression for 7 (!, which is given
by

n(12)__n(11)

s (1) —
n
1 rl(lz)/ncl

n(ll)/nc
e —e !
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the integrations in (1) were carried out, and the quasi-
Fermi energies E }'1) were substituted by the averaged oc-

cupation densities 7", i =1,2 using
Ef)=E{ +kyT In[exp(n{’ /n, )—1], (6)

where n, =m{kpT,/(7#’L,) is the quasi-two-dimen-
sional degeneracy concentration in GaAs.

We emphasize that (5) and (6) are exact results which
do not imply the approximation of nondegenerate
Maxwell-Boltzmann statistics leading to the usual mass-
action kinetics of generation-recombination processes.
As a matter of fact, this approximation does not hold in
the relevant experiments'*® which are conducted at helium
temperature and with high effective doping concentra-
tions, since the nondegeneracy condition n|’ << M

i =1,2 is violated. The analytical evaluation of the in-
tegrals (1) is possible for 2D parabolic subbands, as op-
posed to the 1D or 3D case, due to the constant density
of states.

n'? as a function of time is governed by the equation of
continuity

1

2 (2)— _ . (1)
ny'=—ny'+
1 1 eL

jl > (7)
where j, =(j,_,,—Jj,_,;) holds, and j,_,, and j, ,, are
the transversal electric currents through the GaAs/
Al,Ga;_,As interface resulting from both resonant and
nonresonant tunneling.

B. Space-charge dynamics

The calculation of the tunneling currents requires the
knowledge of the ground-state energy of the transversal
electron potential in the Al,Ga,_,As layer. The explicit
potential form and its temporal behavior, however, is
governed by the space-charge dynamics of the con-
duction-band electrons. In this section we will therefore
find a description of the dielectric relaxation in the
Al,Ga,_,As layer based on a small number of dynamic
degrees of freedom, extending the technique used in Refs.
7, 9, and 10 for homogeneously doped layers to center
doped ones.

The starting point is the Maxwell-Ampére law for the
interior field €, where the drift-diffusion approximation
is used to describe the microscopic current density

£ (x,0)=— eiz[y(x)n (%, 8),(x, )+ D (x)n (%, )]+ jioy (3, 1)

us, 0=x<L}

d

us5, Li<x<L,,
¥, 0<x<L}

DY, LY¥<x<L,.

with p(x)= [

D(x)= { (8)
The prime denotes the spatial derivative in the x direc-
tion, €, is the permittivity in Al,Ga,_,As, DY and D¥%
are the diffusion coefficients in the doped and undoped
Al ,Ga,_, As regions, respectively, and j., is the external
current density exchanged with the GaAs layer. Assum-
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ing spatial homogeneity in longitudinal direction, the
Maxwell equations show that j., cannot have a depen-
dence on x. The periodic boundary conditions that we
consider in this model then imply that j., vanishes for
symmetry reasons.

e, and the potential ®(x,¢ —ef g (x’,t)dx’ hold and
are assumed to meet the following boundary conditions:

D(0)=—d,, P(0)=—eg, ,
(LY )=—P,, limx/Lg¢'(x)=—eaf ,

lim, o ®'(x)=—eef )
®(L,)=0, ®'(L,)=0.

Poisson’s equation is given by

81=€i[ND*e(x —LY)—n(x)], (10)
2

where the doping density is approximated by a Heaviside
function. N3 =Nj +n, is the effective doping density
given by the concentration of ionized donors
Ny =Np—np (where Ny, is the doping density and n, is
the electron density in the donors) and the concentration
of ionized deep traps n,, which results from persistent
photoconductivity. Using (10) to substitute » in (8) leads
after integration from O to L, and consideration of the
boundary conditions to

. e €
b= 11—
0 c l D) [uz(e; )

2—psef)? ]+ > /J*ZEL
+e(D¥AnY+DSARY)— NDu2<I>1], (11

where An¥=n(LY)—n(0) and An§=n(L,)—n(L%) re-
sult from the diffusion terms in (8). Analogously we ob-
tain (12) by integrating (8) from O to L},

(12)

. €

b= lfug(ef P+eDIAnd — Njudd,
2

Integration of (10) from L} to L, results in an expression

for e},

ef=—L2LIdNE—nd), (13)
€
where the averaged carrier density in the doped region
nzﬁfLun x,t)dx /L has been introduced.

Analogously we obtain (14) by integrating (10) from O
to L,,

— e
€,7 8 "8?"‘6_[143"5_14;( 5—n)l, (14)
2
LY . .

where nj = fo ’n (x,t)dx /LY is the averaged carrier den-
sity in the undoped region.

For a consistent description of the dielectric relaxation,
the equation of continuity has to be met at the interface

R. E. KUNZ AND E. SCHOLL 47

between the undoped and doped Al Ga,_,As regions.
Diffusion currents can be neglected within the mean free
path of collisionless flight of the electrons. Beyond this
finite length scale the average velocity of the carriers is
much smaller due to the enhanced scattering of the elec-
trons by phonons or by the barrier. This means that the
assumption of constant electron density breaks down and
transversal diffusion currents will become important. If
we further assume that surface charges can be eliminated
adiabatically,

pin e =usn el (15)

holds, where n~ and n ™ are the carrier concentrations
on the undoped and doped side of the interface, respec-
tively. We thus obtain

d d
'u—z—isf , (16)
2 Mo

since flat carrier density profiles in the doped and un-
doped regions can be assumed for thin doping widths
(<100 A), resulting in the relations n~ =n% and
nt=ng. Using (16), insertion of Egs. (13) and (14) in (11)
and (12), respectively, then leads to the final formulas for
the temporal evolution of ®, and P,

2 d ,d )2
H — € | € 174 _ Lot it
D,= {262[L( ng)? | ug—ub -y
2
2
#
+“5;_62 Lgng——zn—Ld(ND-ng)
2 2
—uiNE®, [, amn
d
e, 82 d
=] N} — —Njd, | . 18
1 6 262[ 3(Np ”z)] D 1] (18)

Thus, unlike the homogeneously doped case,”® !° the bar-
rier height @, and the averaged carrier concentration in
the Al,Ga,_ As region n, does not suffice for a con-
sistent description of the space-charge dynamics in the
center doped case. The knowledge of @, and the aver-
aged carrier density in both regions is necessary as well.
Using carrier conservation given by n,L,+njL}

n$L$=N}LY, where n,=n{"+n'? was introduced
for convenience, to substitute ng, however, merely n%
must be expressed in terms of the other dynamic vari-
ables to guarantee a closed dynamic system.

To compute the ground-state energy E, of the
Al ,Ga,_, As potential, we simply assume it to be para-
bolic in the center region and linear elsewhere, which is a
good approximation for small carrier concentrations in
the undoped region and a flat carrier profile in the center.
Knowledge of the boundary conditions (9) then allows
the calculation of E, in second-order perturbation

theory,
E,=c|(D)Py+c,(D;) (19)

with
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— — dy2
¢, =2Vym Ly —2uy)
2yL} L}
and
N T
> LY | 2ms
+2Vy7d ——L — luy)
rT ry awdy |V
_ b a1 1
2y LY L ||’

where y=12m*®, 2/(ﬁLg) was defined for conveni-
ence and 1= f Ld€¢ " dx has to be computed numerical-
2

ly.
C. Longitudinal dielectric relaxation

The longitudinal electric field g, is a time-dependent
variable since the sample conductivity o=e(L un;
+L%udn%+L3udnd )/(Ll +L ) varies with the averaged
carrier densities n;, n%, and n¢ in the regions of different
carrier mobilities u;, u%, and ug, respectively (where pu,
u4 <<ud hold due to enhanced impurity scattering in the
doped Al,Ga,_,As region), thus influencing the voltage
loss at the load resistance R; and, due to the fixed bias
voltage U, g, itself. Using Maxwell’s and Kirchhoff’s
laws and assuming spatial homogeneity in the y and z
directions, the dielectric relaxation of g is given by

b= ———[Jy
€ < +1
2| e

1

—(o,+o)g], (20)

where Jo=U,/(R; A) and o; =1/(R; A) with the cross
section 4 =(L,+L,)b of one GaAs/Al Ga,_,As layer
sequence were introduced for convenience. C;= Ae,/!
and C are the intrinsic sample capacity and the capacity
of the external circuit, respectively, if €, = ¢, is assumed.

D. Resonant and nonresonant tunneling currents

When real-space transfer is induced by a strong electric
field, the major coupling mechanism between the GaAs
and Al,Ga,; ,As layer is provided by thermionic emis-
sion, a process in which the hot electrons in the well spill
over the energy barrier into the adjacent layer.!® This
mechanism can, however, be neglected in the case of low
bias voltages (U, <<l[(|E(12)l—kBTL)/(e,ulfre)]l/z) and
optical pumping, since the extended GaAs states generat-
ing a 3D band are practically vacant if low temperatures
and thin GaAs layers are assumed.’’ Instead, carrier
transport then takes place due to tunneling through the
barrier. Depending on whether the energy levels of the
electronic states localized on both sides of the barrier are
lined up or not, resonant or nonresonant tunneling dom-
inates.

Calculation of the current density of resonant tunneling
j™ is performed under the assumption of the Schrodinger
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equation being separable in longitudinal and transversal
components, of the conservation of longitudinal momen-
tum in the tunneling process, and of the quasistationarity
of the Al ,Ga,_,As potential during tunneling. Then a
coherent quantum-mechanical picture can be used, where
the one-electron elgenfunctlons of the two-layer system
Y =(¢{¥+4,)/V2 are given in zero-order perturbation
theory as the symmetric and antisymmetric superposi-
tions of the localized wave functions ¥{*’ and v,, and the
corresponding eigenvalues E * result from tunnel split-
ting of the eigenvalues E¥ and E, of the isolated sys-
tems. Examining the time dependence of the wave func-
tions one finds that an originally localized state oscillates
between the regions on both sides of the barrier with a
frequency v,,=AE /(27#) where AE=E*—E~ is the
energy splitting.?"??> Thus, summing over all electrons
and considering conservation of the longitudinal momen-
tum, expressions for the electric current densities in the
resonant case, denoted by (re), are obtained,

(re) eL2 AE (re) — eLl AE (2) 21
]1H2”“ i Ry s Joaon = h nyo . )

Applying the method used in Ref. 23 to a system with
different effective masses on each side of the barrier, the
energy splitting can be computed under the assumption

E1 _Ez,
1 1
*+ *
m;j m;

where ¥{f); and d¢{f};/dx are the interface values of the
relevant localized wave functions in the regions 1 and 2,
respectively (normalized to regions 1 and 2, respectively)
and thelr derivatives. ¥ and dy{"”/dx are obtained
from ¢{* and d¢{?’ /dx by renormalization. For the com-
putation of ¥\’ and its derivative, we approximate the
Al _Ga,_,As potential by a symmetric triangular poten-
tial, since we assume L% >>L 9. Neglecting renormaliza-
tion, we then obtain

o d . o d i
¢(Il[f)71;¢(llf)_¢(lmgx— (Hf) ’(22)

(lf)_Al[aA13L _§(1)] (23)
= — AR L, 24

where a,;=2m % (®o—®,)?/[#*(L})?*] holds, and &} is
the first maximum of the Airy function Ai(x), which has
to be computed numerically.

Coherent resonant tunneling not only occurs when the
eigenenergies of the localized states E{? and E, exactly
coincide. It is rather a resonant phenomenon leading to
maximum tunneling currents in case of exact alignment,
but also taking place for small deviations.?? This will
qualitatively be taken into account in our model by as-
suming the resonant-tunneling current to be proportional
to the overlap 7 of the energetic ‘“windows”
(E®—AE)/2,(E¥¥ +AE)/2] and [(E,—AE)/2, (E2
+ AE) /2], which are created by tunnel splitting of E{»
and E,. Multiplying (21) by

—|E,—E®|, AE>|E,—E|

0 otherwise , (25)

N(E,,AE)=
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after subtraction and use of carrier conservation we then
obtain

-(re) —

j (D, ®[NELS—(n'V +2nP )L, T, (26)
which meets the above requirements. 7 is a dynamic
variable due to the dependence of AE and E, on ¥, and
®,. Equation (22) is also considered to hold for E{¥ ~E,
and EP#E,.

Nonresonant tunneling, which describes incoherent
total-energy-conserving traversing of a potential barrier
due to the quantum-mechanical tunnel effect is basically
possible for all values of E,. It dominates when resonant
tunneling vanishes due to a strong deviation of E{? and
E,.

Assuming the participating subbands S| and S, to be
thermalized with the electron temperatures 7, and
T,=T, (T,=T, results from the low mobility in the
doped Al ,Ga,;_,As region) and quasi-Fermi energies
E F, =E }2]) and E Fy respectively, their energy distribution
can be described by the Fermi-Dirac function
f (E’EF,.,T,‘ ), i=1,2, and the semiclassical ansatz (27)

can be made for the current densities for nonresonant
tunneling from region i to j, j,-‘if}, i,j=1,2, i}

s(nr) — 0 _
jim = eLif_wi)j(E)f(E,Epj,Tj)e(E E;)

><[l—f(E,EFi,T,»)]T(E)vj(Ej dE , (27)
where D,=O(E —E;)m}/(w#°L;) for i=1,2, and
E,=E\? are the densities of states for subbands S‘*’ and
S,, respectively. v,=(AE.+E®)/2n# and v,=(®,
+E,)/2m# are the frequencies of hitting the barrier in
regions 1 and 2, respectively, where a simple approxima-
tion similar to the treatment in & decay has been used.?*
(E)=exp[ —A(—E)*"?] with A=4V2m¥LY/
[(®dy—D,)34] is the tunneling probability obtained from
a WKB approximation.

Due to the exp[(—E)3’?] term, the integral in (27) is
not analytically solvable. Its approximation by the zero-
temperature limit, where f(E,E Fj,Tj) is substituted by

O(E —E Fj)’ j=
exclude the unphysical case of decoupled GaAs and
Al,Ga,_, As subsystems resulting from vanishing tunnel-
ing currents. Instead, we apply the mean value theorem,
leading to

1,2, is not reasonable, since it would not

*
i(nr) — em;

X f(E,

max(E(Z) E,)

v;exp[ —
EF/_,T]-)
X[1=f(E,Ep,T)ME , (28)

and approximate the mean value £* € [max(E\?,E,),0]
by £=37_max(E\?,E,,Ep)/2. This approximation is
good if the relative deviation of the quasi-Fermi energies
EF1 and EF2 is small, which is the case for physically

reasonable parameters as the numerical simulations
show. The integral in (28) can then be calculated analyti-

cally if T=T,=T, is assumed. After expressing EF1
and EF2 by n'?
responding to (6), we obtain j "= j{mr), — ;)

and n,, respectively, using formulas cor-

. ekp Ty p1+1 -
](m)= 3 P1—@;) !
27# @, +1
X[m3 (®y+E))p,—mT(AE, +E,)p,]
Xexp[ —A(—£)7?], (29)
where @, =exp[ —BO(SE)SE J[exp(n'? /n, )—1] and
@,=exp[BO(—8E)SE ][exp(n, /nc2 )—1] with B
=(kgT, )", n,=m3kyT,/(7#’L,), and 8E=E,
—E{? were introduced for convenience. The total

current density j =j+ ;") is then given by Egs. (26)
and (29). o -

For the calculation of ny=nj +nj  we assume
that all carriers in the undoped region stem either from
resonant or nonresonant tunnelmg currents, where the
contributions are denoted by n2 e and nj , respective-
ly. Other factors influencing n5 such as diffusion will be
neglected. Thus nj can be expressed in terms of the tun-
neling current densities.

Within the framework of the coherent picture applied
in this model, the time needed to traverse the potential
barrier in resonant tunneling is given by 7 . =m#/AE for
all carriers alike. If ®,+E,~®, holds, the undoped re-
gion coincides with the traversed potential barrier and we
thus obtain

re T,
ny" =, ) (30)
eL2

In the case of n} (m), we neglect the dependence of the
tunneling time and the width of the traversed barrier
upon the total carrier energy, assuming the carriers with
the least possible total energy E =max(E?,E,) to deter-
mine the tunneling time 7, as well as the undoped region
to coincide with the transversal barrier. Then
Tow=[—2m3max(E\¥ E,)]"2LY /(®y—®,) is obtamed
using a simple formula given in Ref. 25. Hence n2 re-
sults as

L _ V'2m% [—max(E®,E,)]'?
ni e -y

( nr) +] )
(31)

where 7", 4+, is given in (29), substituting the
difference by a sum.

Equations (5), (7), (20), (17), and (18) represent our
basic model. They constitute an autonomous nonlinear

set of differential equations
x=F(x) (32)

with x~(n1 ,nl ,su,tbo,(D )T, whose static and dynamic
behavior will be analyzed in the following section.
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IV. FIXED POINTS AND STABILITY ANALYSIS

The above system has one fixed point, being defined by
vanishing temporal derivatives and denoted by an aster-
isk, in the dark regime (I =0), which splits up into three
with incident IR intensities (I >0). These can be
classified according to the type of tunnelmg current pre-)
valent: the pair of resonant fixed points x*  and x
describe a steady state, in which ) >>;™) and

re .
ny >>n2 hold, \gvhereas in the nonresonant steady
r) re .
state x* ' ;™) and nj (Vlz}msh. o)
. r . .
The formation of x* ~ and x* ~, which only differ

considerably in their ®, component, is a direct implica-
tion of j{""s resonance feature, which can easily be seen
under the assumption of j™=n%""=0: Egs. (5) and (7)
lead to a third-order polynomial for exp[n{¥" /n, (s”)] i

the steady state, which yields a unlque solutlon due to
Descartess sign rule. Thus n(z’ (gy) and, using (5),

(” (g)) can be computed. Subtractlng (18) from (17
leads to a unique expression for n} u [n(l” (g)),n n? * (&:”)]
By inserting the functional form of n{", n{?, and n¥ino,
one obtains the stationary current density versus
electric-field characteristic jf (¢,)=0o(g,)g, (Fig. 3, Table
I). For I =0 and I = « it ascends linearly with a bigger
slope in the first case whereas for 0 <I < oo it shifts from
the 7 = o line to the I =0 one with increasing g, and is
therefore nonlinear. This corresponds to a transition
from the low conductivity state (dotted line) to a high
conductivity state (solid line) with increasing g, which
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FIG. 3. Calculated stationary current density vs electric-field
characteristics for different IR intensities I (numerical parame-
ters cf. Table I). Whereas in the dark (I =0) the system is
monostable with a linear characteristic (solid line), incident IR
radiation leads to the formation of two locally stable branches
corresponding to the respective tunneling currents prevalent: a
nonresonant state (solid line), which is practically independent
of I, and a resonant-tunneling state (dashed for I =1 W/cm?,
dotted for I = o ), which changes with 1.

becomes more pronounced and sets in later at larger I.
The reason for this is that optically induced real-space
transfer allows the electrons to stay in the low conduc-
tivity Al Ga,_, As layer up to larger fields.

Since the differential conductivity is therefore always
positive, a unique stationary field ¢ given by the inter-
section of the device characteristic with the load line ex-
ists for each I, Uy, and R;. Thus n{"*, n®* n%" and,
using (12), @ are determined uniquely. To find ®, the so

TABLE I. Numerical parameters used in the simulations.

EG“AS(42 K)=152 eV from Ref. 28, p. 218,

0742 K)=1.8 eV from Ref. 28, p. 604
(my is the electron mass), Ref. 28, p. 222, Ref. 72Cl1

(€o is the absolute permittivity), Ref. 28, p. 243, Ref. 72R3 and 69J2
Ref. 28, p. 167, Ref. 71F (assuming a linear dependence upon GaAs and AlAs for

From Ref. 28, p. 531, Fig. 78, p. 607, Fig. 22 (assuming the same composition

dependence of the Hall mobility for 5 and 300 K)

Private communication from M. Asche, ZIE, Berlin
From Ref. 13 (assuming that the number of ionized carriers is equal to those

(1/1000 of the value in Ref. 8 was assumed)

AE, 248.5 meV AE./E;=0.85+0.03 from Ref. 27.
EAIO 3Ga
m¥ 0.0665m,
m# 0.0924m, Ref. 28, p. 334, Ref. 80L1
n, 3.30 Ref. 28, p. 242, Ref. 62P and 61H
€, 12.53¢,
€, 11.79¢,
Aly 3Gag ,As)
1y 10° cm?/V's Ref. 28, p. 531 for T, =5 K
%% 3.8X10* cm?/V's
ug 100 cm?/Vs
NE 1.18 10" ¢cm™?3
in the GaAs region)
T, 5K Ref. 13
a 21° Ref. 15
T 0.5 Ref. 13
L, 32.5 A Ref. 13
L 50 A Ref. 13
LY 200 A Ref. 13
Tia 12 ps Ref. 15
Te 0.4 ps Ref. 27, p. 234
U, 6V
R, 283 Q Ref. 8
C 1.57X107% F Ref. 8
h 3.5X107* m Ref. 15
b 1073 m Ref. 15
I 1072 m Ref. 15
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determmed nj * must be identified with its definition

(d>0) given in Egs. (30) and (31). Since E, is a linear
functlon of ®, and n} s dependence on E, yields a res-
onance behavior via (26), there are zero, one, or two sta-
tionary values of ®,. It can be shown that there is exact-
ly one for I =0 and two for I >0.%

Due to almost identical n (1”*, n(lz’*, and na‘*, the longi-
tudinal current density j i*l( practically coincides for the
two resonant steady states. They both show negative
differential photoconductivity (NDPC) for IR intensities
between a threshold value I,;, and a saturation intensity
I, as shown in Figs. 4(a) and 4(b) for different lattice tem-
peratures 7; and different effective doping concentra-
tions Nj. NPDC is defined here by the negative change
of the conductivity —Ao with increasing intensity I, nor-
malized by the dark conductivity o, (I =0). This ex-
plains the negative photoconductivity observed by Hein-
rich et al.,'® although NDPC was defined there slightly
different, viz., with respect to variation of the IR frequen-
cy at fixed IR intensity I. Unlike I, I, <exp(N}/T;)
shows a sensitive dependence on the lattice temperature
T; and effective doping concentration Nj. Figure 4
shows that the onset of NDPC at low intensities is
favored by low lattice temperatures and high doping con-
centrations, as indeed applied in Ref. 13. It is not sensi-
tive to a variation of the GaAs QW width 2L, =65-90
A.

In the nonresonant regime, the photoconductivity of
the only existing steady state x*  remains practically

0.015 - "
0010 1
[> ] .
T 0.005 \
l . 1 S ‘\\
j\ // ,,/ \
0.000
20 10 0 10
log,[ T (W/em?)]
0.015 - .
€ 0010 N
5 ~f
$ 0.005 / ’f" ,‘\‘\"\
0.000 4o SN
20 1o 0 10

logo[ I (W/cm?)]

FIG. 4. Calculated negative differential photoconductivity of
the resonant-tunneling state. The negative change of the con-
ductivity —Ao =o0y—o(I) normalized to the dark conductivity
o, as a function of the optical intensity I is plotted (a) for
different lattice temperatures 7, =5 K (solid line), 7, =7.5 K
(dashed line), and 7; =10 K (dotted line), and (b) for different
effective doping concentrations Nj=5.0X10" cm™? (solid
line), Ny =7.5X10" c¢cm™> (dashed line), and Nj=1.18 X 10"

m ™3 (dotted line). (Parameters cf. Table I.)
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constant at the dark value o for all IR intensities, since
the absolute value of the nonresonant-tunneling currents
there is too small to permit a measurable number of car-
riers to leave the GaAs QW and enter the Al,Ga,; _,As
region. Additionally, con51der1ng diffusion currents
across the interface would reduce o* " to o*" < o, but
would not influence the practically vanishing negative
photoconductivity of the nonresonant steady state, since
diffusion does not distinguish between the ground and the
excited GaAs subband. .

The stablhty of the steady states x* '), i=1,2,
and x*" against infinitesimal fluctuations

O6x(z)=56x(0)exp(At) is determined by linearizing the
dynamical system around each steady state and comput-
ing the eigenvalues k of the Jacobian matrix
J(x*);=(0x; /3x;)*, i,j = ,5. We find that the in-
cident radiation leads to a supercr1t10a1 pitchfork bifurca-
tion, since x*, which is a stable node (e.g., all eigenvalues
negratlve at 1= I 0, splits up 1nto(t1})1e two stable nodes

and x* , and the saddle x* (1 positive, 4 nega-
tive e1genvalue(s)1 for I >0, where the eigenvector corre-
sponding to x* ’s unstable mode coincides with the @,
coordinate axis in the system’s phase space
(n{V, n(12),£”,<1>0,CD1)T.

Each fixed point possesses one (negative) eigenvalue,
the order of magnitude of whose absolute value can be
tuned with the IR intensity. Thus, unlike the typical
time scale of the interlayer transitions and the transversal
dielectric relaxation in Al,Ga,_,As, the time scale on
which carrier exchange between the two GaAs subbands
occurs varies with 1.

The linear bifurcation analysis therefore shows that un-
der IR excitation (7 >())) blstat(nrhty between the two
stable steady states x *  and x*  occurs (Fig. 3). This
optoelectronic bistability can be illustrated by a reinter-
pretation of Fig. 3 in terms of stable resonant and non-
resonant tunneling states. The solid line corresponds to
the I-independent nonresonant states x*(m), while the
dashed and dotted lines, dePendmg on I, correspond to
the stable resonant state x* It should be noted that
self-generated oscillatory instabilities as found for electri-
cally induced real-space transfer’  !° do not occur for any
optical intensity.

V. RESULTS AND DISCUSSION

The linear bifurcation analysis implies that the dynam-
ical system given by Egs. (5), (7), (17), (18), and (20) shows
optoelectronic bistability, which is confirmed by numerical
time-dependent simulations of this system 0 A
differentiable connex manifold containing x*  separates
the phase space into two attractor basins for the resonant
and nonresonant stable nodes x* = and x* , respective-
ly. In the nonresonant-tunneling state x*" practically
all carriers reside in the GaAs QW, the conductivity is
high, and <I>0 is small, whereas in the resonant tunneling
states x* x(2 the carriers are increasingly real-space
transferred to the Al Ga,;_,As barrier with increasing
IR intensity, the conductivity decreases and ®, is large
(Fig. 5). Which state actually will be realized depends
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E _*(nr)
X

GaAs  AlGaj_yAs
(undoped) (undoped)

AL Gay_xAS
(n—doped)

Al,Gay_yxAs
(undoped)

FIG. 5. Band structure corresponding to the three steady
states (schematic). The middle state x*"" is unstable and lies
within the separatrix manifold separating the attractor basins of
the stable steady states x 2
tunneling).

(nr)
(resonant) and x* (nonresonant

upon the initial conditions chosen. We propose to con-
sider this effect for application as a picosecond optoelect-
ronic switch. Figure 6 shows that a small fluctuation in
the potential b(arlrler height @, causing it to drop below
the value at x*  leads to a transition from the low con-
ductivity (x*"") to the high conductivity steady state
(x*"") in less than 5 ps.

The bistability as displayed by the above system is not
a feature restricted to the explicit form of its equations,
but holds on very few generalized conditions. This is

60 (a)

. T 1
0.0 2.5 5.0
t (ps)

FIG. 6. Calculated temporal evolution (a) of the barrier
height @, and (b) of the conductivity o after a small fluctuation
forces P, to become smaller than the value corresponding to

[lower dashed-dotted line in (a)]. The system switches
from the low conductivity resonant steady state [dashed-dotted
line in (b)] to the high conductivity nonresonant steady state in
less than 5 ps. (I =1.0X 10® W/cm?, other parameters cf. Table
L)
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shown in the Appendix. We therefore conclude that it is
generic for optically induced real-space transfer in
modulation-doped GaAs/Al,Ga,;_,As heterostructures
with two relevant subbands in the GaAs QW. The
different differential photoconductivities displayed in the
two locally stable regimes, on the other hand, can only be
explained by the explicit model equations, where the res-
onant and nonresonant tunneling currents have been con-
sidered quantitatively. Our model provides a detailed
theory to the NDPC measured by Heinrich ez al.!* and
optoelectronic bistability as found by Zrenner.2

VI. CONCLUSIONS

We have shown that real-space transfer can be induced
in a modulation-doped semiconductor heterostructure by
intersubband excitation of electrons in the GaAs quan-
tum well due to infrared absorption and subsequent tun-
neling. A system of nonlinear dynamic model equations
has been derived, incorporating the 2D generation-
recombination kinetics in GaAs, the space-charge dy-
namics of the Al ,Ga,;_ As barrier, resonant and non-
resonant tunneling across the GaAs/Al Ga,_,As inter-
face, and dielectric relaxation of the parallel electric field.
The steady states, their stability, and the transient behav-
ior have been analyzed with the methods of nonlinear dy-
namics. We predict optoelectronic bistability associated
with different photoconductive responses of the two
stable steady states: the state of dominant resonant tun-
neling currents shows negative IR photoconductivity,
whereas the nonresonant tunneling state is practically in-
dependent of the IR intensity. Ultrafast switching behav-
ior between these two steady states is suggested for poten-
tial applications.
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APPENDIX: GENERAL CONDITIONS
FOR BISTABILITY

In the following we consider a generalized model sys-
tem for the dynamic variables n!, n{¥, ®,, and ®, in-
dependent of the assumption of a specific model. (For
small U, ¢, can be assumed to have no influence on the
other variables.) The set of differential equations govern-
ing the variable’s temporal behavior is assumed to meet
the followmg conditions:

(@ 7 (" and 7'? are given by Egs. (5) and (7), respec-
tively, where j, in (7) is substituted by the generalized
current density j=7 "+7 ™, 7 and 7 may be arbi-
trary twice continuously differentiable functions of the
dynamic variables with the restriction that j ™”s depen-
dence upon @ has the form of a resonance curve, j ™ is
a monotonlcally decreasing function of @, and both 7 ™
and 7™ are proportional to —-n(lz and n, near the
system’s fixed points. Additionally ;’s dependence on @,
is assumed to be small.

(i) Py’s  time

dependence is governed by
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&, =f(n'\V,n¥)—@, with £ >0 for all n{" and n?.

(i) n%(n{V,n?, @y, ®,) results exclusively from car-
rier transport through the undoped Al, Ga,; _, As region.

(iv) Near each fixed point d(®,—®P,)/dt increases
monotonically as a function of n%.

(v) @, is a fast variable.

The first two restrictions in (i) reflect the E, depen-
dence the tunneling currents have due to their physical
features. They hold since E, must be a monotonic func-
tion of ®,. The third one is a minimum prerequisite
physically reasonable currents must meet. The fourth
reflects the fact that E, depends much more on the po-
tential height ®, than on the potential form condition.
(i) results from Eq. (12), taking into account n% <<n{V,
n{*. Condition (iv) is assumed since an increase of the
carrier density in the undoped region leads to a stronger
curvature of ®(x) there, increasing ®y— P, =P(L}Y)
—®(0). Condition (v) holds if the dielectric relaxation
time 7, =€,/(euSN}) is small due to a high doping con-
centration.

Taking into account carrier conservation, the third
condition in (i) leads to

8] (re/nr)=c _b(m/m)((DO?q)l n (11)

W(a(re/nr)+b(re/nr))(q)0’q)l)n(IZ) , (A1)

where a /"), pre/n0) 5 0 ¢ =L9¢ /L, holds, for small de-
viations 87 "/™, from the steady-state value ] * =0.

Computation of the Jacobi matrix J for the (n{?,n{!)
subsystem at any fixed point x * leads to

Jll J12

T= | —s—b —Jp—(a+b) |’

with J,; = (" /0n{"(x *),i =1,2. For J; and J,,,
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§2—1
Jy <& s(nP —n{)(x)<0,
(&,— &)
gg _§11 (A3)
1
le é’z(g —é‘ )2( (11)_ (2) (X)>0 >
1

hold, where §I,Eexp(n,~(”/nc1 ), i =1,2 was introduced for
convenience. The signs of J; ar}d Jis are always valid,
since occupation inversion n{?" >n{l" in the steady
state is impossible in this two-subband model. Computa-
tion of the trace T and determinant D results in

T=J,,—J,—(a+b)<0,
D =bJ,—(a+blJ,;>0.

(A4)
(AS)

Thus all the system’s fixed points are stable against fluc-
tuations in the (n{",n{?)) plane. Condition (iii) and the
last condition in (i) then assures stability in the ®, direc-
tion as well, if @, can be eliminated adiabatically [which
is the case due to (v)].

For a stability analysis of fluctuations of ®,, the reso-
nant and nonresonant regime must be distinguished: in
the steady state where j ™% >>7 1" holds, the fixed
point > s stable, since due to (iv) and the second con-
dition in (i) a fluctuation 8P, e.g., §P,> 0, implies a de-
crease of nj, and due to (iv), of ®;—®P,. Since P, can be
considered independent of n5 because of (iii), ®, relaxes
back to its steady-state value. Analogous relaxation
occurs for 8®,<0. In the case of j ™ >>7 (" we obtain
two steady states 3! and ®F? with 3"V <P
due to the first condition for j in (i), where the values lie
on either side of the resonance curve maximum. Thus n3
is a decreasing function of &, at CDS‘“Z) and x*"”' is stable
against fluctuations of ®, by the same argument as for

%(nr) (! . . u
b 4 b4 , on the other hand, is unstable since n; rises
. (rl)
with @, at P

Therefore, the local conditions in (i)-(iv) together with
(v) generate two stable nodes and a saddle as fixed points.
If the dynamic system has unique solutions and the phys-
ical phase space is bounded, these conditions are
sufficient for the system to display a bistable behavior.
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