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Effects of the Coulomb interaction on the optical spectra of quantum wires
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We investigate theoretically excitonic effects on the optical properties of quantum-wire structures.
The spatial nonlocal optical susceptibility is expressed in terms of electron-hole pair wave functions and
energies. The corresponding two-particle equation is numericllay solved assuming a complete vertical
confinement. The resulting exciton energies and the oscillator strengths are studied versus the wire
confinement. The interplay of Coulomb attraction, center-of-mass quantization, and confinement of the
internal motion is discussed. Very recent luminescence spectra for quantum-wire arrays fabricated by
means of laser-induced cation interdiffusion, which show a variety of narrow exciton lines, can be inter-
preted.

I. INTRODUCTION

The spectroscopy of optical interband transitions
across the band gap is a powerful method used to study
the electronic structure, the mutual interaction of excited
electrons (e) and holes (h), and the coupling of these car-
riers with other elementary excitations in semiconductors
and semiconductor microstructures. Very interesting
systems in this respect are quantum wires and quantum-
wire (QW) arrays. In such quasi-one-dimensional (ID)
structures, made by epitaxial growth of III-V semicon-
ductor layers and nanostructuring techniques, quantum
confinement in two dimensions is realized. One has the
interesting case of a quasi-1D carrier motion and strong
optical anisotropy.

Some effects attributed to quantum confinement and
anisotropy have already been observed in photolumines-
cence and photoluminescence excitation spectra' and
their dependence on light polarization. Partially, such
measurements are also time resolved. ' Most of the QW
structures studied by optical methods have been prepared
by starting from GaAs-Al Ga, „As layered systems and
employing modern lithographic techniques. ' Common-
ly, they are combined with etching techniques which pro-
duce rough surfaces of the wire structures resulting in
peaks that are broader than those of the corresponding
2D system. Very recently, more perfect QW structures
have been manufactured via Al/Ga interdiffusion due to
local heating by means of a focused laser beam. The
quality of these samples is characterized by excitonic
luminescence lines that are smaller as in the 2D case.

There are several theoretical papers about QW sys-
tems. The calculations started with the single-particle
energy levels in the conduction and valence bands of the
1D structures. " ' The corresponding 1D interband
transitions have been commonly studied only in the para-
bolic approximation for the valence bands. ' ' Now it is
shown' that a proper treatment of the valence bands
leads not only to a modification of transition energies and
oscillator strengths, but is especially necessary to describe
the light polarization anisotropy with respect to the wire

structure.
In the optical absorption and luminescence spectra, ex-

citonic effects play an important role, particularly in the
low-dimensional QW systems. However, in contrast to
the exact 3D or 2D case, ' to our knowledge, no unified
picture of the Coulomb effects in this spectra has been
presented. Only binding energies of the excitons have
been calculated and Sommerfeld factors of exact 1D
systems with modified Coulomb potentials have been
studied.

In the present paper we develop the theory for optical
absorption and luminescence spectra of quantum wires
including the Coulomb attraction of an electron and hole
excited by a photon. This paper is organized as follows.
The basic theory is given in Sec. II. We define the
relevant optical quantities starting from a nonlocal sus-
ceptibility. It is related to the wave functions and ener-
gies of the electron-hole pair equation. In Sec. III, an ex-
plicit solution of the electron-hole problem in a single
wire is given within the harmonic confinement model and
for strong confinement in the growth direction of the
structure. The quantization of the center-of-mass motion
and the inhuence of the confinement on the nominal 2D
excitons are studied separately. We discuss exciton ener-
gies, wave functions, and oscillator strengths versus the
wire width. Rejecting the experimental situation of Ref.
8, luminescence spectra are calculated in Sec. IV. Apply-
ing realistic wire confinement potentials with varying
width as well as height and varying wire distance we try
to reproduce experimental spectra. Finally, in Sec. V a
summary is given.

II. THEORETICAL BASIS

A. Relation of optical spectra and two-particle properties

For systems where the spatial dispersion in the photon
propagator is especially negligible, and in the long-
wavelength limit, optical properties can be expressed in
terms of the frequency-dependent optical susceptibility
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a(co) = Imp(co),
cn (co)

I(co)= g(Rco —bp, )lmy(co),
co n(co)

K C

with the index of refraction n(co) and the Bose function
g(fico) hp, .denotes the sum of the quasichemical poten-
tials for electrons and holes with respect to the corre-
sponding band edges. In the case of photolumines-
cence, these chemical potentials are driven by exiting
laser light.

In general, the description of the optical properties of a
QW array requires more complicated formulas as in Eq.
(2). The electrodynamical problem for the underlying
layered structure, that is additionally laterally structured,
has to be solved. Moreover, the QW array is commonly
finite. A second problem in the description of the optical
spectra concerns their polarization dependence. Without
Coulomb interaction the effects of polarization and grat-
ing structure of the sample are reasonably studied. '

We start from allowed optical transition and omit these
dependences in our explicit calculations.

The space-dependent optical susceptibility appearing in
Eq. (l) can be directly related to electron-hole-pair wave
functions &0 (x„xh ) and energies E with a as the com-
plete set of quantum numbers for the two-particle prob-
lem by '

&0 (x, x)C&*(x',x')
y(x, x', co) =—

~p E.—e ~+ir
In practice, the dipole-matrix elements ~p~ contain the
complete polarization-vector dependence of the problem.
The optical dipole transition is assumed to be allowed
and nearly state independent. c.o denotes the vacuum
dielectric constant and I indicates the damping of the
electron-hole pairs. The two-particle wave functions are
orthonormalized and complete. In the framework of the
effective-mass approximation and masses m, (ml, ) of
electrons (holes), they obey a Schrodinger equation of the
form

2

47TCOE
~ X~ Xg

=E 4 (x„xi,), (4)

where electrons and holes interact by a Coulomb poten-
tial screened by a relative static dielectric constant c of
the underlying semiconductor material forming the wires.
The complications in the screening due to the realistic
spatial structure of the system are avoided assuming
that the dielectric constants of wire and barrier materials

y(co)= f d'xf d'x'y(x, x';co),
V V

where the spatial integration runs over the optically ac-
tive volume V. For example, the absorption coefficient
a(co) of the transmitted light and the intensity I(co) of the
luminescence light emitted spontaneously, defined as pho-
ton energy per energy interval, volume, and time, can be
related to its imaginary part by '

are not so very different as in the case of GaAs and
Al Ga, „As. The single-particle Hamiltonians for elec-
tron or hole are (i =e, h )

H, (x, )= — V„V„+V, (y;)+V;, (z;) .
1

2 ' f72.
I

For the sake of simplicity, the potential that confines car-
riers in the quasi-1D structures is written as a sum. The
confinement in growth direction z of the layered structure
is represented by the potentials V,, (z, ). The wires are as-
sumed to be directed parallel to the x axis. The quantiza-
tion within the wires is given by the potentials V; (y; ).

B. Specification of hole states and confinement

The valence-band structure of bulk zinc-blende materi-
als forming the microstructures under consideration is
rather complicated. Despite spin-orbit interaction, the
top of the I 8 valence band is fourfold degenerated. In
microstructures this degeneracy is partially lifted and
heavy- and light-hole states are generally mixed. Never-
theless, starting from the well-defined energetical separa-
tion we study a heavy-hole valence-band to conduction-
band transition. The relevant heavy-hole mass follows
from the Luttinger parameters ' in axial approxima-
tion as mh

~~

=0.491m in accordance with strong
confinement in z direction due to the well. The mass of
the electron in the I 6 conduction-band minimum is
m, =0.068m.

For completely vanishing confinement with
V, (y, ) = V,, (z, ) =0, i.e., in the exact 3D case, Eq. (4) is
fully separable into equations for the free center-of-mass
motion and for the internal motion of the excitons. From
expressions (l) and (3) the famous Elliott formula fol-
lows for the optical susceptibility g(co) including fully the
excitonic effects. The corresponding problem for the mi-
crostructures, i.e., the quasi-2D or the quasi-1D cases,
can be only solved approximately. The other exactly
solvable case is that of strong confinement in the xy
plane, i.e., the exact 2D case. The ideal limit of the 1D
electron-hole system, namely infinitesimal wire cross sec-
tions and perfect confinement, leads to several pathologi-
cal features of the excitons below the band edge ' as,
e.g. , the divergence of the binding energy of the lowest-
energy exciton.

Realistic QW systems can only be treated in an approx-
imate manner. We start with the assumption of strong
confinement V,, (z, )(i =e, h ) of electrons and holes in the
growth direction z. More strictly speaking, the thickness
of the GaAs quantum well in the layered structure, that
is laterally structured to prepare the QW's, is assumed to
be so small that the optical intersubband transitions in
the quasi-2D system are energetically well separated. In
the considered energy region we can restrict ourselves
only to the lowest electron and hole subbands. If the
confinement in these states is strong enough it is sufficient
to consider only the 2D carrier motion in the xy plane,
i.e., one has

@ (x„x„)=q (r„r„)5'~'(z, )5'~'(z„)
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R= t. ™pg ffryg
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with r=(x,y) and R=(X, Y). Considering the Coulomb
effects in the optical spectra, we apply these coordinates,
since the typical wire width realized experimentally is
larger than the Bohr radius of the exciton. Introducing
the electron-hole reduced mass p =m, ffm&ff/M and the to-
tal mass M=m, ff+m&ff, the two-particle Hamiltonian in
Eq. (7) can be written as

e A' d
H;(r;) — = — +H, ( Y)

4~eoEIr, —
rh I

&M dX'
FICx. 1. Electron and hole confinement potentials Vy (y)

(i =e, h ) for a single quantum wire parallel x in the xy plane.
The well depths are identified with the corresponding band
discontinuities AE, and bE, . The energetic distance of the well
bottoms is the energy Eg of the underlying subband transition.
The bottom width I and the total width of the well are assumed
to be identical for electrons and holes. The particular form of
the potentials allows the consideration of the limiting cases of
harmonic confinement ( l =0) and square-well potential
(l = total width).

H, (Y)=—

H;„,( Y,y)= V, Y+ yM

+H;„,( Y,y)

+H„,(r),
d

2M dY
+V, (Y),

(9)

with the radius vector r in this plane. Equations (4) and
(5) change over into

T

2

F. + g H(r)—,
f

y(r„r )
47TEpE

~ r, —rz

H„,(r)=—

—V, ( Y) —V„,(y ),
$2 e

b.,+ V„,(y)
2p ' " 4~coo ~r

The new confinement potentials for the center-of-mass
and relative motions

g2
H;(r;)= — b, , +V, (y, ),

2m;ff

(7) V,. ( Y)= V, ( Y)+ Vi, ( Y),

M~ff
y +V~,M

(10)

where E describes the optical transition energy in the
underlying quantum-well structure including the effect of
the strong quantization due to V,,(z, ) on the energies.
The asymptotic form of the 2D Coulomb potential in Eq.
(7) follows within the model of complete well
confinement. It gives rise to small overestimation of the
binding energies of the lower exciton states.

Typical potentials V; (y, ) used later in the numerical
calculations are shown for a single wire in Fig. 1. Poten-
tial forms of Fig. 1 allow the transition between the
square-wire and parabolic-wire potentials.

C. Approximate decoupling of center-of-mass
and internal exciton motion

Without wire confinement, i.e., V~(y; ) =—0, Eq. (7) ex-
actly describes the 2D exciton, more strictly the motion
of a Coulomb-correlated electron-hole pair in the xy
plane. That means that in the limit of subband quantiza-
tion, small compared to the 2D exciton binding energy,
the natural coordinates of the problem are the relative
(rel) coordinates and the center-of-mass (c.m. ) coordi-
nates,

are chosen so that they give the most convenient splitting
in the case of purely harmonic confinement
V, (y, )= —,'m, ~~co;y, (i =e, h). ' It has been shown that
such harmonic confinement seems to be a reasonable ap-
proach to the description of the wire quantization. This
model has been already successfully applied to the dielec-
tric properties and coherent optical phenomena of
QW systems.

Unfortunately, the eigenvalue problem defined by the
Hamiltonian in Eq. (9) is, in general, not separable in
center-of-mass and relative coordinates. Apart from the
limiting cases Y=O or y=0, exact separation happens
only for harmonic confinement and equal quantization
energies co, =co& for electron and hole. Only the free
motion of the center of mass in the x direction can be ex-
actly treated. This motion can be separated from the
two-particle wave function and characterized by a 1D
wave vector E as the good quantum number (a =aIC ),

1
qr (r„rh)= e' ~g (Y,r),

where the characteristic length L„of the wires is intro-
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H, ( Y)@~(Y) =8~&( Y), (12)

with energy eigenvalues c& and N as the quantum num-
ber of this motion. We expand the wave functions
y ( Y, r) in terms of the complete and orthonormalized
eigenfunctions of the Hamiltonian H, ( Y) by

j (Y,r)= g C (r)4~(Y) .
N

(13)

For the expansion coe%cients depending on the relative
coordinates of the electron and hole, one derives a cou-
pled set of diff'erential equations from Eq. (7). With Eqs.
(9)—(13) it follows that

duced. The center-of-mass motion perpendicular to the
wires is essentially given by a Schrodinger equation,

absorption edges related to different stages of the center-
of-mass motion in the y direction. At each of these edges,
exciton series appear. They are themselves modified by
the wire confinement. The oscillator strengths of the ex-
citons —~C (0)~ in each series are similar to the pure
2D case.

III. EXCITONS IN HARMONIC CONFINEMENT
POTENTIALS

For a single quantum wire with complete harmonic
confinement in the y direction, i.e., V; (y, )=—'m;~~co;y;,
the transformed confinement potentials defined in Eqs. (9)
and (10) are

H;„,( Y,y ) =p(co, —
ah ) Yy,

AK
H„,i(r)+E +

N' M

+E~ E(K)—5&z.+ Wzz. (y) 'C (r)=0,
(14)

Wzz(y)= f dY@z( Y)H;„,( Y,y)4~, ( Y) .

B2
M co,

i=e, h

(17)

In our numerical calculations we have found that for
the wire widths being relevant in the optical experiments,
the off-diagonal elements Wzz. (y)(NWN') of the addi-
tional confinement potential for the internal exciton
motion perpendicular to the wires are negligible. Then N
is nearly a good quantum number with the restriction
that the internal motion of the excitons depends again on
the parameter N,

IH„„(r)+W~~(y)IC (r)=c. C (r),

$2—
P~rei

where the characteristic wire width B(b) and oscillator
frequencies co, (co„&) for the center-of-mass (relative)
motion is introduced. The Schrodinger equation (12) for
the center-of-mass motion of the electron-hole pair per-
pendicular to the wire can be exactly solved. One has

&~=fico, (N+ —,') (N=0, 1,2, . . . , )

4~( Y) = 1

2 N!&vrB

1/2

e

(18)

where the abbreviation c. is introduced. The neglect of
off-diagonal elements NWN' seems to be crucial. In fact,
their influence increases for decreasing wire widths. On
the other hand, for wire widths larger or equal to the ex-
citon radius the coupling effects remain small and the
principal behavior of the related spectra is not changed.
The validity of that assumption is confirmed by new re-
sults. As a consequence of Eq. (15), the frequency-
dependent optical susceptibility in Eq. (1) takes a simple
form. The optical susceptibility of the 2D system with
confinement in the y direction changes over into

N2&mB N if N even

f +"dYe„(Y)

0 ifN odd. (19)

Here Hz(Y/B) denotes the Hermitian polynomial of
Nth order. The modification of the oscillator strength of
excitonic transitions in Eq. (16) for each stage N of the
center-of-mass motion is now simply given by

y(co)= —
~p~ L g f dYC~(Y)

C,p oo

~CN(0)~2

2nEs +E~+e R(~+if )—
(16)

In the limit of vanishing confinement the well-known 2D
optical susceptibility with Coulomb enhancement re-
sults. Expression (16) indicates a remarkable spectral
redistribution due to the wire confinement. Instead of a
one exciton series, as in the 2D case, we expect different

Accepting the approximations done here, only excitonic
transitions with even oscillator quantum numbers of the
center-of-mass motion N=0, 2, 4, . . . , appear in the opti-
cal spectra. The optical selection rule discriminates an-
tisymmetric wave functions 4z( Y). Such even-order
quasi-1D exciton transitions seem to be observed in
polarization-dependent photoluminescence and photo-
luminescence excitation spectroscopies for s-
polarization, i.e., the electric-field vector of the exciting
and detected light is perpendicular to the plane of in-
cidence and parallel to the wires.

Another problem with the oscillator strengths in Eq.
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X [i/N/25Jv, + i/N'/26~ ~. , ] . (20)

(19) concerns the transition to the exact 2D exciton case,
i.e. , the vanishing wire confinement. The total strength
of all center-of-mass transitions in expression (16)
diverges. To avoid this complication, one has to consider
that the extent of the xy plane in the y direction is limited
by the characteristic length L . Approaching the
quantum-well case, i.e., B~ cc (but B &&L ), the Y in-
tegral in Eq. (19) has to be restricted to the interval—L /2(y (L /2.

By means of the wave functions in Eq. (18) the matrix
elements Wz&(y) of the coupling term defined in Eq. (14)
can be analytically calculated. One has

The diagonal elements 8'z~(y) under consideration van-
ish and, therefore, do not inAuence the internal electron-
hole pair motion as indicated by Eq. (15). However, in
general, the off-diagonal elements in Eq. (20) are also
negligible. Even for characteristic extents of the wells of
nearly Y=B it holds that ~co,

—
coh

~
&&4E& /A' with the

binding energy E~ of the corresponding 3D exciton.
Despite tl:is simplification, the equation (15) of internal

motion cannot be more analytically solved. In the expli-
cit calculation we do this numerically. Nevertheless, im-
portant insight into the structure of the solutions follows
expanding the true eigenfunctions C (r) in terms of the
eigenfunctions of the angular-momentum operator
C (r)=g f (r)1/ /i2 ier™"(m=0, +1,+2, . . . , ). Th
index N can be omitted and Eq. (15) transforms into a
system of radial differential equations

m'

a' 1a
2p Qr ~ r (3r

m
r2

e2
5 + —,'@co„„r'—„' [25, —5 +2

—5 ~ i] f (r) =0 . (21)

When the QW confinement effects are smaller than the
excitonic effects, more strictly for (az/b) «1 (aii is the
Bohr radius of the 3D exciton), the confinement potential
—r can be neglected and Eq. (21) changes over into the
strict 2D exciton problem for the relative motion. In
typical experiments the relation a~ (b is nearly fulfilled.
Moreover, the problem of Eq. (21) contains only bound
states. Therefore we classify the problem of internal
motion by the quantum numbers a=nm [n =1,2, 3, . . . ,
and m =0, +1, . . . , +(n —l)=s,p+, d+, f~, . . . , ] of the
2D exciton although I is not a good quantum number in
the presence of the confinement potential. The index +
denotes the y parity described by cos(mP) or sin(mP) in
the angular-dependent part of the wave functions. This
works especially well for the 1s ground state. The
higher-lying states are, in general, formed by linear com-
binations of angular-momentum states shifted by multi-
ples of two.

The resulting wave functions C (r) are plotted in Fig.
2 versus the xy plane of an area of 100az X100az for four
different wire confinements b = ~, 3a&, 1.5az, and a~.
In this figure, only the first four quasi-1D excitons 1s, 2s,
3s, and 3d appearing in the optical spectra are shown. As
can be seen from Eq. (21) the oscillator strengths of the
p-, f , etc. , type excitons r-emain exactly zero since no
coupling to the s-type excitons may occur. The same
holds for the sine-type d-, g-, etc. , type excitons. This
property is a result of the symmetry of the wire potential
and remains true also for the realistic potentials shown in
Fig. 1. Figure 2 shows that the effect of the wire
confinement depends remarkably on the extent and the
symmetry of the original 2D exciton wave function for
b = ~. The increasing confinement down to wire widths
of the order of the bulk exciton radius, more strictly
b =a&, practically does not inAuence the 1s wave func-
tion. The binding of the electron-hole pair in the 1s exci-
ton state is rather stable. Even for b =a~ the binding en-
ergy is by a factor of 2 larger than the confinement ener-

gy fico„„. The 2s exciton is also rather stable [Fig. 2(b)].
Nevertheless, its radial symmetry is destroyed. Its wave
function is compressed in the confinement y direction,
whereas its distribution in x direction is broadened along
the wire. The maximum after the node splits into two
peaks indicating the intermixing with nominal 3d states
of the 2D exciton. All these effects are more pronounced
in the case of the 3s exciton [Fig. 2(c)]. A new quality is
reached in the case of the quasi-1D exciton with the
quantum numbers 3d in the exact 2D case (b = ~ ). Fig-
ure 2(d) indicates the intermixing with s excitons and ex-
citons with the quantum number m =2. The most in-
teresting fact is the central peak at r =0 that rises with
increasing confinement. It indicates the finite oscillator
strength of this exciton induced by the wire confinement.

The confinement effects described for the wave func-
tions can also be discussed for the binding energies and
the oscillator strengths of the quasi-1D excitons. They
are plotted in Figs. 3 and 4 versus the characteristic
length b of the wire confinement potential for the relative
motion. In the case of the nominal 1s excitons neither
the binding energy nor the oscillator strength are essen-
tially inAuenced by the wire confinement, at least in the
interval a~ ~ b ( ~. They keep their 2D values, 4E~ and
16/a~. As in the case of the wave functions the inAuence
of confinement is much stronger for the other excitons.
The Coulomb degeneracy is lifted, as explicitly shown for
3s and 3d in Fig. 3. The peak positions of these excitons
are displaced to higher energies. For a certain
confinement, i.e., b, these peak positions are already
above the continuum edge of the 2D problem indicating
that the binding energies of these excitons are smaller
than the wire confinement energy Ace„&. A very interest-
ing behavior is found for the oscillator strength, more
strictly for ~C (0)

~

. In the case of 2s its value decreases
somewhat with rising az/b indicating a loss of strength
to the formerly forbidden excitons. The oscillator
strengths of the nominal 3s and 3d show a remarkable in-
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crease. The 3d exciton, that is forbidden in the exact 2D
case, even becomes a larger strength than the 2s one. In
the limit b~ ~, linear combinations of the 3s and 3d
cosine-type wave functions remain which coeScients are
given by first-order degenerate perturbation theory.
However, in Figs. 2(c) and 2(d) in the case b = ~ the pure
3d and 3s excitons are shown, in agreement with the usu-
al consideration.

IV. OPTICAL SPECTRA

A. Harmonic con6nement and line shape

The imaginary part of the optical susceptibility g(co) is
calculated by means of expression (16). For this purpose,
the center-of-mass equation (12) and Eq. (15) for the

internal motion are solved numerically. %e choose an
energy region near and somewhat above the low-
est heavy-hole electron transition of the underlying
quantum-well structure. The spectrum resulting within
the harmonic confinement model and complete e-h sym-
metry is plotted in Fig. 5 for diA'erent wire confinements
fico, =0, 0.5, 1, 1.5, and 2E&. The values for the inter-
nal motion are b = ~, 2, 1.41, 1.15, and lan. These ener-
gies and lengths have to be compared with the binding
energy E,„,=4E& =20 meV and Bohr radius

0a„,=a&/2=57 A of the underlying 20 exciton if one
applies c, =12.9 for GaAs. '

The stronger inhuence of the wire confinement on the
center-of-mass motion is clearly seen in the spectra of
Fig. 5. The single 1s 2D exciton peak at zero center-of-
mass momentum decays very rapidly into diferent nearly

~ I IC''

~ 'I 8 I

N ~ 1%

~ 5 ~

211 ~ ~ '

ni,
P wR ' 8 ~

~t~— ~Rme

w ~

~ a ~ ~ ~

MI i ~

~ ssaseeyy g

~ (,, I I

~j KL iR KSSRL~~~ .
I ~

FIG. 2. Wave functions of the internal motion of 2D excitons in an additional harmonic confinement potential representing the

quantum wire. Ia} 1s, {b) 2s, (c} 3d, and {d}3s where the notation of the 2D excitons is kept. The harmonic confinement is described

by the characteristic lengths 6 = ~, 3, 1.5, and 1a&.
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, )F ~ 1; ,

FIG. 2. (Continued).

equidistant 1s exciton peaks with quantum numbers
n =0,2, 4, . . . . Their energetic distance is Ace, . %'ith
increasing confinement, the erst main peak is blueshifted
to higher energies by the zero-point energy —,

' Ace,
%'hen A~, exceeds lifetime broadening, single exciton

lines appear, even eventually above the 2D continuum
edge Es (the energy zero point in Fig 5) i.f

(X+—,
'

) )4Es. Their oscillator strengths are distri-
buted according to expression (19).

The fine structure of the exciton lines is governed by

0.0 0.2 0.4 0.6 0.8 '!.0
1/0 (un. itS Of aLl')

0.2 0.4 0.6 0,8 '1.0
j./b (units of a,~')

FIG. 3. Energies of quasi-1D excitons vs wire confinement
without the efFect of the center-of-mass quantization. The zero
indicates the position of the 2D energy gap. (a) 1s, {b) 2s, (c}3d,
and (d) 3s.

FIG. 4. Oscillator strengths of quasi-1D excitons vs wire
confinement. The quantization stage of the center-of-mass
motion is fixed. {a) 1s, {b}2s, (c}3d, and {d) 3s.
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the ratio of the efFective wire width b with respect to the
internal motion and the Bohr radius az. For b ))a~, no
fine structure occurs. In the region b ~a& the Coulomb
degeneracy is lifted as shown in Fig. 3. The split exciton
lines belonging to the main nominal 1s peak with a quan-

E
turn number N appear at energies shifted nearly b

„,=4E~. Therefore, in general, they apparently follow
main peaks with a diferent quantum number N. In the
case I' az, a reverse tendency can be observed. Theh (

motions of electron and hole are nearly independent and
govern the shape of the spectra. The Coulomb potential
couples such electron and hole states and, hence, again
produce a fine structure in the optical spectra.

B. Wire fabrication and potential shape

We apply the realistic potentials shown in Figs. 1 and
6. We take into account that the sample consists of an

(a)

I I II I I I [ I I I I I I I I [ I I I I ] I I I I—6 —4 —2 0 2 4 6 8
her —E~~ (units of En)

I I I f I I I I f I I I I
i

I I I I

2 4 6 8
&~ —E,' (units of EB)

—6 —4 —2 0 2
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FIG. 5. Imaginary part of the optical susceptibility for a single quantum wire and harmoniq um wire an armonic confinement. The inverse lifetime of
s xe a = . z. co, =0 (a), 0.5 (b), 1 (c), 1.5 (d), and 2E& (e).
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FIG. 6. The continuation of the electron and hole
confinement potentials for a periodic array of wires in the dis-
tance a along the y direction.

wire width is then [26E, /(m, ~~co, ) j' . A'co, follows
from the energetic distances of the main peaks in the
luminescence spectra. One has co, =2.22co,
co& =0.675~, and co„&=2.10', . Consequently, three
parameters co, , I, and x~ appear in the explicit calcula-
tions. co, is taken from the experiment, I is really a fit
parameter, and x~ is only implicitly taken into account
to restrict the number of quantized levels in the center-
of-mass as well as internal motion by fixing AE, and AE, .

The picture of the wire potentials realized by laser-
induced cation interdiffusion and described above
remains valid as long as the double diffusion length of
about 180 nm is smaller than the wire distance. Other-
wise, the bottom width l is zero or even formally nega-
tive. The latter case l &0 means that pure GaAs is not
more present in the wire region. Rather, Al Ga& As
with an Al content x &x~ appears. We describe this fact
by an increase of the 2D energy gap Es by b,Es(x) and a
corresponding decrease of the well depths AE, and AE, .

array of QW's in a distance a. However, the overlap of
wave functions localized in wells at different positions are
neglected. Nevertheless, the parameter a is used to dis-
cuss the shape of the single electron and hole potentials
shown in Fig. 1. Thereby we try to model the situation of
a QW array fabricated by means of the laser-induced
inter diffusio of cations in GaAs well layers and
Al Ga& As barrier layers.

In this way we find depths of the electron and hole
confinement potentials in y direction that are character-
ized by band discontinuities AE, (x~) and EE,(x~).
The composition x~(0(x~(x) is that of the
Al Ga, As in the wire barriers in the y di-

rection formed by interdiffusion. We assume
EE,(x)=0.6bE (x) and bE, (x)=0.4bE (x) (Ref. 49)
with b E (x) = 1.155x +0.37x (Ref. 50) as the difference
in the band gaps between GaAs and Al„Ga& As in the
x & 0.4 region and for low temperature.

In the experiment of Brunner et aI. a GaAs well layer
of 30-A thickness is interdiffused with 200-A-thick
Al Ga& As barriers (x =0.35). Therefore a maximum
Al content of the wire barriers of x~=0.25 is expected
for complete local inter diffusio. In practice, the
interdiffusion is not complete and, moreover, spatially
not homogeneous. Hence, the average values of x~ in
the barriers are always smaller than 0.25, i.e., AE, & 187
meV and AE, & 125 meV. From the appearance of
quantization structures in the photoluminescence spec-
tra (cf. inset in Fig. 7 of Ref. 8) maximum barriers of
about 35 meV follow indicating a maximum Al content in
the wire barriers of x~=0.05 on the average.

The width of the interdiffusion profile in the y direction
along the laser scan line, i.e., nearly the width of the QW
barrier, is about 100 nm. Together with the band
discontinuities it determines the slope of the potential
wells for electrons and holes. Assuming equal total width
and equal width I of the well bottom one has

/coh =DE,mh(~/AE, m, ~~,
i.e., co, =3.29co&. The total

C. Comparison with luminescence spectra

The imaginary part of the optical susceptibility (16)
calculated by means of realistic wire potentials as de-
scribed in Sec. IV B is plotted in Fig. 7. The finite depth
of the wells and the occupation dependence of the
luminescence are simulated restricting the number of in-
volved levels of center-of-mass and internal motion by 40
meV. In such a way the theoretical curves can be com-
pared with experimental luminescence spectra.

In this figure the pure 2D case comes out in the limit
In the considered energy region only the strong

luminescence via the 1s excitons of the first heavy-hole
valence subband to conduction subband is seen. In the
theoretical spectrum the very small 2s exciton lumines-
cence is additionally seen. With decreasing well width I
the internal motion of the 1s exciton remains hardly
influenced by the wire quantization. Particularly, repli-
cas (N=2, 4, . . . , ) of the main peak (N=O) appear due
to the center-of-mass quantization. Their oscillator
strengths decrease with rising N. They are
1, —,', —'„—,'„.. . , for N =0,2, 4, 6, . . . , at least in the com-
plete harmonic limit. For I =0 the situation changes
drastically. A blueshift of the two-particle ground state
becomes visible and the fine structure of each peak with
different N caused by the internal motion appears. The
detailed interpretation of the resulting spectrum is com-
plicated because peaks related to the lifted Coulomb de-
generacy in the internal exciton motion and belonging to
a particular stage N of the center-of-mass motion occur
at positions shifted by about E,„, to higher energies. In
this way, for typical quantization energies of the center-
of-mass motion smaller than the 2D exciton binding ener-
gy, they are observed between peaks with quantum num-
bers N' and N' —2 different from N. The case of nominal
negative I is characterized by a remarkable blueshift of
the spectrum. In the explicit calculation, we describe this
fact by an enlarged 2D band gap E

Our series of theoretical spectra is in qualitative agree-
ment with the measurements of Brunner et a/. This
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holds, in principle, with respect to the position and the
number of peaks. Because of our rigorous 2D approxi-
mation accompanied by a restriction of the particle
motions in the xy plane, the excitonic effects in the un-

derlying quantum-well structure are somewhat overes-
timated. This defect may be partially lifted by shifting
the 1s exciton luminescence peak for l= ~ into the ex-
perimental position at nearly Ac@= 1.69 eV. Another
discrepancy between theory and experiment concerns the

variety of peaks for smaller distances a =200 and 150 nm
of the wires and, therefore, rather narrow wires. In the
measured luminescence spectra more peaks can be ob-
served and, respectively, the first peaks are split. We be-
lieve that the absence of the split peaks in the theoretical
curves can be traced back to the neglect of overlap
effects. More strictly speaking, besides the direct exci-
tons with electrons and holes in the same wire, spatially
indirect excitons ' belonging to excitons with electron
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F[Q. 7. Theoretica] photoluminescence spectra calculated for an array of quantum wires with different confinement potentials as
indicated by different bottom widths l = ~ (a), 20 (b), 10 (c), 0 (d), and —2. 5a& (e). The exciton lifetime is Axed as in Fig. 5.
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and hole in neighbored wires appear in the luminescence.
Other possibilities of explanation concern a more compli-
cated shape of the particle confinement potentials over
the wire array as a consequence of the diffusion processes.
There can be additional wells within the nominal barrier
regions between two wires or fluctuations in wire shapes
themselves. The latter reason seems to be more relevant.
Scanning the photoluminescence probe across the wire
structures of narrow period a ~200 nm samples reveal
some inhomogeneities.

A striking difference between experiment and theory
concerns the linewidths. The luminescence lines are
much broader than the assumed lifetime broadening of
I =0.025E,„„especially for larger wire distances a and,
hence, wire widths. Two important effects are not includ-
ed in the theory with constant small I . (i) In the experi-
ment, one finds a variation from I =4 meV for the 2D
excitons to I =1 meV for the quasi-1D exciton in the
case of a =200 nm. (ii) The experimental lines seems to
be inhomogeneously broadened by fluctuations in the
wire shapes.

V. SUMMARY

In conclusion, we have demonstrated the transition
from the complete 2D exciton in an extremely narrow
quantum well to a quasi-1D exciton in well-separated
quantum wires prepared on the base of a narrow quan-
tum well. The transition is characterized by the interplay
of the center-of-mass motion of the electron-hole pair, its
internal motion associated with exciton binding, and the
confinement of electron and hole due to the wire poten-
tials.

In the case of harmonic wire confinement with a
characteristic length b of the displacement of the corre-

sponding oscillator, the strengths of the different effects
can be discussed comparing b with the Bohr radius a~.
(i) For b ))att, the 2D exciton peak splits due to the
quantization of the center-of-mass motion. The oscillator
strength is distributed over the different peaks belonging
to symmetric wave functions and a blueshift appears.
The relative motion of electron and hole remains 2D-like.
(ii) In the region b ~ az, the Coulomb degeneracy
in the relative exciton motion is lifted. Nominal 2D
excitons with angular-momentum quantum number
m =0,2, 4, . . . , couple and the peaks exhibit a fine struc-
ture. (iii) When wire confinement effects overcome exci-
tonic effects, i.e., b ~ a~, the motions of electron and hole
are nearly independent and govern the line shape. The
Coulomb potential couples such electron and hole states
and produces a fine structure in the optical spectra.

Our results are applied to explain recent photolumines-
cence spectra of wire systems with varying wire widths
and wire distances. The development of photolumines-
cence near the lowest heavy-hole conduction-band transi-
tion from wire arrays produced by laser-induced cation
interdiffusion with the array parameters is interpreted in
terms of the interplay of excitonic effects and wire
confinement. The spectrum for near wires, especially its
strong blueshift, can only be explained assuming a shift of
the 2D gap to higher energies and, therefore, already a
Ga Al& As with a very small Al content in the wire re-
gions.
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