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Estimates of atomic size and electronegativity are obtained directly from first-principles calcula-
tions of the atomic valence electronic charge density. Significant information about the bonding in
the solid state is extracted from the computed atomic parameters, and a first-principles mapping to
the semiempirical Pauling ionicity scale is presented.

I. INTRODUCTION

In a previous paper (hereafter referred to as I) we
showed how a first-principles ionicity scale for octet bi-
nary compounds A~Bs can be constructed from the
asymmetry in the valence charge distribution in a crys-
tal. A significant part of the asymmetry was found to
have its origin in the intrinsic differences between the
charge densities of the constituent atoms. The recogni-
tion that atomic parameters can be used successfully in
the study of bonding and structural trends in solids oc-
curred early in the history of materials science. A variety
of atomic parameters or atomic coordinates has been sug-
gested. Two widely used parameters are the atomic size
and the electronegativity or measure of the ability of an
atom to attract electrons.

En this paper we present evidence that it is possible
to arrive at a first-principles definition of atomic pa-
rameters such as size and electronegativity through the
consideration of only the atomic valence electron charge
density. The resulting first-principles parameters are re-
markably accurate when used as coordinates for solid-
state diagrams. They successfully delineate the regions
of stability of the major crystalline structures and pro-
vide quantitative estimates of the bond length for octet
binary compounds.

In addition, we show that it is possible to arrive at the
Pauling ionicity scale through calculations involving only
the atomic charge distributions, without the need for the
explicit introduction of the concept of resonating bonds.

II. ATOMIC SIZE AND ELECTRONECATIVITY'

Although Pauling2 arrived at his electronegativity con-
cept through thermochemical ideas, there have been sev-
eral attempts to explain the values of the electronegativ-
ity of the elements using more fundamental atomic prop-
erties. Mulliken3 showed its connection to the average of
the ionization potential and the electron afBnity. Gordy4
argued for a linear dependence of the electronegativity
on the ratio (Z„+I)/r, , where Z„is the total valence

charge and r, is the covalent radius of the atom.
We propose that a first-principles electronegativity

scale can be established using only the valence charge

distribution of the neutral atom. First, we need a mea-
sure of atomic size. To this end, we introduce a mean
valence radius r as
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In this equation, r is the radial coordinate, p„is the
spherically symmetric valence charge distribution, and
the integration extends to all space. The self-consistent
atomic calculations are performed using a Herman-
Skillman-like approach5 and the local-density approxi-
mation of density-functional theory. s

Other first-principles schemes have been developed to
parametrize the atomic size. A popular choice is the
Zunger-Cohen hard-core pseudopotential radii. 7 8 These
radii are angular-momentum dependent, however signifi-
cant insight into bonding properties and electronegativity
scales can be obtained by using just the s-orbital radii
r, .g In particular, it was shown in Ref. 10 that the
cation radii r,' provide a means of classifying the AB
octets according to structure. Using r~ as a measure
of cation size provides an equivalent separation of the
AB group into zinc-blende (ZB), rocksalt (RS), and CsC1
structure classes. Figure 1 shows that just four errors are
made in the classification, with only CdO being appre-
ciably displaced from the region where it belongs. We
stress that the only information used in the preparation
of the structure map is the valence charge density of the
neutral atoms.

With r and the total valence charge Z„ascoordi-
nates, Fig. 2 shows that high electronegativity is associ-
ated with high Z„and small rm (upper left corner), and
low electronegativity elements tend to have large r~ and
small Z„(lower right corner). We find that a good fit to
the Pauling scale of electronegativity is given by

rpvdV.

X=15 Z +1 016
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(2)

Figure 3 and Table I compare the two scales. The Ib el-
ements Cu and Ag (and to some extent the IIb elements
Cd and Zn) are not well represented because of the am-
biguity involved in the assignment of the d electrons to
either the core or the valence shells. The fit is good con-
sidering the uncertainties inherent in the construction of
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of the bond length in binary compounds are related to
the sum of the radii of the constituent atoms. Zhang,
Cohen, and Phillips established the linear relation

d(A, B) = a[r, (A) + r, (B)]+ 6 —c[X~(A) —XJ (B)[
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between the Zunger-Cohen s-orbital radii, the Pauling
electronegativity difference, and the bond length of tetra-
hedrally coordinated compounds. Here a, b, and c are
constants. If we use the valence radii r~ instead of r,
and X instead of X~, we find a relation of the same
form:

e ~ ii ~ ~

d(A, B) = 1.08[r (A) + r (B)]
—0.74 —0.155[X (A) —X(B)~, (4)
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which, unlike Eq. (3), also applies to sixfold-coordinated
compounds (Fig. 4). Both the pseudopotential radii and
our r~ are able to predict the coordination number of

FIG. 1. Structure map for 72 AB octets. The vertical
lines (at cation radii of 3.13 a.u. and 4.99 a.u. ) separate the
compounds into structural classes. Compounds with fourfold,
sixfold, and eightfold coordination are represented by squares,
circles, and triangles, respectively (see text).

TABLE I. Atomic parameters for a selection of elements.
Z„is the total valence charge, r the mean valence radius
[Eq. (1)], X the calculated electronegativity [Eq. (2)], and
Xp the Pauling electronegativity.
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FIG. 2. Z„vsr for some elements. (Si and Ge, and Zn
and Be, share approximately the same coordinates. )

the Pauling scale from thermochemical data. By using
r as a first-principles estimate of the atomic size, the
electronegativity defined by Eq. (2) is also free of the
ambiguities associated with the assignment of a covalent
radius to an element.

Since r is a measure of the size of an atom, it is of
interest to investigate to what extent the observed values

Element

Ag
Al
As
B
Be
Br
C
Ca
Cd
Cl
Cs
CU
F
Ga
Ge
I
In
K
Li
Mg
N
Na
0
P
Rb
S
Sb
Se
Si
Sn
Sr
Te
Zn

1
3
5
3
2
7
4
2
2
7
1
1
7
3
4
7
3
1
1
2
5
1
6
5
1
6
5
6
4
4
2
6
2

r a.u.

3.112
2.830
2.301
2.073
2.618
1.980
1.689
3.959
2.871
1.757
5.361
2.896
1.078
2.674
2.493
2.326
2.949
4.798
3.898
3.129
1.421
4.040
1.226
2.181
4.994
1.947
2.630
2.129
2.475
2.802
4.251
2.469
2.633

X
1.04
1.62
2.26
1.92
1.45
2.86
2.42
1.15
1.37
3.04
0.76
1.09
3.93
1.67
1.96
2.62
1.59
0.81
0.91
1.31
2.92
0.90
3.42
2.33
0.79
2.68
2.11
2.56
1.97
1.84
1.10
2.37
1.44

Xp
1.9
1.5
2.0
2.0
1.5
2.8
2.5
1.0
1.7
3.0
0.7
1.9
4.0
1.6
1.8
2.5
1.7
0.8
1.0
1.2
3.0
0.9
3.5
2.1
0.8
2.5
1.9
2.4
1.8
1.8
1.0
2.1
1,5
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parameters are significant structural coordinates for the
study of bonding in the solid state.

III. CONSTRUCTION OF PAULING'S
IONICITY SCALE FROM ATOMIC

CHARGE DENSITIES

00

2
A

OO .2. .
Ab —initio X

In I we introduced the magnitudes Ss and SA as in-
dicative of the relative importance of the symmetric and
antisymmetric components of the valence charge distri-
bution in an A Bs solid, and showed that the charge
asymmetry coefFicient g calculated from them [Eq. (14)
in I] has many of the attributes of an ionicity parameter.
This section deals with a difFerent approach to the con-
struction of a first-principles ionicity scale for A~Bs
crystals. Unlike the method given in I, here we use only
the valence charge distributions of the isolated, neutral,
A and B atoms.

We define the symmetric and antisymmetric combina-
tions:

FIG. 3. Pauling electronegativity vs the proposed scale
based on the atomic valence charge density.

a compound in the solid state (see Ref. 10 and Fig. 1),
but only our Grst-principles coordinates r and X give
correct bond lengths regardless of the crystalline envi-
ronment. Due to the difficulties in defining r~ for the
elements in the Ib and IIb groups of the Periodic Table,
materials containing Cu, Ag, Cd, or Zn are not consid-
ered.

We are thus able to define useful first-principles es-
timates of atomic sizes [Eq. (1)] and electronegativities
[Eq. (2)] using only information about atoms. These

As = r (p~+ pgy) dV,

"(p~ ps)'«—,

which differ from Ss and S&~ in Eqs. (16) in I by
the inclusion of the weighting factor r2 (this translates
into As and A~ having dimensions of energy). Fig-
ure 5 reveals the wealth of structural information con-
tained in the coordinates As and A~. First, it is pos-

1.5

0.5— ~ Ill)Sea
)II (Te e )ill(X

)IiifAs op+
jln, AI, Ga)sb CDo ~ o ~ IIII fP

I

1.2 1.4

~0 )Sn, si, Ge)
I » & I

1.6 1.8
As

~ )sic,cf
I s ~ i I i i i I

2 2.2 2.4

5
d(cele. ) (a.u.)

FIG. 4. Experimental bond length for A B materials
(with the exception of those containing Cu, Ag, Cd, or Zn)
vs the values calculated with Eq. (4).

FIG. 5. A~ vs Ag for 72 AB octets. For each anion,
the compounds are approximately aligned, represented by a
common symbol, and their ordering (left to right) is given by
the cation lists in the inset. Note that BSb does not exist,
and that the IV-IV compounds are independently labeled.
The lines separate compounds with different coordinations:
zinc-blende, wurtzite (M = 4), rocksalt (M = 6), and CsC1
(M = 8) structures.
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IV. CONCLUSIONS
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