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Quasiparticle energies for a two-band interlayer-coupling model of a high-T, superconductor
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Much of the recent literature on the high-T„ layered, cuprate superconductors emphasizes the neces-
sity of including in theoretical models of these materials both oxygen and copper bands and, more re-
cently, interlayer correlations. Accordingly, we construct a Hamiltonian that takes into account these
requirements, and use it, together with existing decoupling methods and extensions thereof, to calculate
the superconducting-state quasiparticle energies. Our result is a generalization, which contains correc-
tions due to the interlayer parameters, of the quasiparticle energies for the corresponding equivalent
one-layer model. These corrections indicate the presence of two superconductor gaps in the wide oxygen
band and provide a starting point for obtaining self-consistent gap equations.

I. INTRODUCTION

With the discovery' of the YBa2Cu307 & superconduc-
tors, it was soon realized that even the strong-coupling
approach to electron-phonon superconductivity is inade-
quate for explaining the higher transition temperatures of
these compounds. In an early paper Tesanovic showed
that, for such two-layer per primitive cell structures, in-
terlayer coupling due to interactions not only increases
the stability of the long-range order, but also enhances
the critical temperature. His calculation (which is a
BCS-like calculation) features a single effective 0 band;
he left the mechanisms for the net attractive interactions
unspecified and he assumed the interlayer hopping in-
tegrals to be vanishingly small.

Subsequently, Bishop et al. examined the underlying
mechanisms in the two-layer compounds. They ascribed
the enhancement of the critical temperature to charge-
transfer excitations between the two copper oxide layers
by showing that the pairing arises from the ease with
which the chains can be polarized both in the transverse
(intraplane pairing) and longitudinal (intraplane and in-
terplane pairing) directions because of the proximity of
the Cu +0 and Cu +O energy levels. They further
pointed out that there is a phonon contribution to the
transition temperature, because of the lattice deforma-
tions which typically occur in such materials, as a result
of charge transfer between the layers.

Earlier, following the publication of data showing the
preference of the doping-induced holes in the lanthanum
compounds for the oxygen sublattice, Emery used a
Hamiltonian for O(2p) holes moving through a back-
ground of localized Cu(3d) spins and oxygen sites, with
the interactions restricted to on-site and nearest-neighbor
repulsions, to model a single copper oxide layer. This
model is known as the "extended Hubbard model" since,
for a monatomic lattice and with the neglect of nearest-
neighbor interactions and the approximation of constant
on-site repulsion, the Hamiltonian reduces to the original
Hubbard Hamiltonian. Emery reduced the two-band
Hamiltonian to an effective oxygen-band Hamiltonian

and showed that the consequent effective bandwidth
would be small. He then established that there would be
a net attraction between two holes due to Cu(3d)-O(2p)
exchange interactions and he conjectured that this in-
teraction is the main source of pairing.

Long analyzed the Emery model for different limits of
the interband and intraband hopping and interaction pa-
rameters. He found that if the nearest-neighbor Coulomb
repulsion is much larger than the p-d hybridization, then
clustering of the oxygen holes occurs, which prevents su-
perconductivity. Since this limit is inconsistent with a
tight-binding Hamiltonian, Long concluded that the Em-
ery model is valid provided that the hybridization dom-
inates the nearest-neighbor repulsion.

Several authors " have emphasized the importance
of explicitly including interband and intraband parame-
ters in model calculations with extended Hubbard Hamil-
tonians. The resulting Hamiltonians are intractable if all
the Cu and O bands are retained. Thus it is expedient to
neglect enough of the parameters to reduce the problem
to that of an effective two-band extended Hubbard Ham-
iltonian. Subsequent work has led to conclusions that the
oxygen on-site repulsion can be neglected because of the
delocalization of oxygen holes' and their comparatively
low density on these sites. ' Nevertheless, because the
physical role of the various parameters is not well under-
stood, the prudent strategy' for model pairing calcula-
tions is to retain all but the obviously irrelevant terms,
pending further data.

In the light of a better understanding of interlayer
mechanisms, various authors' ' have performed calcu-
lations to examine the effects upon pairing of interlayer
hopping and correlations. These calculations feature a
single tight-binding oxygen band with two or more lay-
ers. Few computational details are given in the paper by
Schneider, De Raedt, and Frick. ' However, the calcula-
tions of Hofmann and co-workers' ' employ the
Gor'kov-Nambu formalism; the implicit assumption of a
Fermi-liquid normal state for the layered compounds is
now fairly well vindicated. '

Recently Jain, Ramakumar, and Chancey' ' (hereaf-
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ter referred to as JRC) published two calculations of gen-
eralized energy-gap functions in negative-U Hubbard and
extended Hubbard models. The first of these calcula-
tions' is for a one-band model and makes use of a for-
malism and an ingenious transformation of operators
which was originally developed by Hubbard and Jain '

(hereafter referred to as HJ) to treat both the weak-
interaction and strong-interaction limits in metals. The
second JRC calculation extends this work to a two-
band model. JRC again assume an attractive on-site in-
teraction, i.e., U(0, in the narrow d band, along with
hopping of holes between the d band and the wide oxygen
band (p-d hybridization). As for most such calculations,
the cause of the attractive correlations is not spelled out
because, as yet, there is no consensus on the relative con-
tributions of phonons, antiferromagnetic coupling, and
charge-transfer excitations.

Using techniques from the HJ paper ' and equation-
of-motion methods, JRC calculated the quasiparticle en-
ergies for the p-band holes and found a p-band supercon-
ductor gap stemming from p-d hybridization; in turn,
they found that the p-d hybridization modifies the d-band
superconductor gap. In addition, using appropriate Zu-
barev double-time Green's functions, they derived self-
consistent equations for the p-band and d-band supercon-
ductor gaps and the hole number; they stated that they
were attempting to obtain numerical, self-consistent solu-
tions of the equations.

The purpose of this paper is to present a two-band,
two-layer extension of the two-band, one-layer calcula-
tion reported by JRC. We carry out the calculation of
the copper- and oxygen-band quasiparticle energies for a
two-layer per unit cell superconducting oxide. The two-
layer, single-tight-binding-band model of Hofmann and
co-workers' was offered as a theoretical explanation of
evidence indicating two distinct superconductor gaps in
YBa2Cu307 &,

' we expect our model to show a similar
feature. Typically, one must resort to numerical compu-
tations to estimate the values' ' and ratios' of the vari-
ous coupling parameters. In this paper, we content our-
selves with obtaining the theoretical corrections, stem-
ming from the interlayer parameters, to the quasiparticle
energies and superconductor gaps calculated by JRC.
We expect that these results will be useful for subsequent
computational work.

II. MODEL HAMILTONIAN
AND EQUATIONS OF MOTION

We begin with the simplest two-layer generalization of
the one-layer Hamiltonian for copper d and oxygen p
bands. We adopt the notation of JRC, ' ' label inter-
layer parameters with primes, and use the Hofmann
et al. ' notation for layer indices. Accordingly, our
Hamiltonian is

H= g g6" n~j. ++8 n„j + p tf~kcrjacrka+ g tjkpr~Japrka+ g hfk(pr~facrk +C„k prja)+ —Ugn„j n j

2

+ P P tj~kc~~/acska+ g tjkprjapsk + g hjtk(pi~j Csk +Csk Prj )+—U' g n J n,~j

Here r and s are layer indices and j and k are (position
space) lattice site indices. We assume that U and U' are
negative, following the suggestions of Bishop et al. The
operators c, c, and n" refer to Cu holes; the operators p,
p, and ni' refer to O holes. Also, t,„(t,k'), tjtk (tjt'k'), and
h k (h 'k) are Cu-Cu, O-O, and Cu-0 intralayer (interlayer)
transfer integrals, respectively. (For simplicity, we have
assumed the transfer intergrals to be symmetric under ex-
change of their subscripts; note, however, that this as-
sumption is not necessary, since the same equations result
after Fourier transformation when this simplification is
not made. } A double sum over j and k is over nearest-
neighbor sites only.

We see that there is considerable symmetry between
the intralayer and interlayer terms in this Hamiltonian.
The most striking difference is between the interaction
terms; the Pauli principle limits the on-site intralayer in-
teraction to holes of opposite spin, but there is no such
restriction for the interlayer interaction.

The Heisenberg equations of motion for the O-hole an-
nihilation operators are

. a
@ Prio+X ij rja+P &jprj a

J J

+Et' Psja+ghij sja
J J

(2)

where, here and henceforth, when r =1 (2), then s =2 (1).
(We also take A'=1 throughout the paper )Similarl. y, the
Heisenberg equations of motion for the Cu-hole annihila-
tion operators are

~ri o d= 6' c„ia+gati, c„,a+ ghjpat J J

+ Ucria ri a+gtij csj a—
J

+P jiPsja+ U +nsia' ria
J a'

We endow the intralayer HJ operators ' with a layer
index, and thus define them by
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~a da —:+rio = rig ri —a
d+ d d —

1 d
ri o = rio ~ rim = rio.

(4)

d
rricr =P ij ( riorj 'o rja ricr )

J

(Henceforth, n„;:n„, —and n„;—:n„; .) We also extend
the JRC decoupling operators to our two-layer model
with the definitions

6„—:8 +—U'gn„~,a a
o'

and

rs!a =Xtij (Criaesj a Csj aCri cr )
J

=+] . (9)

e+=—e'+U, @-—=@', (6) Then, with the use of Eqs. (3) and (4)—(9) we obtain

. ad:'-
er ria +P ij rja ri cr —kaCria rri —crat

a d& a
ji [ka(Prj —crCri —crCria+ Crc' —aCriaPrj —cr ) Prj aari a ]++ tcj Csja ri cr +—kaeriaSrsi —a

J J
aX ji [Ccs(Psj —a ri cr ri o +—ri —cr ri crPsj —cr ) Psj cr ri —cr ]

J
(10)

We now linearize this equation according to the HJ
prescription, ' which mandates that all terms be rendered
linear in one of the n, c, c, p, p, and d operators at a
time. For the mixed layer terms, we make the replace-
ments

ri —a ri aPsj —o & ri —oPsj —cr & ri a

and

Psj anri —a & +ri —a &Psj cr

(14)

(15)

sja ri —o ~ i nri —a sja+&ai Cri —o sjaf ri —g

Cria rsi —a & rsi —cr &Cria

d~+grij ( & Csj acre a &Cri a & Crc acria &Csj a )

J

(12)

Psj aCri —a—eria & Cri aeria rPsj —a—+ &Psj aeri —o &Cria—

We make similar rt„plaeements for the intralayer terms.
To linearize the term 6'„d„, , consider

1, 1

2 . 2
sia' rio X sicr' ri aricr =— (16)

Following HJ, we assume a paramagnetic situation, so
that to good approximation

&n„; &=n„, &S,„; & =0, &S„„&=0 .

(13) Our linearization scheme then leads to the replacement

1 f f 1

p Ice& sia ri —cr & & sicr ri —a & ria 2 fa& sicr ri —cr & & ri —a ricr & sicr

Cgjgcrjg ~ r Csjg 2+a% Csj~crjg f % rj —~ sjg Crj g 2+ax rj —g sj —o' f x rj —g rj~ / sj —~

1 f f 1

2 (a& Csj acre a & & Csi —acria &Cri a p gcc& Cs[ acri o & & Crj acsi a &Crea]

We now simplify the notation by defining

~rr = & Cn acri a &—
~rs = & Cri —cr si o &

rs —& ricr sicr &

(19a)

(19b)

(20)

rri —a = &hji ( &Prj —a ri —cr & & ri —crPrj —cr & )
J

and

r'si —a —= X ji ( &Psj cr ri —cr & & —ri crPsj cr &)——
J

(23)

+rrij: ij(& ri —o rja&+& rj cr ricr&)—
rsij = ij ri —a sj a & Csj acrca &)—(21)

(22)
Then the linearized form of the equation of motion, Eq.
(10), is
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. d:-
J J J

+~rrfaP ij sj —o +Can rrij ri cr—+kaP rsij ri o—+Xhji( r Prj o+kaIc'rrprj —o )
J J J J

X ji( rpsjcr+ka~rrpsj —o )+Ca rri orio—+(a rsi —o ricr
J

+U'(n„n, + —,'g A,„,——,'g W,„W„,)c„, +U'( —,'g W„A,„,+ —,'g W,„A,,„—g n, I,„c„)c„;

( g A,„,A,„„+n„W,„)c„— ( n „A,,„—g W„,A, „„)c„.Sr Sl 0' (25)

ik.R.
Crj a. 'Crk~ ~

N
(26)

and

Our next step is to calculate the Fourier transforms of
Eqs. (2) and (25). We define the lattice Fourier trans-
forms as usual by

Q„,—=—y&.„'„.,„.&,
1

k

6„,—:——gvk'((c, k c„„&+(c„k c,k &),
1

k

1——yg„(
k

(30)

(31)

(32)

ik.(R,. —R. )
M~j= —ge ' ' Mk,

k
(27)

i(k —k') R.
ge '=N 5k k,
J

(28)

where X is the number of primitive cells in the crystal.
We further define

1 ~A rr =
N X(Cr k crCrkcr &- —

k

1
Cr —k —rr Csko

k

(29a)

(29b)

where M stands for any one of the transfer integrals. Of
course, the normalization factors are a direct conse-
quence of the identity

rr = rr —a.

1
Xhk( (prk crCrk cr & — ~ Crk— crprk cr—&)—
k

(33)

and

rs rs cT

&Crk oPsk o&)—. —
k

(34)

and

~J rka =h kc„ko+ 8Prko+ Cf'psko+ h kcat
(35)

Then we find that the Fourier transforms of Eqs. (2) and
(25) are

. ad'- I

i = co„d„k + n„cok+ U'n„n, +g Z„„+Z' + (A —Q„,Q,„) c„k

I

+g A„„6k+280„+6'„, n, U'A„„+— Q,„(A +A,„) c„k +h„n„p„k2

I

@kn — (gA A +n Q )
2

+ g @kA„„+
2

(g A„„Q„, n, A,„) c,—k +hkn„p, k +g A„„hkp, (36)

Here we have used the notation

(37)

In the next section, we shall attempt to solve our set of
equations by using the JRC decoupling method. Howev-

er, this method requires the equations of motion for the
adjoint operators.

We can see that the quantities defined in Eqs. (29), (31),
and (32) are real, by recalling the BCS ground state;
these quantities will still be real at nonzero temperatures,
as long as we are not considering the full electron-phonon
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interaction. In addition, from Eqs. (33) and (34) it is ob-
vious that

Zrr and Z„', , respectively, so that

rrcr) rr rr & —( rsrr ) rs —e (39)
(Z„„)'= —Z„„, (Z„', )"= —Z„', (38)

Moreover, Zrr and Z„', are the time reverses ' of
It then follows from Eq. (36) that the equation of motion
ofd„k ~1s

I

n„8k+ U'n„n, +g Z„„+Z„',+ (A,„—Q Q,„) c„2

U'
+g' A„„@k+26O„+8„, n,—U'A„„+ Q„,(A„,+A,„) c„k —hkn„p„2

I

+g A„„hkp„k — 6"„'n„(g—A„„A,„+n„Q„,) c,2

I

+ g 8k'A„„+ (g A„„Q,„n„—A„) c,k h„'n—„p, k +g A„„hkp,k (40)

III. HUBBARD- JAIN/JRC DECOUPLING
APPLIED TO TWO LAYERS

Let us now consider the d operators in Eqs. (36) and
(40). The necessary modification to the original
Hubbard-Jain transformation ' can be written as

6'kD„k
(41)

We have also derived Eq. (40) directly, in the same way
that we have derived Eq. (36).

A „"k =—N„"kh k /8k,

B„"k= A„„N„"kT„"k—hk/8k,

(47)

(48)

TI"k =—
a

"=&E; (49)

and summing over a. To harness the full power of the
Hubbard-Jain decoupling, it is necessary to neglect
pairing between different Hubbard subbands. With the
extended and modified definitions

EI'k —8 NP E",k=E„"k+n, U'

and
n

(N„"k )
'—= 'V

(EP @R)2
(42)

r

U'
p

U'+ Z„„+Z„',+ A — Q Q,„

where Epk (@=1,2) are the energies of the upper and
lower Hubbard bands for each layer, i.e., the solutions of

N"„
+ U'n,s (50)

n
(43)

280„
b,„k„= A„„+ +

k k

n, U'A„„

Here, 8k is the overlap integral in the one-band Hubbard
Hamiltonian. Some algebra yields the inversion formula

U'
+ Q,„(A„,+A,„) T„"j,N„"k,

2
(51)

Ckn„DI"k
d rk (T

p rk

and, with the use of Eq. (43), the result

Crkcr XDrku
P

(44)

(45)

A„"k =Nr"khk/Ck,

BPq =Arr Nr"kTr"kh k /@k,

Nlk U
Qtk = Ck — Q,„2

U'

2

(52)

(53)

(54)

NP
Fag

rk 1
rk k Ek —e (46)

We now write the two-layer equations of motion, Eqs.
(35), (36), and (40), in terms of the D operators. This is
accomplished by multiplying each of the equations of
motion by

and

we obtain

2

U'
z (55)
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and

QD8

at

+Cf'p, k~+ h k(D, k~ +D,q~ ),

+ ~ rkPsko +~rkPs —k —o.

i =a kp„k~+hk(D„k~+D„k~ )
. ~Prk~

(56)

(57)

E'i R1

Q2 E2 R2 ~2
E—

i
—Qi

R2 b2 —
Q2 Eq—

To solve this system, we assume

D =ye+' .

For a nontrivial solution, we must have

det(K i y 1—~)=0,

(65)

(66)

(67)
D~"

p tp d p pi — E rkDr —k —o +~rkpDykcy' ~ p'kPr —k—cy't
where 14 is the 4X4 unit matrix. Straightforward alge-
braic manipulations leave us with

+ rkprkcr QrkDs k cr — r—k skn

pg f pl~ rkPs —k —o rkPsko. (58)

y +ay +b=O,
with

(68)

Here we have assumed, on physical grounds, that

and

a =E) +E2+2Q, Q2+2R, R2+b, , +62, (69)

We shall now attempt to solve Eqs. (56)—(58), using the
JRC approximation methods. If we had not made the as-
sumptions of Eqs. (59), there would be four different R
quantities, which would make a solution prohibitively
difficult to obtain.

We first consider Eq. (56). As a first approximation, we
neglect the inhornogeneous portion, which amounts to
treating the hybridization as a perturbation. We there-
by obtain

~Prk~
@9rkn+ @fPsknat

This system is easily solved with

b =(E,E2 —Q, Q2+R, R~ —b, ib2)

+(Eib2 —RqQi +E2b, ,
—R i Q2)

Accordingly,

—(E) +E2+2Q) Q2+2R)R2+b)+52)
2

[ [(E2 E2 )+(g2 g2)]2+I I
)/2

2

where

J=4R,R~[(E, E2) +(b, , +—b2) ]

(70)

(71)

P„k (&)=P,k (&)

i(Af+C—
t),
')t=e (61)

which corresponds to the p operators in the two layers
being in phase, and

P„k (&)= —P,k (t)
—~(8f —Cf')t

(62)

i =ED,. BD
ai

where

(63)

which corresponds to the p operators in the two layers
being exactly out of phase.

We next attempt to solve the equations for D, Eqs. (57)
and (58). We follow JRC in setting all the p-operator
coefficients in Eqs. (57) and (58) to zero. For notational
convenience, for the time being, we suppress band, wave
vector, and spin indices and omit tildes. We then have

+4Q, Q2[(E, +E2) +(5)—b2) ]
—4(R, Q2

—R2Q, )

+8( R, Q2+R 2Q)(E, bq +Eb2, ) . (72)

Upon letting the interlayer parameters vanish in Eq. (71),
we obtain the four roots

+, =+i+E',-+ai, y2 =+i+E2+a', . (73)

1/2a++a 4b-=+i
2

=+iEk+„. (74)

With these four distinct roots, we can write the general
solution of Eq. (63) as

Thus, in this limiting case, the two layers are decoupled
and the eigenenergies appearing in Eqs. (73) are the
narrow-band quasiparticle energies of the one-layer mod-
el.

For the two-layer case, we write the four roots as
1/2—(a++a 4b )—

2

and

D=(D, D2 D, D ) D= gq, e '
j=1

(75)
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where the g. are given by Eq. (74). Since Ei and E2 in
Eq. (71) are complex numbers [see Eq. (50)], the solutions
given by Eq. (75) decay with time, corresponding to finite
quasiparticle lifetimes.

We now attempt to find a p-band gap, using the JRC
method and a single root, —iE &„=—iE&„, given by Eq.
(74). We rewrite Eq. (57) as

i [dD„"„(r)/dr ]=E„„DI'„(r)+A i~„„(r)+Bi~„„(t)
+ AI'i,'p, q (t)+BI'qp, i, (t) .

We place Eq. (61) as the solution to the homogeneous
part of the full p problem given by Eq. (56) into Eq. (76),
and integrate, to obtain

Here we have temporarily suppressed the indices k, a,
and p. We can now rewrite Eq. (56) so that the only im-
plicit time dependence is in the p-band operators. We
define

and

1

hi, „Ek +6f+Cf'
(79)

B„p„(t) A,'p, (t)

E+4'f+ 8f' E
D„(r)=— A„p„(t)

E 8)i f'—
B„'p, (t) A„p„(0)e+E+8f+vf' E

B pt(0)e iEt A ~p
—

(0)e lEt

+ +E+6'f+ 8f' E 6f 8{,"— —

t(0) —iEt

+ +D„(0)eE+ 6'f + 8f' (77)

analogously to JRC. We then see from Eqs. (52) and (53)
that

and

l

hI p Ei„

1 B„"
P,t,=—

hi, „Eq„+Cg+8f'

(80)

(81)

Upon using Eq. (77) to substitute into Eq. (56), and using
Eqs. (78)—(81), we obtain

i [Bp„(t)/dt ]=8Q„(t)+Cf'p, (t) —h ~a„id'„(t)+h &P„~„(t) —
hi, h &a.„~,(t)

+hqhqP, ~, (t) —
hathi, a,~,(t)+hIh~P, ~, (t)—hq a,Id'„(t)+hq P,~, (t)

++[hi,D„(0)e ' '+a„&h~„(0)e ' ' —h~P„~„(0)e ' '+hi, hI, a„~,(0)e

—hi, hj, P„~,(0)e ' '+hiD, (0)e ' '+hIhka, ~, (0)e
—h&hI, P,~,t(0)e ' '+hI, a,~„(0)e ' ' —hI, P,~„(0)e ' '] . (82)

n*

We thus obtain the approximate set of equations

i [Bp„(t)/dt] =(8f a„i,hi,
—a—,khi, )p„(t)

(83)

As a first approximation, we neglect all terms summed
over p in Eq. (82), none of which contain time-dependent
operators. In addition, we recall that the p operators
have indices r, —k, —0. and the p operators have indices
r, k, o.. We need the equations for the p operators corre-
sponding to Eqs. (82); these can be obtained by formally
taking the adjoint of Eqs. (82) and effecting a (k, o. ) to
( —k, —o ) transformation in the complex-conjugated a
and P coefficients. From Eqs. (78) and (79), via Eq. (38),
we see that

and

i[Opt(t)/Bt]= —(Cf—a„„h„—a,„h„' )p, (t)
—[8f' —hathi, (a„i,+a,&)]p, (~)

+(hqP„i+hq P,q)p„(t)

+ [hqhI, (P„i,+P,i, )]p, (t) .

To simplify the notation, let us define

g„=4'f —a„qhi, —a, i,h ~

Q =—6f' —hzh&(a„i, +a,i,),
b„—:hqP„I, +hk P,j, ,

(85)

(86)

(87)

(88)
+ [Cf' —h„hI, (a„„+a,i, )]p, (t)

+(hi, p„i,+ha p, t)p„(&)

+ [hqh j, (P„i,+P,q)]p, (~), (84)

and

R =hqhq(P„q+P, q) . (89)
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We can then write Eqs. (84) and (85) as

where

(90) Q C2 R b2

R —Ã, —Q

R b, 2
—Q

(92)

and

Z=(p&(&) p2(t) p, (t) p, (t))T, (91) Since Eq. (90) has precisely the same form as Eq. (63),
we may immediately make use of the work done in arriv-
ing at Eqs. (71) and (74). Thus the matrix eigenvalues are
given by

'1 2
(g 2+/ 2+2Q 2+2R 2+g 2+g 2)y+(g 2 g 2+g 2 g 2)2+1

(93)

where

J—=4R [(6,—6'2) +(bi+bi) )+16RQ(e,62+6~6 i)+4Q [(8,+@2) +(K,—bq) ] .

Hence we can write

1/2

EgT— (g 2+@2+2Q 2+2R 2+g 2+g 2) —Q(g 2 g 2+g 2 g 2)2+J

(94)

(95)

First, let us note that setting Eq. (94) to zero is
equivalent to decoupling the two layers. We thus have

EgT Qg 2+/ 2+g2+g 2P(g 2 g2)+(g 2 g 2)

(96)

and with Eqs. (86) and (88), we obtain

It should be noted that just as the one-layer quasiparticle
energy for the p band, given by Eq. (97), contains d-band
pairing contributions through the a and P coefficients,
E f+ as given by Eq. (99) has pairing contributions from
the d band, through Eq. (74), which enter into the a and
P coefficients defined in Eqs. (78) and (79). It can be
verified that

and

E ik +(@f alkhk ) +(~ikhk )

E $k=Q(Cf —azkhk)i' +(p2khk )

(97)

(98)

lim [b, f]= lim [pk(hk+hk) ]=0,
U~O U~O

as in the one-layer model. Additionally, we have

lim [5f]=hf,U'~0

(101)

(102)

(&&f ) =Pk(hk+ h k ) —Pkh k (100)

In this limit, if we allow the interlayer parameters to van-
ish, the resulting quasiparticle energies, given by Eqs. (96)
and (97), are simply the quasiparticle energies of the one-
layer model. We have not found a factorization allowing
us to eliminate the inner radical in Eq. (95). We can,
however, convince ourselves that the energy-gap contri-
bution due to interlayer-interband hopping, for example,
is nontrivial, by considering the "worst-case scenario" in
which Eqs. (86)—(89) are layer independent. Equation
(94) thereupon becomes

E f+=[[8f+Cf'—ak(hi, +hk) ] +pk(hk+hk) ]'
(99)

where we have chosen E f+ in Eq. (94), analogous to our
use of Eq. (61) in obtaining Eq. (76). In view of Eqs. (53)
and (81), we can identify the extra interlayer contribution
to the p-band gap from

where b,f is the superconductor gap stemming from in-
tralayer pairing alone. Furthermore, Eq. (100) has the
property that

lim [5b, f]=0 .
h~~O

(103)

We note that the intralayer anomalous average A
enters into Eq. (99) through the a coefficients (implicitly)
and through the P coefficients [explicitly, if we recall Eq.
(53)]. However, the interlayer anomalous average A'
enters into Eq. (99) implicitly only, through Ek„, in this
model.

We must now attempt to make some sense of the
different roots which have arisen in the various stages of
this calculation. We recall that the calculation was begun
from a particular solution to the two-layer Hubbard band
problem, Eq. (63), with the energy given by one of the
four choices in Eq. (74). Since E f must be an improve-
ment over the first approximation to the energy featured
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in Eq. (61), we must choose E f+; furthermore, the as-
sumption we made earlier that Eqs. (86)—(89) are layer in-
dependent yields, from Eq. (74), a simpler expression for
the d-band quasiparticle energies:

of a narrow-band gap in the absence of interlayer param-
eters.

The hybridization-induced superconductor gap in the p
band is given by

E g„=Q(Eq„+Qg„) +(Rq„+hq„)
=Q(Eg„)'+ (& g„)', (104)

N T
(hq+hi, ) (106)

b ~„=Q(bq„+Rq„) +2yq„Ek„+yap . (105)

Note that we selected the positive superscript for the en-
ergy in Eq. (74), since our model must refiect the presence

where E includes all terms in Eqs. (50) and (54) except
for the two terms featuring anomalous averages (the sum
of which we denote by y). These anomalous averages
enter into the effective superconductor d-band gap, which
is given by

This equation gives the two-layer correction to the one-
layer result. The interlayer coupling is embedded in E k„,
and in view of the smallness of the interlayer parameters
relative to the intralayer ones, we can expect from this
equation that the interlayer hopping contribution to the
p-band gap will be smaller than the intralayer one.

Recalling Eqs. (47)—(55), we can write Eq. (106) more
explicitly in terms of the hopping and Coulomb integrals,
i.e.,

2U'N T
b, f= —g A(h, +h„')'N/T)8„' E„'„+ (A' AA')—

P

O' NT
ekA+260„+ A'„nO'A—+ O'O'A'+ 6'I,A+ AA'

2 k

U'A'Ng

26„
+ 6/+ A'f' (107)

As shown by JRC for the one-layer case, p-d hybridiza-
tion not only induces a p-band superconductor gap, but it
also modifies the effective d-band gap, as given by Eq.
(105). Following the same method of approximation
[Eqs. (77)—(82)], which leads to the coupled equations
(84) and (85) in terms of wide-band operators only, but
starting with Eqs. (56) and (61), one eventually obtains
equations for the p operators in terms of time-dependent
D operators only. When these equations are used to sub-
stitute into Eqs. (57) and (58), the result is a set of cou-
pled equations expressed solely in terms of D operators,
which are an improvement over Eqs. (57) and (58), to
second order in the hybridization integrals. Complica-
tions arise, however, because both Hubbard subbands ap-
pear explicitly in the original Eq. (56) for the p-band
operators, so that the new set of equations for the D
operators is now not only coupled in the layers, but also
in the Hubbard subbands. While the diagonalization of
the resulting SX8 matrix would be straightforward, it
would undoubtedly be difficult to write a meaningful ex-
pression for the modified narrow-band gap, as our refined
calculations for the one-layer problem have convinced
us.

We therefore continue to use our simplifying assump-
tion, which consisted of neglecting Hubbard subband
coupling in arriving at Eqs. (57) and (58), thereby reduc-
ing the problem to the diagonalization of a 4X4 matrix
resulting from the coupled layers. Then, making use of
the assumption of layer independence of Eqs. (47)—(55),

A(hq+h t, ) NEST)

E„+„—6f—6f'
(109)

IV. DISCUSSION

Our Hamiltonian is an extension of the one-band and
two-layer Hamiltonians' ' and the two-band and one-
layer Hamiltonian used in recent theoretical investiga-
tions of high-temperature superconductors. We have
sought to construct a Hamiltonian that is tractable, yet
includes the necessary hopping and interaction parame-
ters.

We have noted the importance, as mentioned by
several investigators, "of including the copper and the
oxygen bands. We have also noted the potentially crucial
role of interlayer coupling ' in enhancing the transition
temperatures of these superconducting materials. Ac-
cordingly, we have devised a Hamiltonian, given by Eq.

which allowed us to write a meaningful expression for the
p-band gap, Eq. (106), we obtain the modification to the
energies given by Eq. (104), namely,

N
E P„' =Eq„+(h~+hi, ) (108)

@g E)+,„—Cf —Cf'

and the modified effective narrow-band superconductor
gap
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(1), which incorporates these features. Our goal has been
to calculate the consequent quasiparticle energies and ob-
tain information about the superconductor gap. Our cal-
culational techniques are based on those developed by
Hubbard and Jain, ' and more recently by Jain, Ramaku-
mar, and Chancey' for a one-layer and two-band
model. Our task has been to extend these calculations to
a two-layer and two-band model. The expressions we
have obtained for the quasiparticle energies for our two-
layer model are complicated, despite our approximations
and notational simplifications. These complications are a
manifestation of interlayer coupling in the equations of
motion.

In order to obtain an understanding of our expressions
for the quasiparticle energies and a meaningful expression
for the gap, we have assumed that at some instant in time
the parameters of the two layers were in phase. We find
that the interlayer-interband hopping parameter h I, con-
tributes to the gap in much the same fashion as the p-d
hybridization parameter h& contributes to the one-layer
gap. Our simplified expression, Eq. (100), for the
interlayer-interband gap contribution suggests that even
if hz were an order of magnitude larger than h I„ the h I,
contribution to the gap would still be roughly 20% of the
h& contribution, which is not a negligible effect. Conse-
quently, we have inferred the existence of two supercon-
ductor gaps in the wide oxygen band, in agreement with
the results of Hofmann and co-workers. '

We note that even if we had omitted the h & terms in
our Hamiltonian, the gap term in Eq. (106) would still
contain corrections to the one-layer result; this is because
Pz in Eq. (106) contains the interlayer hopping terms, 6f'
and BI„as well as the interlayer coupling, U'.

Relatively speaking, the gap equation (106) for this
two-layer model is no more complicated than its one-
layer counterpart, since it does not explicitly depend on
A'; this was alluded to, following Eq. (103). Mathemati-
cally, the reason for the absence of the explicit appear-
ance of such a term in Eq. (106) is that the Hubbard
operators d„; are purely intralayer operators. From a
more physical viewpoint, the absence of such a term in
Eq. (106) is, in our opinion, due to the fact that our model
employs the two-dimensional one-layer Hubbard Hamil-
tonian, applied to each layer separately, plus intralayeg
and interlayer extensions. The rationale for such a
feature in our model is, of course, the physical existence
of these layers in high-T, materials; to a great extent, this
forces us to begin the construction of a model with the

consideration of the physics within layer planes.
In the weak-coupling limit, the p term in the numera-

tor of Eq. (107) for the wide-band gap is approximately
equal to the interaction U, as can easily be shown from
Eqs. (42) and (49). The intralayer BCS gap for the nar-
row band then appears explicitly, along with its interlayer
counterpart, U'A', which is already present in Eq. (107).
Again in the weak-coupling limit, the difference in the
denominators of Eqs. (106) and (109) can be traced to the
use of the Hubbard operators (which couple creation and
annihilation operators in each band), defined in Eq. (4),
and to the approximation methods we have used. We are
attempting to extract more information on the relation™
ship between the effective p-band and d-band gaps by ex-
amining the expressions for the quasiparticle energies
which result from the inclusion of Hubbard subband cou-
pling.

The next logical step in pursuing the work reported in
this paper is the self-consistent evaluation of the p-band
and d-band gaps and the hole number. The various
thermal averages are most readily evaluated with the usu-
al quantum-statistical methods and the Zubarev equa-
tions for the various anomalous averages appearing in
Eqs. (107) and (109). With the added complexity result-
ing from the presence of two layers, such calculations
amount, at the very least, to a challenging task.

In the spirit of JRC, we neglected Vd and V'd, the in-
tralayer and interlayer nearest-neighbor interaction
terms, respectively, in our Hamiltonian; we, in effect, as-
sumed that they can be taken account of by a renormal-
ization of the overlap integrals. However, in the light of
the crucial role played by nearest- and next-nearest-
neighbor interactions in one layer, ' we might have un-
derestimated the importance of retaining such interaction
terms. While we could approach the calculation of the
quasiparticle energies, with the inclusion of these terms
in the Hamiltonian, in the same manner as reported here,
we have no indication at the outset that the linearized
equations of motion can be decoupled to yield tractable
expressions for the superconducting gaps. Further-
more, we can be sure that a self-consistent calculation of
these gaps would be even more laborious. To a first ap-
proximation, one could use existing self-consistent gap
equations' for the narrow band as a starting point in an
evaluation of the wideband gap function.

Note added in proof. Equations (99), (106), (108), and
(109) in this paper correspond to the one-layer equations
(26), (25), (28), and (29), respectively, in Ref. 20.
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