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We show that mean-field-type symmetry-breaking approximations for correlated fermions can
be constructed by performing vertex renormalization (VR) in the linked-cluster expansion, just as
for the case of lattice spin models. In the limit of infinite spatial dimensions we sum up exactly
the renormalized diagrams for the grand-canonical potential of the Hubbard model and, using the
diagrammatic technique for Hubbard operators, we construct explicitly an approximate VR. The
procedure leads to a self-consistent symmetry breaking analogous to that of the mean-field theory for
spin systems. We present solutions for the case of half-filled energy band. They are valid for arbitrary
temperatures and become exact for both large-U limit and for U = 0. The antiferromagnetic order
parameter is found to have the conventional mean-field form and, in the regime of strong correlations,
the obtained critical temperature coincides with the mean-field-theory result for the Néel temperature

of the effective Heisenberg Hamiltonian.

I. INTRODUCTION

Just like the Heisenberg model in the theory of spin
systems, the Hubbard model! has become a standard
model for correlated fermions on a lattice. However, in
contrast to the former, properties of the latter are still
far from being well understood. Exact results exist only
in a few special cases, such as in one spatial dimension,
and provide very little information about the general one,
so that even qualitative structure of the corresponding
phase diagram is still disputed. The Hubbard model
has been studied with the aid of many approximation
schemes, but the results are often conflicting. There-
fore, it is essential to establish a general unifying ap-
proach to construct systematic approximations valid for
the whole range of the Hamiltonian parameters and for
arbitrary temperatures. As a general guideline, one can
follow the techniques and approximation schemes which
had proved successful in the theory of spin systems such
as the Ising or Heisenberg model. Just like the localized
noninteracting spins in the case of the latters, the system
of uncoupled lattice sites for the case of strongly corre-
lated fermions (e.g., atomic limit of the Hubbard model)
should be taken as the starting point. We will follow this
analogy and show it to be very fruitful.

The simplest theory of the localized spin systems is
certainly the mean-field theory (MFT). Although it is
based on a gross simplification of the underlying physics,
it often provides a good qualitative description of a spin
system. Moreover, it is well established that the MFT
of classical and quantum spin lattice models gives the
exact description of their properties for a high coordina-
tion number of the lattice z, i.e., for spatial dimension
d — o0o. The situation is fundamentally different in the
case of fermionic lattice models, i.e., models with itiner-
ant quantum-mechanical degrees of freedom. Here, usu-
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ally the Hartree-Fock approximation (HFA) is regarded
as a mean-field theory. However, within this approxi-
mation, fluctuations in the intrasite interaction are ne-
glected, although for the case of strong correlation they
never become small, independent of spatial dimension.
Therefore, unlike the mean-field approximation (MFA)
for spin systems, the HFA for lattice fermions with short-
range interaction does not become exact in the limit
d— 00274

On the other hand, the concept of high dimensions was
introduced three years ago? as a new approach to corre-
lated Fermi systems on a lattice. It has been shown that
fermion systems with proper scaling of the hopping rate
in the kinetic energy become much simpler in high dimen-
sions, but keep away from getting trivial. Since then, the
study of high-dimensional Fermi systems has been very
fruitful®® and has led, e.g., to the exact d = oo solu-
tions of the Falicov-Kimball model.® However, the most
interesting problem, the exact solution of the Hubbard
model in this limit, remains unsolved, although the re-
cent Monte Carlo study by Jarrell” provides very useful
information.

The fact that the proper self-energy of a system
of interacting fermions becomes site diagonal in high
dimension?3 implies that it is sufficient to solve an atomic
problem in a generalized time-dependent effective field.
The situation is thus similar to the MFT for spin sys-
tems, where the effective field is the Weiss field. This
analogy has been recently used to study the Falicov-
Kimball model on a Bethe lattice.* It has been shown
that it is possible in this case to construct a mean-field-
type Hamiltonian where the “mean fields” are fermion
operators. In analogy to the MFT for spin systems, it is
then intuitively clear that when the coordination num-
ber of the Bethe lattice z — oo, the mean-field Hamil-
tonian becomes exact. Indeed, the corresponding results
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are qualitatively similar to those for the d = oo hyper-
cubic lattice.® However, if we are to construct a general
MFT for fermionic lattice models and show rigorously
that it becomes exact in high dimension, we need a more
solid basis.

For systems of localized spins, one of the most suc-
cessful tools to study critical phenomena and to con-
struct useful self-consistent approximations is the expan-
sion of thermodynamic quantities as power series of inter-
site coupling constants.® One then naturally expects that
similar perturbation expansion around the atomic limit
should yield the required basis to develop MFT for cor-
related fermions which, moreover, can be systematically
improved. Recently Metzner® derived systematically the
linked-cluster expansion (LCE) for the Hubbard model
in analogy to that known for the Ising model.!? In this
approach only connected diagrams and unrestricted lat-
tice sums (the so-called “free embedding”) are involved,
due to the use of the cumulant representation. This, in
principle, allows one to perform vertex renormalization
(VR) and, following the analogy with the Ising model,
construct self-consistent approximations.

In fact, the expansion in powers of intersite coupling
constants is not new in the theory of correlated fermions.
For the Hubbard model, several static quantities such as
the grand-canonical potential and some static suscepti-
bilities have been expanded in powers of the hopping pa-
rameter ¢ up to the fourth,'?>12 the sixth,'® and recently
to the eighth and ninth'4 order using different techniques,
including the LCE.1213 For fixed values of the Hamilto-
nian parameters, the above expansions become the high-
temperature series expansions. This is again analogical
to the theory of spin systems, where the LCE in powers
of the exchange integral can be used to generate high-
temperature series.!®

Anyhow, it is only the LCE which is suitable for renor-
malization, and just the VR is the fundamental concept
for construction of self-consistent approximations. Let
us recall our analogy with the theory of spin systems to
clarify the problem. In the LCE for the Ising model,!°
the VR in the lowest order of the diagrammatic expan-
sion for free energy reproduces the MFT results. Simul-
taneously, the class of diagrams which is summed up in
this renormalization procedure consists of all loopless dia-
grams (Cayley trees), i.e., diagrams which do not depend
on the structure and coordination number z of the lattice
or, in other words, diagrams which carry factor (1/z)°.
All other diagrams are at least of order 1/z, provided
that the exchange parameter is properly scaled to keep
the Ising model nontrivial when z — oco. The required
scaling is simply J = J*/z with fixed J*. Therefore, the
LCE in this case provides a formal basis to show that the
MFT becomes exact in infinite dimension. Moreover, it
is then easy to classify diagrams by powers of 1/z, and
generate 1/z (or 1/d) expansion for hypercubic lattices
in a way similar to that recently proposed by Fishman
and Vignale.!® The problem which we address in this pa-
per is to show how the above scenario can in practice be
generalized to the case of strongly correlated fermions.

A general analysis of z dependence of the LCE dia-
grams for the Hubbard model with the scaling of the hop-
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ping parameter t = t*/4/z (t* fixed), required to obtain
a nontrivial infinite dimensional limit, has been done by
Metzner.® However, his diagrammatic technique is very
difficult to use in practical calculation. Difficulties arise
even at the level of unrenormalized expansion and reduce
to the problem of calculation of atomic cumulants repre-
sented diagrammatically by vertices. Since the standard
Wick theorem for fermion operators cannot be applied,
Metzner has proposed a method based on calculation of
functional derivatives of a generating functional with re-
spect to auxiliary Grassmann fields. This, however, is
very inconvenient for practical purposes. Therefore, we
shall again refer the analogy with the theory of spin sys-
tems to find a better approach.

The above mentioned difficulties are related to the
quantum nature of the considered system, and are very
similar to those which appear in the LCE for quantum
spin systems like the Heisenberg model. There, since
commutators of two spin operators are not ¢ numbers,
but other spin operators, calculation of 7-ordered prod-
ucts becomes very difficult. On the other hand, the com-
mutators are linear in spin operators. This is, in fact,
sufficient to proof a generalized Wick theorem,'” and sim-
plify the problem considerably. Based on such a gener-
alized Wick theorem, a diagrammatic technique for spin
operators has been constructed and successfully used to
study the Heisenberg model!® (for details and further ref-
erences see Ref. 19).

Adaptation of this concept to the LCE for strongly
correlated fermions requires further generalizations. The
first attempt was due to Hubbard, who introduced con-
venient single-site operators (which also had linear com-
mutation relations), usually referred to as Hubbard oper-
ators (HO).?0 His initiative became fully developed when
a generalized Wick theorem for HO was proved and dia-
grammatic techniques constructed?! ™23 (see also Ref. 19).
In comparison with the standard diagrammatic technique
for fermion operators, diagrams for the HO have a some-
what peculiar form. Application of the generalized Wick
theorem implies appearance of both fermion and boson
Green’s-function lines, as well as vertices at which sev-
eral such lines merge to create another one. Moreover,
since within the LCE, T-ordered products of HO are ex-
pressed in terms of cumulants, they are represented dia-
grammatically by so-called “single-site blocks,” 2223 sums
of which correspond to bare vertices in the diagrammatic
technique of Metzner.® His technique is thus basically the
same as that for HO, but within the framework of the
latter vertices gain inner structure and become single-site
blocks, so that it is possible to evaluate atomic cumulants
diagrammatically. Consequently, it is much more useful
for practical purposes (particularly in selective summa-
tions of classes of diagrams) and we will use it in this
paper.

The concept of VR in the LCE is related to the prob-
lem of symmetry breaking. It is impossible to obtain
symmetry-broken solutions in any finite order of the un-
renormalized LCE, which is the situation analogical to
that in high-temperature series expansions. Therefore,
in order to be able to study ordered phases, one has to
sum up certain infinite classes of diagrams. For the case
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of the spin systems, the simplest symmetry-breaking ap-
proximation is the MFA, and the corresponding class of
diagrams summed up is the class of Cayley trees. This
summation, on the other hand, is done by performing
the VR. It is thus reasonable to expect that the vertex-
renormalized LCE provides a basis to construct self-
consistent symmetry-breaking approximations in general.

VR in the LCE for the Ising model had been intro-
duced many years ago?4?® (for a review, see Ref. 10),
but in practice only two self-consistent ®-derivable ap-
proximations beyond MFA, and only for the Ising model,
have been systematically studied and used: the renor-
malized second order of the LCE,%¢ and the renormalized
single-loop approximation.2427:28 Actually, only the for-
mer leads to an acceptable description of the thermody-
namic properties of the Ising model in the whole range
of temperatures, whereas the latter fails in the critical
region, leading to a discontinuous phase transition26.28
(this fact is related to the lack of a small parameter in the
loop-expansion theory for spin systems!®2%). Although a
systematic generalization of the vertex renormalized LCE
to the case of the Hubbard model has been introduced
only recently,? some concepts of the VR can be found in
previous works concerning electron correlations.!%:28:30

Anyhow, no systematic renormalizations have been
done for fermionic lattice models until recently, when
we managed to perform explicitly an approximate VR
in the simplest, second order of the LCE for the Hub-
bard model.3! We have shown that, as expected, also
for this case, an approach based on the VR leads to a
self-consistent symmetry breaking and that the result-
ing approximation scheme is valid for the whole range of
temperatures in the region of strong correlations. More-
over, character of the obtained self-consistent equations
and corresponding solutions are very similar to those in
the MFA for spin systems. Finally, it has been shown
that the obtained results are exact to the second order in
t/U in the limit of infinite dimension, and that the pro-
posed approach gives a crossover from large-U Heisenberg
mean-field behavior to zero Néel temperature at U = 0.
In this paper we extend our previous consideration to the
case of the class of diagrams which become exact when
d — oo.

This paper is structured as follows. In Sec. II we briefly
describe how the LCE for the Hubbard model is con-
structed and introduce the concept of VR.%10 Derivation
of the exact diagrammatic expression for the thermody-
namic potential for the case of infinite lattice dimension
is presented in Sec. III. In Sec. IV we introduce the di-
agrammatic technique for HO and use it to perform an
approximate VR. The results for the case of the half-filled
energy band are presented in Sec. V, and conclusions in
Sec. VI close the presentation.

(1) g
— Z Z Z t11't22""tnn'/0dT1d7'2"'

11041 22’02 nn’c,
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II. LINKED-CLUSTER EXPANSION
FOR THE HUBBARD MODEL

We consider a system of N sites on a d-dimensional
hypercubic lattice with n electrons per site in an external
magnetic field h; = h £ h; consisting of a uniform field h
and a staggered one h,. In conventional notation we write
the single-band grand-canonical Hubbard Hamiltonian as

H =Hy+ H; , (1)
where

Hy = UZani_ — Z Z(u + ohi)nis 2)
i i o
is the atomic limit of the Hubbard model, and
H;, = Z Z tijc;rUCjo- (3)
ij o
will be treated as a perturbation. The intersite hopping
transitions are restricted only to nearest neighbors,

o = —t when i and j are nearest neighbors
v 0 otherwise.

(4)

The grand-canonical potential,
1
Q= ~3 InTr exp(—BH) , (5)

can be expressed in terms of the averages with re-
spect to the unperturbed Hamiltonian Hp ({...)o =
Tr [exp(—BHo) . . .|/ Z0) as

Q=0 — %111(3)0 . (6)
Qo is the grand-canonical potential corresponding to Hp,
1
QOZ—EIDZ() s (7)
where
Zo = Tr exp(—BHo) = | [ Z§ (8)

is the unperturbed partition function which factorizes
into independent single-site partition functions Zi. 8 =
1/T stands for the inverse temperature, and the operator
§ is given by

B N
3=Texp |:——/0 dTHl(’T):| , 9

where 7 is the 7-ordering operator, and the interaction
Hamiltonian H;(7) is in the interaction representation.
The LCE theory can now be obtained by expanding the
exponential in (9), so that the nth order contribution to

(S)o is

dry,

(T1el,, (1) 810, (T1) €40y (T2) G200 (T2) -+ - €Ly (Tn) o (Tn)])0 5 (10)
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and expressing the unperturbed ensemble averages in terms of cumulants. Metzner® has proposed a method to
calculate the atomic cumulants based on functional differentiation of a generating functional with respect to auxiliary
Grassmann fields. In Sec. IV we will introduce another, more convenient, way. Here, we denote the atomic cumulants
by M? and represent them diagrammatically by open circles (2k-valent vertices) with k entering and k leaving lines.
A hopping matrix element t;; (or its Fourier transform) will be represented by a directed line (bond). More details
about this diagrammatic technique are given in Ref. 9.

The explicit evaluation of {2 can now be performed in terms of diagrams. Due to the use of the cumulant represen-
tation, the linked cluster theorem applies in the usual way, so that the first few terms (to the fourth order in ¢) of the
series are

—ﬂQ/N=o+oCDo+B+OC)C}>+c@>+---.

The zero-valent vertex here represents the zero-order atomic cumulant M{ = In Z. Diagram of the form of a triangle
does not appear in Eq. (11), because of the choice of the lattices to be hypercubic. For such lattices, diagrams which
contain n-gons with odd n do not contribute, since their embeddings vanish. It is convenient to construct the diagram-
matic technique in the frequency Fourier space. Moreover, to avoid unnecessary complication, we temporarily assume
translational invariance of the system, so that it is convenient to use also momentum representation. Frequencies,
spins, and momenta are conserved at vertices. Then, the algebraic expression corresponding to Eq. (11) is

%ﬂ“ 3 MO (ry; )] % zq:(tq)4

T1

(11)

= YN = M3 - 367 S ()] (0 -

71

2
1 1
+58° D MY (r1; 1) M (ra; m2) M3 (1, 72371, m2) (N ;(%)2)

T17T2

1
+'8'ﬂ4 > M(r1,7s3;72,m1 + 73 — 1) M3 (ra,m1 + 73 — 7571, 73)

T1T273

1
e > titatptita—p o s
kap

(12)

where r; include both spin and frequency variables. tq is
the Fourier transform of the hopping matrix element t;;,
and the numerical factors which appear in Eq. (12) are
the symmetry factors of the corresponding diagrams.
The idea of the VR is to absorb all possible local in-
sertions at a bare vertex into a renormalized one, i.e.,
to perform a partial resummation of diagrams. Then,
the LCE series can be written in terms of renormalized
cumulants, and all the local insertions are removed (the
renormalized LCE).®19 To classify various types of in-
sertions according to the clipped bond ends, one has to

e=0+ D+ QD + 3D+ .

(15)

They represent renormalized cumulants My, i.e., cumu-
lants of the partition function Z corresponding to the to-
tal Hamiltonian (1) of the system. The renormalization
procedure can be applied to vertices in the diagrammatic
equations for the self-fields [Egs. (13) and (14)]:

define the k-particle self-fields Gy as the sum of all topo- G = . 16
logically distinct local insertions with 2k clipped bonds. ! D + + ’ (16)
For example,
Glz©®=CDo+D+ >+ G2= B+ (17)
Hence, the self-fields Gy can be expressed in terms of
(13) the renormalized cumulants M, as sums of appropriate
renormalized skeleton diagrams. Then, Eq. (15) becomes
a nonlinear equation which can in principle be solved to
Ga = @@ = @) toee (14) express M, in terms of the bare atomic cumulants M,?.

Since diagrams for the grand-canonical potential

Quantities Gy play a physical role of generalized effec-
tive fields. The renormalized vertices, which we denote
by solid circles, can now be obtained by decorating bare
vertices with the the self-fields in all possible ways,

[Eq. (11)] are unrooted, they have no unique skele-
tons. Therefore, direct renormalization of vertices in
unrooted diagrams is inapplicable and would amount
to an overcounting. One has to “count” and subtract
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the overcounting,?* or circumvent this obstacle by using
other topological?® or algebraic?1? methods. The result
is

—BQ/N = Mo+ ® = > Mi(r1;71) G1(r1;71)

1

- E My (ry,73;72,71 + 73 — 12)

rT1T2T3
XGa(re,r1+ 13 —T2371,73) — -,

(18)

where ® is the sum of topologically distinct irre-
ducible (i.e., without local insertions) unrooted vertex-
renormalized diagrams, except the single vertex:

®=O+D+@+---. (19)

Thus, taking into account the overcounting intro-
duces two effects: renormalization of the zero-order
atomic cumulant M, and a counter term of the form
— ZZ‘; 1 MGy, called compensating series. Natural vari-
ables of the quantity ® are renormalized cumulants. It is
easy to verify by functionally differentiating ®{M} the

useful identity®:10
6P
Gn= g (20)

Despite the VR, the series expansions still involve an
infinite number of terms and in practice, at least for the
general case, one has to resort to approximate solutions.
A general procedure to construct self-consistent approx-
imations is suggested by the above derivation. One has
to choose an approximate ®{M?} consisting of a (finite
or infinite) subset of terms of Eq. (19). It can be used
to find G,{My} by Eq. (20). This approximation is then
set to Eq. (15) and the resulting equations are solved for
M, what finally makes & and G,, explicit and allows
one to calculate the grand-canonical potential accord-
ing to Eq. (18). Approximations which can be formu-
lated within the frames of the above scheme are called ®
derivable.?

III. LIMIT OF HIGH LATTICE DIMENSION

To obtain nontrivial infinite-dimensional models, the
parameters of the parts of the Hamiltonian which involve
intersite couplings must be properly scaled to compensate
for the increase in the number of neighbors on the lat-
tice in high dimensions. The nearest-neighbor hopping
amplitude ¢ in the Hubbard model (1) must be scaled as

t=t"/Vz (21)

with fixed t*. z is the coordination number of the lattice,
and for the considered hypercubic lattices z = 2d. This
scaling is necessary to keep the kinetic energy finite when
d— 0.2

The Fourier transform of the hopping matrix element
is
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d
tq = —2thos qj » (22)
j=1

where 9 = (q1,-..,494), and application of the central-
limit theorem leads to the Gaussian density of states
of the noninteracting system in the limit of infinite
dimension,?3

dooo 1 1 1 (e )2
o0 = po=ew -3 (£)] (23)
Hence, summation over a single momentum variable in

this limit reduces to the calculation of a Gaussian integral
of the form

—]1\7 Zf(tq) dze0 \/—% ‘/_oode exp(—e€2/2) f(et*) .

(24)

The contributions to the grand-canonical potential ob-
tained from the unrenormalized LCE [Eq. (11)] can be
classified by powers of the inverse dimension 1/d (or 1/2).
The evaluation of diagrams involves lattice sums which
amount to counting the number of possible embeddings
of the diagram on the lattice. Within the LCE, the sum-
mations over lattice sites are unrestricted (the so-called
“free embedding” or “free multiplicity”®). Therefore, it
is quite permissible for graphically distinct vertices to
occupy the same lattice site. In general, calculation of
the free multiplicity lattice constants is rather difficult,32
but for the considered case of high lattice dimension, the
problem simplifies considerably.

As an example, let us consider the d dependence of
the contributions of the diagrams explicitly shown in
Eq. (11). Transforming back to the real space the mo-
mentum sum in the second term on the right-hand side
of Eq. (12) (this term corresponds to the single-bubble
diagram), we get

% S (te)? = 22 . (25)
q

However, due to the scaling (21), each ¢ oc 1/4/Z, so that
the single-bubble diagram in Eq. (11) is o< (1/2)° and
will survive in the infinite dimensional limit. The square
diagram in Eq. (11) has the free-multiplicity lattice con-
stant 32(z—1), and together with the factor ¢* introduced
by the four bonds, also provides a nonvanishing contri-
bution in the limit d — oo. The same applies to the
diagram of the form of two bubbles, as its contribution is
o z°t%. The only diagram among the fourth-order ones
which does not contribute to the considered limit is the
last diagram in Eq. (11). It carries the factor zt* o< 1/z,
and vanishes as d — oo.

In general, it can be shown®16 that the leading term
in z of the free-multiplicity lattice constant of an arbi-
trary p-gon (with even p) is o« 2P/2, and since each line
corresponds to t = t*/+/z, all such diagrams (of the form
of single-loop) survive when d — oo. Next, it is easy
to convince oneself that adding loops (arbitrary p-gons)
to any vertex of a diagram does not change its d depen-
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dence (the double-bubble diagram discussed above is an
example). Moreover, all the diagrams which are not of
the form of loops decorated by other loops are suppressed
by some power of 1/d as d — oco. Therefore, the general
conclusion, derived already by Metzner,® is that in the
limit of high lattice dimension only diagrams of the form
of loops self-consistently decorated by loops contribute.
The key point of our analysis, however, is to notice
that all such diagrams are generated by the VR. If we fol-
low the general prescription to construct ®-derivable ap-
proximations described in the preceding section, with ®
chosen to contain all possible vertex-renormalized single-
loop diagrams, the self-consistent VR implied by the use
of Egs. (20) and (15) generate all the required diagrams
which contribute in the limit d — o0o. Therefore, the
exact expression for the functional @ in this limit is

@
(M= P+ - 4+
L
1 N1 2k 2% 1 2k
=—§ZE/3 > My (o,wn)] NZ(tq)
k=1 on q
1
=5 2 2 {1 = [BtaMi(0,wn)]’} (26)
q on
where M;(o,wp) = Mi(o,wn;o,wy) is the first-order

renormalized cumulant. Note that this is the only cu-
J

M (o,wp) = MY (0, wy,) + Z G1(7,wp) M3 (0, wn; Ty wp)

P

1
+3 ZZ G1(T,wp) G1(s,wq) MI(0,wn; Ty wp; S, wq) + -+ 4

TP <4
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mulant involved. Therefore, as follows from Eq. (20), the
only nonzero self-field corresponding to the functional ®
is the single-particle one

Gi(o,wn) = G1(0,wn; 0,wp)

_ 6P
 6Mi(o,wn)
1 (ta)?
::—52M yWn) xy v .
1(o,wn) N ¥ 1— [ﬂthl(O',wn)]2

(27)

Diagrammatically, G; is just the sum of all loops, with
vertices which in turn themselves can be decorated by
loops,

@
Gi(o,wn) = Q+T +T I
l : @

(28)

According to Eq. (15), the renormalized vertices which
appear in Eq. (26) are the bare ones decorated in all
possible ways with this G, so that ® includes all the
diagrams of order (1/z)°, and becomes exact in the limit
d — oo.

Since G vanish for any k > 1, renormalization series
(15) for the case of the first-order renormalized cumulant
takes the algebraic form

(29)

where, due to the diagonal (in the frequency and spin variables) form of G, we have used a simplified notation taking

M2(ri;...;mk) = MR(r4, ...

JTE;T1,---,Tk). BEquation (29) together with Eq. (27) yield the self-consistent equation

which is to be solved with respect to M;. Finally, we can evaluate the grand-canonical potential according to Eq. (18),

which in our case simplifies to

—BQ/N = Mo+ & — > My(o,wn) G1(0,wn) .

on

(30)

My here is the zero-order renormalized cumulant which can be obtained by summation of the renormalization series

1
My = M(g) + ZGl(Ua wn) M{)(Uv wn) + 5 ZZ Gl(gv wn) Gl(Ta wP) MS(U’ Wn; wap) +o.. (31)

on on TP

We emphasize that Eqgs. (26)—(31) are exact in the limit
of infinite dimension. However, to be able to sum up the
renormalization series (29) and (31), in practical calcu-
lation we have to resort to an approximate procedure
described in the next section.

IV. DIAGRAMMATIC TECHNIQUE
FOR HUBBARD OPERATORS
AND SUMMATION
OF THE RENORMALIZATION SERIES

The first problem one has to face trying to sum up
the renormalization series is that it is necessary to have

a simple and convenient expression for the bare atomic
cumulants MY for arbitrary k. However, the correspond-
ing calculation turns out to be extremely tedious, and
the explicit expressions grow enormously with k. On the
other hand, the atomic cumulants can also be calculated
diagrammatically in terms of a diagrammatic technique
for the Hubbard operators (HO). The diagrammatic rep-
resentation of the terms contributing to MY becomes par-
ticularly convenient in approximate calculation, in which
one can perform selective summations of classes of dia-
grams. Here we use the technique developed by Yang
and Wang?? and subsequently extended to the case of
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pseudofermion HO by Bartkowiak.?3

The basis of the single-site (atomic) Hilbert subspace
is chosen as | ie) (empty site i — the vacuum state),
li+) = cL_ |ie), |i—) = cL |ie), and |id) = chL |ie),
with the corresponding eigenenergies

eh=0, e = —ohi—p, cu=—2u +U.

(32)
We define 16 HO as
Ly, =lia)(iv |, (33)

where o,y = e, +, —,d. The fermion creation and anni-
hilation operators can be written as linear combinations
of HO as

c;'_,_ = Li+e + Li_ o

i— = Li—e - in+ . (34)
It follows from Eq. (33) that the commutation relations
for the HO are

[Lix'w L"jc)\]ﬂ = 5ij (6’YNL§1/\ + 7l5a/\Lfm) ) (35)

where n = +. The plus sign is used if both operators
have pseudofermion character, and the minus sign if at
least one of them has pseudoboson character. A Hubbard
operator L, is a pseudofermion operator [(ay) € Y],
when the difference between the number of fermions on
site i in state | ia) and in state | iy) is odd, and it is a
pseudoboson operator [(ay) € Y], when this difference
is even.?% In our case YTj = {(ec), (ce), (do), (cd)}, and
Ty, = {(05), (de), (ed), (ee), (dd), (c0)}, where o = +1.
Moreover, the diagonal HO L, satisfy the normalization
condition

dLi,=1. (36)

Expressions (34) for fermion operators can be substi-
tuted into the expression (10) for the nth-order contribu-
tion to (S)o, so that the LCE can be formulated in terms
of HO. The fact that (anti)commutators of HO are linear
in HO enables us to prove the Wick theorem and then,
with the following procedure, to construct a diagram-
matic technique. Each Hubbard orbital produces a HO
vertex and vertices are embraced together by ovals in all
possible ways, which define single-site blocks. Their ap-
pearance follows from the cumulant representation of the
unperturbed ensemble averages. Sums of certain single-
site blocks correspond to bare vertices in the diagram-
matic technique used in the previous sections, and repre-
sent atomic cumulants M2. The dynamics of the system
implies appearance of the single-site Green’s functions,
which are represented diagrammatically in the frequency
space as

ar 1 1

=g = ———— .
IR A A Py = =

(37
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Here, because of the “priority rule” in using the Wick
theorem, (a7y) can be any of the following pairs:
(+e), (—e), (de), (—+), (d+), and (d—). Depending on
the corresponding HO, the Matsubara frequency w, is
either a boson or a fermion one. Single-site Green’s-
function lines (37) can appear in many different combina-
tions in single-site blocks. Details of this diagrammatic
technique were reported earlier,?® together with the com-
plete list of HO vertices and their weight factors for the
Hubbard model.

In order to obtain a convenient diagrammatic expres-
sion for the atomic cumulants, we define the generating
functionall®

Wz} = exp(Ue + Toe + Te) + eXP(ys + Tie + Tar)
+exp(y— + T—e + Td—)
+exp(yq + Tay +Ta—) , (38)

where

Yo = —PBq . (39)

The site indices in Egs. (38) and (39) have been dropped,
due to the temporarily assumed translational invariance
of the system. According to the general graphical rules
of the diagrammatic technique for HO,22:23 contributions
of blocks can be evaluated by taking derivatives of In W
with respect to appropriate zo, at * = 0. If we now
change the variables to

he = Tse — Tas » (40)
the zero-order atomic cumulant takes the form

M(? =InW = x4, + T4 + In( eVethetho | oysthy
+e¥-th- e¥e) . (41)

Due to this, the first-order atomic cumulant

M (o,wy,) = 7 + 4
goe(wn)sae + gd&(wn)sdﬁ ) (42)

where

eYeths+h + eVotho
Scre =

b

eYethi+h_ + ey++h + ey—+h_ + evd
(43)
Sdﬁ‘ =1- SUE )

becomes a functional of the variables hy only. Therefore,
all higher-order cumulants can be expressed in terms of
derivatives of MY (o, wy,) with respect to h,. For example,
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M3 (0, wn; 0,wp) = ( s

o-e)_’_(o'e

d&)

4 ac ge + ac

ac

_ ) ( )62an+ (wn) 52lnW
= goe(Wp) | Goe(wn 5oz, 9do (Wn) 55—
" ) (wn) 2InWw s )621nW
gdo-(wp Goe\Wn 604a0T 00 gds\Wn 63355
SM?(o,w
= o () 2L ) (44
where

9o (Wp) = goe(wp) — gdo (wp) - (45)

Diagrams which appear in Eq. (44) contain only simple creation and annihilation HO vertices.??> However, even in the
diagrammatic expression for the second-order cumulant for different spin variables,

Mg(o,wn;(r,wp)=< e

7s ) + (==

=)

g oe c o
4+ (5% %% ) 4+ (—% %5

P (L ) =D

+z( ¢n KA ay ) ,

besides terms of the form similar to those in Eq. (44),
other terms which involve more complicated (scattering)
HO vertices already appear. The symbol > in Eq. (46)
stands for the sum of diagrams of the following form, with
(ay),(¢n) € Ty, and (kA) € Tp. Inclusion of the terms
which involve scattering HO vertices makes it practically
impossible to sum up the renormalization series. Con-
sequently, we assume a serious simplification by keeping
only diagrams of the form

( oy KA (] . ) ,
where the Green’s-function lines are fermion ones. In
fact, this class of diagrams is the only one which ap-
pears for the case of cumulants with equal spin vari-
ables [as illustrated by Eq. (44)], so that keeping only
diagrams of the form (47) remains exact for the case of
the Falicov-Kimball model, where only one of the two
spin species is allowed to hop. We have checked that
the proposed approach allows one to reproduce the ex-
act solution by Brandt and Mielsch® of this model in
the limit d — oo (we plan to describe this in detail in
a separate publication). For the half-filled-band case
discussed in this paper, the above approximation does
not violate any general thermodynamic identities and
maintains the ®-derivable character of the proposed ap-
proach. The approximation neglects quantum fluctua-
tions between single-site states which involve the inter-
play of spin-up and spin-down electrons. The quantum
fluctuations are important at low temperatures, and the
interplay between spin-up and spin-down electrons is im-
portant only for small (but finite) U. Therefore, one can

(47)

(46)

[
expect that this approximation will not affect seriously
the results of the present work, except for the small-U
region at low temperatures.
The nth-order cumulants can now be expressed in the
general analytical form
MR (0n,Wn; -+ -3 01,w1) = Goy (W1) *** Gor_y (Wn—1)
"I Moy, wh)

bhoy -+ bho,_, (48)

With such simplification, we can sum up renormalization
series (29) for the first-order renormalized cumulant. The
final result can be written in the functional form as

My (o,wp) = M (o, wn){hy + 6., h_+6_},

where

0, = ZGl(T,wp)g,(wp) .

(49)

(50)

For calculating the physical quantities of our interest, we
set h+ = 0 and, taking into account Eq. (27), arrive at
the self-consistent equations for the quantities 6,

O = —ﬁz Z Ml(aa wn) go’(wn) %

(tq)?

X ) (51)
zq: 1 — [BtqMi(0,wn)]”
where, according to Eqgs. (49) and (42),
Mi(o,wn) = go(wn)Soe{0+,6-} + gaz(wn) - (52)
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Soe(04,0-) is given by Eq. (43) with h, replaced by 6.
It is important to point out that the role of 6, in the
present theory for the Hubbard model is similar to that
of the Weiss fields in the MFA for spin systems.

Once Eq. (51) is solved, the expression for the renor-
malized first-order cumulant [Eq. (52)] becomes explicit,
and hence the functional ® and the self-field G; can be
found by Egs. (26) and (27), respectively. Finally, sum-
mation of renormalization series (31) for the zero-order
cumulant gives

My = M8{0+a 0—} + ZGl(g, wn)gd&(wn) ) (53)

oan

where M{{6,6_} is the zero-order atomic cumulant of
Eq. (41) at h; = 6, and x4, = 0. This, using Eq. (30)
allows one to evaluate explicitly the grand-canonical po-
tential.

Generalization of the above analyses to two-
interpenetrating-sublattices systems is straightforward.
Generally, besides the equation for the determination of
the chemical potential, there will be four coupled self-
consistent equations for 6%, where v = £ is the sub-
lattice index. The uniform (or staggered) magnetization
per site is obtained by taking the derivative of the grand-
canonical potential with respect to the external uniform
(or staggered) magnetic field h (or hs).

V. ANTIFERROMAGNETISM FOR THE CASE
OF THE HALF-FILLED ENERGY BAND

For the special case of the half-filled energy band (n =

1 and p = U/2) we can prove that the only solutions of
the coupled self-consistent equations are those for which
6% = —0; = —6% = 6= = 6. Therefore, we arrive at
J

F
Nt*

o==+1

Taking the limit U* — 0 in Eqgs. (54)—(58) leads to the
vanishing magnetization m,, and to the free energy

F 1 e 2 €
— = T —— —€/2) In2 —
N 2T m/_wde exp(—€“/2) In2 cosh 5T

(59)

These results are just the ones which one should obtain
for the free electron gas on the infinite dimensional lat-
tice. Hence, our approach becomes exact at the limit
U=0.

At the ground state (T™* — 0), we obtain the energy

E U* 1 © 9
e = 7{1 - /_Oo de exp(—e®/2)

x [1 + 4(e/U*)?] 1/2} ,
(60)
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only one equation. After performing the summation over
frequencies, and taking the limit d — oo in the sums
over momenta according to Eq. (24), the self-consistent
equation, in terms of the normalized variables T* = T'/t*,
U* = U/t*, and ¥ = 6T*, can be written in the simple
form

€2

* 1 e
49 =-C U )2\/—2_71_ /~OO de exp(—€2/2) NG

T (€)
27>’

g
X t;t 7 (@ tanh

(54)
where
/T _ o=9/T*

o= 2e=U*/(2T*) 4 =9/T* | ¢9/T* (55)

and

To(€) = 2 [(U*)? +2( + UA)]1/2 ,

(56)
A= [ + (U2 - )] ? .

For the considered case of n = 1, the uniform magne-
tization always vanishes, whereas the antiferromagnetic
order parameter (the staggered magnetization per site)
can be expressed in terms of the self-consistent solutions
of Eq. (54) as

mg = C — 20/U* . (57)

Hence, the solution ¥ = 0 corresponds to the paramag-
netic phase. The free energy of the system, F' = Q + un,
has the general form

= U* —T*In[2e7 U7/ T 4 e=%/T" 4 /T 4 4T* Ind(1 47 V/CT)) 4+ Cw

—2T*—1—/°°de exp(—€2/2) Z lncoshz”—(e)
Vor J—oo 2T*

(58)

I

with the sublattice magnetization
1 © —-1/2
My = —— de exp(—€2/2) [1 + 4(e/U*)?
o= 7= [ _de exp(=e/2) [L+ 4e/UY]

- fﬁ exp|(U*/4)?] Ko((U*/4)?) (61)

where Ky(z) is the modified Bessel function of the second
kind. The antiferromagnetic phase is stable for any U*,
except U* = 0.

The temperature dependence of the order parameter
mq has been computed numerically using Egs. (54)—(57),
and is shown in Fig. 1. For U* > 0.3, m, decreases mono-
tonically with increasing temperature. But for very small
values of U*, the initial increase of m, with temperature
suggests an inadequacy of the approximation introduced
in Sec. IV in the small-U region. The neglected quan-
tum fluctuations between single-site states, described by



FIG. 1. Sublattice magnetization vs temperature for
U/t* = 0.2 (dotted curve), 0.6 (dash-dotted curve), 1.5
(dashed curve), and 6.0 (solid curve).

diagrams containing scattering HO vertices, should sup-
press this increase of the order parameter. For any value
of U*, it follows from the expansion of the right-hand
side of Eq. (57) that near the critical temperature T,
ma(T*) < (T% — T*)Y/2 . Hence, the derived sublattice
magnetization exhibits the typical mean-field behavior.
The solid curve in Fig. 2 is the Néel temperature ob-
tained by taking the limit ¥ — 0 in Eq. (54). The dashed
curve, shown in Fig. 2 for comparison, represents the crit-
ical temperature calculated from the second-order renor-
malized LCE,3! where the series for the generating func-
tional ® in Eq. (26), which is exact in the limit d — oo,
has been truncated at the first (the second order in t) di-
agram. It is seen that the inclusion of all the higher-order
loop diagrams gives lower critical temperature, but the
shapes of both curves are very similar. However, it is im-
portant to point out that, in contrast to the present cal-
culation, the second-order calculation does not reproduce
the exact results for free energy and order parameter at
the U = 0 limit.3! The MFA transition temperature of
the effective antiferromagnetic Heisenberg Hamiltonian
with J = 4t2/U is shown in Fig. 2 as the dotted curve.
Both the solid and the dashed curves asymptotically ap-
proach this result in the large-U limit. Since the MFT
for the Heisenberg model is exact in d = oo dimensions,
this agreement indicates that, as expected, the approxi-
mation of keeping only diagrams of the form (47), intro-
duces practically no effect in the region of strong corre-
lations. On the other hand, as follows from the small-U
perturbation theory33 and from the numerical study of
Jarrell,” Ty should be exponentially small for small val-
ues of U, whereas in our result it is almost linear in U
[T§ o< (a—blnU*) U*]. This (as has been discussed in the
preceding section) is because the introduced approxima-
tion leaves out quantum fluctuations between single-site
states which involve the interplay of motion of spin-up
and spin-down electrons. These fluctuations are respon-
sible for the decrease of the critical temperature. Note
that the solid curve in Fig. 2 is very similar in shape to
the one obtained by Brandt and Mielsch for the critical
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FIG. 2. Néel temperatures computed from the renormal-

ized LCE within the present approach (solid curve), and in the
second order (dashed curve). The dotted curve is the MFA
result for the effective antiferromagnetic Heisenberg Hamilto-
nian with J = 4t?/U.

temperature in the exact solution of the Falicov-Kimball
model.®

VI. CONCLUSIONS

The vertex-renormalized LCE has been used to derive
the exact expressions for the generating functional ® in
the limit d — oo, the self-fields, and the grand-canonical
potential of the Hubbard model. Using the diagrammatic
technique for HO, we have then developed an approxi-
mate method to sum up the renormalization series for
the cumulants. The approximation consists in neglect-
ing diagrams which contain scattering HO vertices in
the diagrammatic expressions for the atomic (unrenor-
malized) cumulants. Such diagrams describe quantum
fluctuations between single-site states which involve the
interplay of spin-up and spin-down electrons.

Our VR scheme leads to a set of self-consistent equa-
tions similar to those in the MFT for spin systems,
and consequently to a self-consistent symmetry breaking.
Therefore, it provides a basis to study various magnetic
orderings of the system at arbitrary temperature. We
have presented solutions for the case of the half-filled en-
ergy band. The obtained results are exact both in the
limit of U — O (free electrons on the infinite dimensional
lattice), and in the large-U region, reproducing the exact
Heisenberg mean-field behavior in the limit d — co. The
proposed approach is valid for the whole range of tem-
peratures and for arbitrary U, except for the region of
very small (but finite) U/t*, where the neglected quan-
tum fluctuations become important.

A possible direction to develop the present scheme is
to generate the 1/z (or 1/d) expansion.?® Within the
proposed LCE-based approach, this is relatively simple.
Although there are an infinite number of diagrams for
® which contribute to a certain order in 1/d, no higher-
order VR is necessary, and the corresponding diagram-
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matic series are easy to sum up.

The described method is quite general, and, using the
diagrammatic technique for HO, can be easily adopted to
other strongly correlated fermion systems. In some cases
[e.g., the Falicov-Kimball model and the quantum lattice
gas model (the so-called “spinless fermion” model)], no
approximation is necessary to sum up the renormaliza-
tion series, and the method can be used to obtain exact
solutions in the limit of infinite dimension.34
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