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In this paper, a multiple-scattering formalism for electromagnetic waves is presented. Its application
to the three-dimensional periodic dielectric structures is given in a form similar to the usual Korringa-
Kohn-Rostoker form of scalar waves. Using this approach, the band-structure results of touching
spheres of diamond structure in a dielectric medium with dielectric constant 12.96 are calculated. The
application to disordered systems under the coherent-potential approximation is discussed.

I. INTRODUCTION

Recent theoretically designed periodic structures with
sizable photonic band gaps and their experimental reali-
zations' have stimulated further interest in studies of
both the localization of electromagnetic (em) waves and
the potential applications of the new photonic band-gap
materials. While the current plane-wave-based theories
can yield the photonic band structures for three-
dimensional (3D) periodic dielectric structures with
reasonable accuracy, an adequate treatment of 3D disor-
dered dielectric systems is lacking even in the context of a
mean-field theory, e.g. , the coherent-potential approxima-
tion (CPA). Modern multiple-scattering theory (MST),
through its success in the electronic structure calcula-
tions for both ordered and disordered systems, shows
great promise for studies of propagation and scattering of
em waves in both ordered and disordered media.

MST in its modern form has been developed mainly for
studies of electronic systems, although it originated from
studies of classical waves (including em waves). The sca-
lar wave approximation to em waves, which enables the
straightforward application of all the existing MST tech-
niques, has been shown to be inadequate even qualitative-
ly. Therefore, a MST for em waves, taking into account
fully their vector wave nature, will provide a unified
theoretical scheme for treating both ordered and disor-
dered dielectric systems. In this paper we present a
rigorous multiple-scattering formalism and its applica-
tion to both the periodic and substitutional disordered
dielectric systems. We have noticed some previous works

on the MST of the em waves. But they only applied the
theory to two-dimensional (2D) systems. There has also
been some previous work in the study of em waves in a
disordered medium using MST. It concentrated mostly
on the practical aspects of applications for some special
cases such as the long-wavelength limit, rather than pro-
viding a general framework of the theory. In this paper
we will present a general and rigorous framework and,
through a numerical example, demonstrate that MST can
be applied to study em waves with relative ease and
without the need to invoke approximations. In Sec. II we
first derive the MST equations for vector waves. The for-
malism is given in such a way that only slight
modifications of existing Korringa-Kohn-Ro stoker
(KKR) code for electronic band calculations are neces-
sary for photonic band calculations. The numerical re-
sults of photonic bands for touching vacuum spheres of
diamond structure in a dielectric medium with dielectric
constant 12.96 calculated by this approach is then report-
ed. Finally, we discuss the Green's function in the pres-
ence of the scatterers and the prospect of applying the
CPA to the em waves.

II. MULTIPLE-SCATTERING THEORY
FOR em WAVES

In a medium where the dielectric constant e(r) is posi-
tion dependent, Maxwell's equations for em waves can be
written as

VXE=ikH, VXH= —ike(r)E,
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which by substitution can be reduced to

VX[VXE(r)]—k E(r)=k [e(r) —1]E(r), (2)

where k =co/c, co is the angular frequency and c is the
speed of light in vacuum. Following the discussion given
by Newton, we use the free space tensor Green's func-
tion which satisfies the differential equation

where Z stands for either J or H.
Using Eq. (2) to substitute the factor k [e(r)—1]E in

the integrand of Eq. (4) by V X (V X E)—k E, integrating
by parts, and making use of the equation for the free
space Green's function, Eq. (3), the integral equation, Eq.
(4) is transformed into

Eo(r)= fdS' . [do(r, r') x [V'XE(r')]
V X [Vxdo(r, r')] —k do(r, r')=6(r —r')I, + [V' X do(r, r') ] X E(r') ], (12)

with the boundary condition that at large distance r it
contains only outgoing spherical waves. We can combine
the differential equation (2) and the scattering boundary
condition into an integral equation, similar to the so-
called Lippmann-Schwinger equation in the scalar wave
MST.

E(r)=ED(r)+ f d r'do(r, r')k [e(r') —1]E(r') . (4)

The free space Green's function with the boundary condi-
tion specified above is given by

1 ikIr —r'I

d (r, r') = I+ VV
4~~ r —r'

which is a surface integral that encloses the entire assem-
bly of the scatterers.

Now for the treatment of MST we partition the space
into nonoverlapping cells with each cell containing a
single-cell scattering potential k [e (r) —1]. We have

Eo( r ) =g f d S' .
[ do( r, r' ) X [V' X E(r' ) ]

J

+[V'Xdo(r, r')]XE(r')I . (13)

For any given r' inside and on the surface of cell j, we ex-
pand both Eo and E in terms of the vector spherical func-
tions:

(14)
I'm 'o '

It can be expanded in terms of vector spherical solid har-
monics:

I Ji M(r) &
=jl(kr)IXi (r) &,

(JI M(r) =ji(kr)(Xi (r)

IH, M(r) &
= —ikhi(kr)lxl (r) &,

(HI M(r)l = ikhl(kr)(XI (—r)l,

(7)

where the vector spherical harmonics XI are defined as

XI = irXVY& l&l(—i+ I) .

Note that the bra-ket notation for the magnetic multipole
mode applies only on the spherical harmonics:

IX, (r)&=X, (r), (X, (r)I=X,* (r),
and the prefactor —i in Eq. (8) does not change sign. The
electric multipole modes can be defined in terms of the
magnetic multipole mode as follows:

Iz, ,(r) &
= ——„vx Iz, (10)

&z, ,(r)l= —'vx&zI Ml,

do(r, r')= —g [IJI (r)&(HI (r')I8(r' —r)
1mo

+ IHi (r) &( J& (r')I8(r r')], (6)—
where l, m are angular indices, 0 is either E (for electric
multipole mode) or M (for magnetic multipole mode).
The vector spherical solid harmonics are defined for the
magnetic multipole mode as

IE(r) &
= g IP| (r) &ai'

I'm 'o'

where the basis functions Pjl are given as

+ f dr'do(r, r')k [e~(r') —1] I
Pjt (r') & (16)

ce11j

Using the expansion Eq. (6) for r outside the circumscrib-
ing sphere of the scattering potential in cell j, Pi (r) can
be written in terms of the spherical solid harmonics and
the scattering t matrix:

I'm 'o. '
(17)

where the scattering t matrix is given by

(18)

The basis functions PjI and the t matrix can be obtained
either by solving a differential equation for a regular solu-
tion to the single-cell scattering problem whose boundary
condition at the surface of the circumscribing sphere of
that cell is specified by Eq. (17) or by solving the integral
equation, Eq. (16), iteratively. In the case of dielectric
spheres, the circumscribing sphere of a cell potential is
identical to the dielectric sphere. The solution to the
basis functions and the t matrix in this case can be ob-
tained directly from the Mie scattering solution: '
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Clm o
lmo, l'm'o' l, l' m, m' o, a' k(1+ ~

lclm o

stant dielectric constant e inside the volume enclosed by
the surface S, they satisfy

and the c's are [ A(r), B(r)]s=0 . (22)

ej—l ( k; ) [kaj l ( ka ) ]'+j l ( ka ) [k,.aj l ( k; a ) ]'

ej l(k, a )[kanl(ka)]' —nl(ka)[k, aj l(k;a )]'
This identity allows us to convert the cell surface integral
in Eq. (20) to a surface integral over the circumscribing
sphere of the single-cell scattering potential;

—j l(k;a )[kanl(ka)]'+j l(ka)[k;aj l(k, a )]'

jl(k, a )[kanl(ka)]' —nl(ka)[k, ajl(k;a )]'

where nl are spherical Neumann functions and k,. =V'ek.
Substitute the expansions given by Eqs. (14) and (15),

and the expansion of the free space Green's function, Eq.
(6), into Eq. (13), and compare the coefficients of
Jl (r; ) &. We obtain

[(Hl (R —R;+r )I, IPt, .(r )&] „,ai

(0)i
aim o. (23)

where S'" denotes the surface of the circumscribing
sphere of cell j.

To convert Eq. (23) into a more usable form, we use the
identities Eqs. (A14) —(A16) in Appendix A and obtain
the following Wronskian relations:

y [«I .(Rj —R;+r, )I, IPJi .(r, )&]s
j, l'm 'o. '

Xai . , = —a,"',
&]s=0

(20) where Z stands for either J or H, and

(24)

where S. denotes the surface of cell j and we have used
the following shorthand notation for the Wronskian-like
surface integrals:

[ A, B]s—= It)dS I A(r) X [VXB(r)]

+[VX A(r)]XB(r)] . (21)

Equation (20) is the general form of the secular equation
in MST. However, the use of the cell surface integrals is
often cumbersome. It can be greatly simplified for dielec-
tric spheres, as described in the following process.

If we use the Czaussian theorem to convert the above
surface integral into a volume integral, it is easy to show
that if both A and B are solutions to Eq. (2) with con-

I: ( Ji .I, IHI' ' ' & ]s ~ll'~

[(Hl .I, I Jl .& ]s = on'o
(25)

(Hl (r —R)I= g Gl .l. ~ (R)(Jl ~ (r)I,
l'm 'o. '

(26)

where the structure constants Gl . l ~ (R) are given by

The above equations can be regarded as normalization
conditions for the spherical solid harmonics.

Similar to the case of the scalar solid harmonic, the
regular and irregular vector solid harmonics can also be
expanded in terms of "structure constants. " In Appendix
B, we derive the following expansion:

QC(l ll;m pp)gl „.l. —„(R)C(l'll';m' pp), o =o.'—
P

1/22l'+1
l'+ 1

QC(l ll;m pp)gl „.l, —
l „(R)C(l'—1 ll', m' pp, ), —

P

o. =E, o.'=M

Gl l. (R)= cT=. M, o'=F.
1/22l'+1

QC(l ll;m pp)gl „l,—„(R)C(l'.—1 ll';m' —pp),
p

(27)

and the gl „.l. i . „(R)'s are the structure constants for the scalar waves. Applying the above equations (24), (25),
and (26) to Eq. (23), we finally obtain

(0)i ik
!ma 2 ij ~ll' mm' ao' 2 lmo I ma" l k l ~ l'm'a'

j, lmo-

Equation (28) is the MST equation for photon scattering
problems. Except for the additional matrix indices o. and
o. ', it is in exactly the same form as the MST equation for
a scalar wave.

For stationary-state solutions, i.e., solutions to Eq. (4)
without the incident wave E0, the problem becomes to

solve the following secular equation:

ik
~ij ~ll'~mm ~aa X'l'm a, 1"m "o"

lII II II

(29)
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scattering potential is given in recent works. ' ' In this
section we outline the generalization to the vector
Green's function. As in the scalar wave case, to apply
KKR-CPA, ' we assume in this section that all cell
scattering potentials are spherically symmetric. The gen-
eralization of the Green's function to nonspherical poten-
tials follows exactly as in the case of scalar waves.

The Green's function d(r, r') satisfies the differential
equation

X U r
Wave vector

W

VX[VXd(r, r')] —k d(r, r') —k [e(r)—1]d(r, r')

=6(r —r')I . (32)

FIG. 1. Calculated photonic band structure for a diamond
dielectric structure consisting of touching vacuum spheres in a
material of dielectric constant 12.96. The frequency is given in
units of c/a, where a is the cubic lattice constant of the dia-
mond lattice and c is the speed of light in vacuum.

Using the Bloch's theorem for a periodic system, we
can Fourier-transform Eq. (29) and obtain

Under the boundary condition that the Green's function
becomes an outgoing spherical wave at infinity, we can
obtain the Dyson equation for the Green's function in a
form similar to that for the wave function:

d(r, r')=do(r, r')+ J d r"k[e(r")—1]do(r, r")d(r", r') .

(33)

Similar to the scalar case, the Green's function can be ex-
pressed in terms of the regular and irregular solutions
within each cell (for Ir I

)
I

r'
I
):

=0, (30)

R,.
(31)

where the indices s and s' are site indices within each unit
cell and G(k)'s are the structure constants

d(r, r') =—
Im o, I'm 'o'

1m a
(34)

and can be calculated similarly as those for scalar
waves. '

In order to test our formalism and its convergence
properties, we have carried out a band-structure calcula-
tion for touching spheres in a diamond structure in a
dielectric medium with dielectric constant 12.96. Calcu-
lations were carried out with the angular momentum
truncated at various values. We found little change in
the results beyond I „=3. In addition, the results forl,„=3 agree with those obtained using plane waves"
within a half percent. The results of our calculation us-
ing l „=3are shown in Fig. 1.

We note that, for the same level of accuracy, MST
needs far fewer basis functions than plane-wave-based
methods. In our case, l „=3 means 2 X 15 basis func-
tions each in the electric and the magnetic multipole
modes, for a total of a 60 X 60 size matrix.

III. THE GREEN'S FUNCTION AND THE CPA

The main advantage of MST compared to other ap-
proaches is its direct calculation of the Green's function
and its capability of dealing with defects and disorder. A
Green s-function formalism is the prerequisite for the ap-
plication of the coherent-potential approximation' to a
disordered system. MST in this regard provides the natu-
ral framework, ' in addition to the less sophisticated case
of that of a tight-binding model.

A general derivation of the scalar Green's function
with the MST framework for an arbitrary space-filling

where g is the regular solution inside cell i,

and g' is the irregular solution in cell i which matches
continuously and smoothly to the solid harmonic J on the
circumscribing sphere. Note that in the above equation
the t matrix has only diagonal elements due to the spheri-
cal symmetry. It is easy to verify that the expansion of
the Green's function in the form of Eq. (34) satisfies the
differential equation, Eq. (32), for any rWr'. The proper
singular behavior at r =r' and the normalization are
determined by the matrix ~, which is the generalization of
the scattering path operator in the scalar MST. ' By sub-
stituting the expansion Eq. (34) into the Dyson equation,
Eq. (33), and using the expansion of the free space
Green's function in terms of the structure constants, also
noting that the regular solution satisfies the integral equa-
tion

(gI (r)l = ( JI (r) l(t/ )

+f d r'do(r, r')[e(r) —1](gI (r')I,

and it matches to

( JI (r)I(t/ ) '+ (HI (r)
I

at the boundary of the sphere, we obtain the equation for
the scattering path operator:
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+Im o, I'm'o' tlm o ~ij ~ll'~mm '~oo'

ku
1mo. ~ ~Imo. 1«m«o" +I"m "~T" I'm'o'

kWi
l«m «o.«

(35)

Clearly, the matrix ~ can be calculated by inverting the
secular matrix given in Eq. (29).

If two different scattering potentials, described by the t
matrixes tl and tl, are randomly distributed on a
given lattice, the CPA can be used to treat the system
within a mean-field context. Following the approach of
KKR-CPA, we define an effective mean-field medium
represented by a t matrix tl, whose values are deter-
mined self-consistently, and the scattering path operator
for the effective medium is given by

(e, +ie2), g, = —(e, —iez), go= e3
2 2

(A2)

Tii (r) =Xi (r), (A3)

Tn+i (r)=— l+1
2l +1

1/2

X"(r)+ 2l+1

1/2

x',.'(r),
(A4)

and e; are unit vectors along the Cartesian coordinate
axes.

TJi (r) are related to the vector harmonics by the fol-
lowing equations:

c ij c
+1m', I'm'o-' tlmo- ~ij ~II'~mm'~ao-'

+ lmo ~ ~lmo. 1«m«o. « ~«c &J

kl =i
I«m "o"

T i-ii m(r)=

where

l
2l +1

1/2 1/2

X"(r)+ X"(r)m r

(A5)

(36)

The scattering effect of an 2- or B-type sphere on site 0 is
described by the impurity problem

, 00 t 1 t C —1+ C, OO

where the quantities in the above equation are matrices in
l, m, and o.. The CPA self-consistent condition can then
be expressed as

and

ir X—VYi (r)
Xi (r)= &l(i+1)
Xim (r) =r Yim (r),

rV Yi (r)
x',.'(r) =

&l(l +1)

(A7)

(A8)

C, OO ~ a, 00
+Im o, I'm 'tT' ~ a lm o, I'm 'o. '

a= A, B
The vector harmonics X can be shown to have the fol-
lowing properties:

where c is the concentration of type-a potential cells.
Equations (36), (37), and (38) are used to determine the
quantities ~, t, and ~"' and H'
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J, E(r)=

H, z(r)=

l+1
2l +1

l
2l +1

l+1
2l +1

1/2

A i(«»ii im (r)

1/2

j (+,(kr)Tii+, (r)

1/2

h, ,(kr)T„, (r)

(A12)

From the definition of the harmonic functions for the
electric multipole mode, Eq. (10), and the relations given
above, we have

APPENDIX A: USEFUL RELATIONS
OF VECTOR SPHERICAL HARMONICS l

2l +1

1/2

"i+1(k")Tii+1m ( (A13)

TJi (r) =QC(l 1J;m pp) Yi „(r)g„, — (A 1)

We follow the convention of Ref. 19 and define the
functions Using these results and the orthogonality of the vector

spherical harmonics, we can obtain the following equali-
ties:

where the vectors g are defined as II)dS (Zi (r)~ X ~Z&. ~ (r)) =0, (A14)
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f dS [(Z& M(r)l X lZI. .z(r))

+(Z, (r)l XlZ, ~ (r))]=0,
f dS [(J& M(r)l X lH& z(r))

(A15)

ture constants.
The irregular vector harmonic for the magnetic mul-

tipole mode is given by

(H, M(r —R)l = ik—hI(k lr —Rl)X&* (r —R)
+ ( JI E(r ) l

X
l HI .~(r) ) ] = ——5(, ,5, , (A16) = —ik+C(l1L; m pp—, )hr(k lr —Rl )

where the integration is over the surface S of a sphere.
These equalities are useful in deriving the Wronskian re-
lations involving wave functions.

APPENDIX B: EXPANSION OF IRREGULAR
VECTOR HARMONICS

X YI* „(r—R)g„* . (Bl)

Expanding the scalar solid harmonics on the right-hand
side in terms of the scalar structure constants,

g, . &. (R)
1 /If

4vrik—g i +'
CI I, , I. ...h(„(kR)

The structure constants can be defined as the
coefficients of expansion of the irregular solid harmonics.
In this appendix we use the expansion of the irregular
vector harmonics to derive an expression for the struc- we obtain

XYI ( —R}, (B2)

(H& M(r —R) = g C(ill;m —
pp)g& . I (R)jI(kr)YI* „(r)g„*

)MI'm '

= g C(ill;m pp)g, ,
—(R)j, (kr)QC(l'1 Jm' pp)TJ, , —(r) .

pl'm '

Interchange l' and J, and note that the summation over J goes through l' —1, l', and l'+ 1. We obtain

(H& M(r —R)l = g C(11l;m pp)[gI —„.I. „(R)j&.(kr)C(l'll';m' pp)T&*&. ,—(r)
pl'm '

+gr p (,+ ) ~ „(R).JI + )(kr)C (1'+11l',m ' pp)T(".( + )
—(r)

+g&~ „.»~ „(R)j& &(«)C(l' —11l';m '
pp)T&*I &~

—(r )] .

Using the relation
1/2

(B3)

l'
QC(l ll;m —pp)
p

g( „(+,~ „(R)g.r, (kr)C(l'+11l', m' pp)—
1/2l'= —QC(ill;m —pp) l'+ 1

gI „.(,~ ~( R )g/, ( kr )C (1'—1 1 l'; m '
pp ), —(B&)

we finally obtain for the magnetic multipole mode,

(H& M(r —R}l= g C(l ll;m —pp) g& „.I. „(R)C(l'll', m' —pp)( J& ~(r)
pl'm '

1/22l'+ 1
gI „.&. , „(R)C(l'—11l',m' —pp)( J& z(r)l

For the electric multipole mode, we apply V X to the above equation and use the relation between the E-mode and the
M-mode wave functions, noting that both H and J are solutions in free space, and obtain

(H, ~(r —R)l = g C(l1L;m pp) g( ~. ( „—(R)C(l'1l';m' pp)(J/'m'E( )l
pl'm '

1/2
I

g, „, , (R)C(l' —111';m' pp)(J( ~(r)l . .—l'+1 (B7)

The above two equations are equivalent to Eqs. (26) and (27), where the structure constants are defined.
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