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Equilibrium crystal shape of silicon near (001)

15 FEBRUARY 1993-I

J. Tersoff
IBM Thomas J. Watson Research Center, Yorktoun Heights, New York 10598

E. Pehlke
Fritz Habe-r Instit-ut, Faradayweg 4-6, D 1000-Berlin 33, Federal Republic of Germany

(Received 2 October 1992)

We calculate the equilibrium shape of a silicon crystal at orientations near (001), both at T =0 and at
elevated temperature. Comparison with recent experiments shows that several topographic features ob-

served on Si directly reflect the equilibrium shape. In particular, our results resolve an apparent
discrepancy between theory and experiment, regarding faceting between regions of single-layer and

double-layer steps.

One of the oldest and most fundamental problems in
surface physics is the equilibrium shape of crystals. '

The manner in which surface energy determines the
shape of crystals in equilibrium has been understood
since the pioneering work of Wulff. However, the orien-
tation dependence of the surface free energy is generally
only known for simple models, and not for real materials.
Moreover, it is extremely difficult to observe equilibrium
crystal shapes in practice, because of the weak driving
force for shape change. Thus the formal theory of equi-
librium crystal shape has not yet lead to a detailed under-
standing of the shape of real crystals.

Here, we calculate the equilibrium shape of a silicon
crystal near the (001) orientation. Deviations from (001)
orientation (or from any low-Miller-index direction) re-
quire the formation of steps, and the orientation depen-
dence of the surface free energy is determined by the step
energies. These are calculated using a realistic Hamil-
tonian for interacting steps, which includes step
meandering at finite temperature. Our results allow us to
understand two aspects of the surface morphology, both
of which are related to faceting.

First, there has been considerable controversy regard-
ing the behavior for orientations within a few degrees of
(001) towards (110). The principal issue has been whether
faceting into regions of single-layer and double-layer
steps occurs. Theoretically it has been shown that
faceting should not occur even at T=O; yet Umbach,
Keeffe, and Blakely have apparently observed such facet-
ing. Here, by explicitly calculating the shape along the
(110) azimuth, we resolve this apparent discrepancy be-
tween theory and experiment. We also show how the
faceting disappears at elevated temperature.

The second issue which we address is the geometry for
orientations less than 1' from (001). In this case, faceting
is predicted to occur, with the crystal forming a square
pyramid with its apex along (001). This result appears to
explain a fascinating "hilly" surface morphology ob-
served on very fiat Si(001) by Tromp and Reuter, ' which
we interpret as kinetically limited faceting.

Cxiven the surface free energy as a function of orienta-
tion, the crystal shape can be constructed as described by
Wulff, or equivalently by using the formula'

r(n) =ro min [o.(m)/(rn n)], (1)
m

where r(n) is the distance from the center of the crystal
to the surface in the direction n. Here cr(m) is the free
energy per unit area of the surface with orientation m,
and ro specifies the overall size of the crystal.

For orientations vicinal to (001), the surface energy is
determined by the formation and interaction of steps.
Si(001) has attracted intense interest because of the com-
plex behavior which results from the large and anisotrop-
ic surface stress. In particular, this surface can have two
different step structures for miscuts towards (110).
At small angles of miscut from (001), single-layer (S)
steps have lower energy. However, they also have a
strong repulsive interaction, so that at small step separa-
tion (large miscut), double-layer (D) steps are favored.
We refer to surfaces with these two structures as the S
and D phases. In such a case of multiple possible surface
phases, Eq. (1) refers to the phase of lowest energy for
each orientation. However, it is enlightening to plot the
curve defined by Eq. (1) for each phase. Then the actual
crystal shape is the region inscribed by the set of curves,
and has edges wherever two curves cross.

While the orientation-dependent surface energy of Si is
not accurately known, the energy for a specific model of
Si [the Stillinger-Weber (SW) model] has been studied by
Poon et al. These model energies can be accurately
reproduced with an elastic Hamiltonian, which permits
the treatment of even rather complicated step structures,
as well as the contribution of step meandering to the free
energy. The T=O surface energy for this model is
plotted versus orientation in Fig. 1(a). The corresponding
crystal shape, from Eq. (1), is given in Fig. 2(a). Note
that, since step interactions are included here, the facets
are not planar as in simpler models.

Because the D phase has such low energy in this model
for orientations -4 from (001), the crystal forms D
facets with approximately this orientation; the S phase
never occurs in equilibrium. However, we expect that
this is an artifact of the SW model. (Other potentials'
appear to give comparable artifacts for this surface. )

In order to obtain results closer to the expected behav-
ior, we alter the parameters determined from the SW
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model, by adding 50 meV/a to the energy of each double
step or pair of single steps, where a =3.84 A is the surface
lattice constant. (The choice of 50 meV/a is discussed
below. ) Since the difference between S and D steps is un-
changed, results of previous studies ' of the surface
phase diagram (which considered only differences in ener-
gy) are still valid with these adjusted parameters. The re-
sulting energy, shown in Fig. 1(b), gives the crystal shape
shown in Fig. 2(b). [Note the expanded y scale in Fig. 2,
which makes the tilt from (001) more visible. ]

If we restrict consideration to pure S or D surface
phases, as in Fig. 1(b), then at T =0 the resulting crystal
has S and D facets meeting at a sharp edge, as on the left
side of Fig. 2(b). However, as discussed by Pehlke and
Tersoff, at intermediate angles the minimum-energy sur-
face structure consists of an ordered mixture of S and D
steps. For any given angle there is a specific periodic se-
quence of S and D steps which has minimum energy, and
each different sequence represents a distinct phase.
When several of the simplest of these mixed phases are
included in the calculation, as in Fig. 1(c), the surface is
seen to go through a sequence of distinct phases with in-
creasing angle from (001). The resulting crystal shape,
shown on the right in Fig. 2(b), is subtly changed. The
sharp edge becomes rounded; or more precisely, there is a
series of closely spaced small-angle edges between succes-
sive phases, giving a quasicontinuous rounded region of
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transition between the S and D facets.
We are now in a position to understand the observa-

tions of Umbach, Keeffe, and Blakely. Those authors
measured the spacing between steps on a curved surface
(a Si grating which had been annealed to give a gentle
periodic curvature), using a scanning tunneling micro-
scope (STM). They translated the step spacing into a lo-
cal tilt from (001), and plotted this tilt 8 versus lateral po-
sition x. Despite considerable noise from the limited
sampling, the data showed a fairly clear break at a posi-
tion x„with the local tilt jumping from -0.7 for x (x,
to —1.5' for x )x, . They interpreted this jump as corre-
sponding to an edge at x =x„rejecting faceting between
S and D phases.

(Some confusion has arisen because the STM images of
Umbach, Keeffe, and Blakely do not show any steps
which are predominantly of double-layer height. Howev-
er, as discussed by Pehlke and Tersoff, at finite tempera-
ture the nominal D steps may be thought of as bound S
pairs, and need not have the T=O double-layer atomic
structure over most of their length. Thus the interpreta-
tion of Umbach, Keeffe, and Blakely is entirely reason-
able. )

From Fig. 2(b), we can predict what such an experi-
ment should see, if performed on an equilibrium crystal.
The crystal shape inscribed by the curves in Fig. 2(b) is
shown in Fig. 3, together with the local slope 0. The
jurnp between S and D phases is not abrupt, but proceeds
through a sequence of intermediate phases, with inter-
mediate slopes. If we had included all possible intermedi-
ate phases in the calculation of Fig. 3, the plot of 0 versus
lateral position x would be quasicontinuous, resembling a
"devil's staircase. "

The jump in slope, however, takes place over a region
whose lateral extent is roughly 0.003 times the diameter
of the crystal. If we scale the equilibrium crystal shape to
a 5 pm diameter (ignoring the possible complication of
finite-size effects on the shape), the local slope would vary
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FIG. l. Energy per (001)-projected area of the Si surface I'rel-

ative to the energy of a fiat (001) surface], for orientation at an-

gle 0 from (001) toward (110). (a) Energy for SW potential, cal-
culated with elastic model as discussed in text. (b) Same, except
with energy per D step (or per S step pair) increased by 50
meV/a. (c) Same as (b), but including also several other surface
phases, consisting of various periodic ordered sequences of S
and D steps. (d) Free energy for same Hamiltonian as (b) and
(c), at indicated temperatures.
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FICx. 2. Calculated equilibrium crystal shape of Si in (110)
plane; crystal corresponds to region below all curves. Vertical
direction is (001). Note expanded y scale; x and y units are ar-
bitrary, since from Eq. (1), the shape is independent of size. (a)
Shape calculated for energy of Fig. 1(a)~ (b) Shape calculated
for energy of Fig. 1(b) (left) and of Fig. 1(c) (right).
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FIG. 3. (a) Crystal shape from Fig. 2{b) (right side). (b) Local
orientation 0=tan '(dy/dx) of crystal shape, vs lateral posi-
tion on crystal. The x and y units are arbitrary. Distinct seg-
ments of curve correspond to distinct facets (i.e., distinct surface
phases), as discussed in text.

from the S value to the D value over a lateral distance of
0

only —150 A. But the average spacing between steps for
these slopes is —100 A. Thus the local orientation can-
not be measured even in principle with sufBcient lateral
resolution on a small crystal to resolve the quasicontinu-
ous variation in orientation.

The sample studied by Umbach, Keeffe, and Blakely
had a period of 2 pm, small enough to allow significant
equilibration of the shape, but far too small to resolve the
variation in local slope across the rounded region be-
tween the S and D phases. Thus their observations are
exactly what would be expected theoretically; but because
of the small sample size, these measurements cannot dis-
tinguish between simple faceting, and the more complex
behavior expected in the therrnodynarnic limit.

Umbach, Keeffe, and Blakely were aware that the in-
herent limitation on lateral resolution might affect the
correct interpretation. However, a quantitative assess-
ment was not possible without knowing the equilibrium
crystal shape. The small extent of the transition region
between S and D facets is directly related to the fact that
the energy of each intermediate phase is only slightly
lower than the energy of a surface faceted into S and D
regions, with the same average orientation. If the ener-
gies of intermediate phases were much lower, then the ex-
tent of the transition region could become comparable to
the extent of the S facet, and the absence of a sharp edge
between S and D facets would be easily observed.

Tong and Bennett, in related work using electron
diffraction, studied a sample with an effective size of 3
mm, and a characteristic radius of curvature of —10 mm.
They found no evidence of faceting. However, this would
be expected regardless of the equilibrium shape, if, as
suggested by Alerhand et al. , equilibration of the shape
is kinetically forbidden for such a macroscopically large
sample.

So far, we have implicitly considered crystals to be
equilibrated at T=O. In practice, however, the crystal
shape can equilibrate only at elevated temperatures. As
the crystal is cooled, it falls out of equilibrium at some
temperature T* which depends weakly on the cooling

rate. Thus the final crystal shape, to the extent that it
rejects an equilibrium property, corresponds to equilibri-
um at temperature T*.

To understand the effect of temperature on the crystal
shape, we calculate the surface free energy as a function
of orientation, using the same elastic model (including
step meandering) as previously. The resulting energies
are shown in Fig. 1(d), and the corresponding crystal
shapes in Fig. 4. For simplicity, we show only tempera-
tures above the critical temperature of the S-D phase
transition, which occurs at T, =490 K with this model.
[Bear in mind that the true T, for Si(001) may be higher
or lower than in this model; the results in Fig. 4 should
be thought of as corresponding to T, + 10 K, T, + 110 K,
and T, +210 K, whatever the true value of T, may be.]
Note that at these temperatures, since there is no phase
transition with angle of miscut, the crystal shape is
smooth except for the edge at 0=0.

In an experiment, the larger the sample and the faster
the cooling rate, the higher the T at which the sample
falls out of equilibrium. For example, the shape of the
sample of Tong and Bennett discussed above certainly
corresponds to a much higher T* than does that of Um-
bach, Keeffe, and Blakely. Since the shape is seen in Fig.
4 to be a sensitive function of temperature, some care is
required in interpreting experiments where T* is not
known.

We now turn to a second aspect of the crystal shape,
the edge seen in Fig. 2 at x =0. The cause of this edge is
evident in Fig. 1(b)—the surface energy has a minimum,
not in the (001) orientation, but at a small tilt 8-0.3'
from (001). Thus a (001) surface can lower its energy by
faceting into regions of tilt +0.3 . (The minimum-energy
orientation depends sensitively upon the local contribu-
tion to the step energy, ' for which no reliable calculation
or measurement exists. We therefore chose this energy
such that the facet angle is around -0.3', to accord with
experimental observations, ' giving the choice above of a
50-meV/a correction to the SW step energy. )

The energy shown in Fig. 1(b) assumes that the surface
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FIG. 4. (a) Crystal shape and (b) local orientation of this
shape, as in Fig. 3, for indicated temperatures. The x and y
units are arbitrary. The critical temperature at which the shape
becomes smooth (except at x =0) is T, =490 K for this model.
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has only the number of steps needed to account for the
orientation. However, as noted by Alerhand et aI. , for
orientations near (001) the surface can best lower its ener-
gy by forming extra up-and-down steps, which are even
more favorable then faceting. Thus the true equilibrium
crystal shape should be calculated including such extra
steps, and (001) would then be an allowed orientation.
But as discussed elsewhere, ' the kinetics of step How
during growth or sublimation are so effective in suppress-
ing the formation of up-and-down steps, that they ap-
parently play no role in observed surface morphologies.
We therefore do not include them here.

Even faceting tends to be kinetically suppressed on vi-
cinal surfaces, ' leading to a wavy-step phase, ' though
such a phase does not occur on the equilibrium crystal. '

More recently, Tromp and Reuter' have observed the
expected faceting on extremely fiat regions of Si(001).

To calculate the shape of the equilibrium crystal very
near (001), we use the same approximations" as in Ref.
13 to treat azimuths other than

I 110]. We find that the
energy increases with azimuth so rapidly that, at T=O,
the crystal facets into regions of strictly ( 110) and
(110) azimuth. Thus the resulting shape, shown in Fig.
5(a), is a square pyramid with its apex toward (001), and
its base edges along (110) and ( 110).

If we begin with an eff'ectively infinite Si(001) surface,
and allow it to equilibrate, it should break into facets
with the orientation which minimizes the energy in Fig.
1(b). This does not uniquely determine the surface mor-
phology; but if kinetics dictate a maximally unstable
wavelength for faceting, then a natural structure resem-
bles the product of two modulations in the (110) and
(110) directions, with this wavelength. Such a structure
is shown in Fig. 5(b), and is quite similar to that observed
by Tromp and Reuter, ' allowing for thermal rounding of
the edges. Thus we believe that in this case they are actu-
ally observing the approach towards a (locally) equilibri-
um shape.

In conclusion, we have calculated the equilibrium
shape of Si near (001), both at T =0 and at elevated tem-
perature, using the best available model for the
orientation-dependent surface energy. Our results show
that several recent observations of surface morphology
can be understood as reAecting the equilibrium crystal
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FIG. 5. (a) Topographic picture of calculated crystal shape,
looking down (001). Horizontal and vertical correspond to
(110) and (110). Entire plot corresponds to region where S
phase prevails, roughly —60&x &60 in Fig. 2(b), with contours
at equal y intervals. (b) Possible surface morphology with aver-
age (001) orientation, discussed in text. Solid contours are
above average level and enclose maxima, dotted contours are
below and enclose minima. Dashed line indicates building
block used to construct complete surface.

We are grateful to S. Mukherjee for stimulating discus-
sions. This work was supported in part by QNR Con-
tract No. N00014-92-00085.

shape. The apparent faceting into S and D regions ob-
served by Umbach, Keeffe, and Blakely is consistent
with the theoretical equilibrium crystal shape, although
their effective sample size is too small to resolve the
quasicontinuous nature of the "edge" expected between S
and D facets in the thermodynamic limit. At higher tem-
perature, there is no thermodynamic transition and hence
no edge of any sort separating S and D regions. True
faceting is, however, predicted to occur closer to (001),
even at elevated temperature, explaining the novel mor-
phology observed by Tromp and Reuter' on very Aat
Si(001).

~For a review of equilibrium crystal shape, see M. Wortis, in
Chemistry and I'hysics of Solid Surfaces VII, edited by R.
Vanselow and R. F. Howe (Springer-Verlag, Berlin, 1988), p.
367.
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