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Application of the self-interaction correction to transition-metal oxides
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We have implemented the self-interaction-corrected local-spin-density approximation within the stan-

dard linear-muffin-tin-orbital —atomic-sphere-approximation band-structure method making use of a

unified Hamiltonian concept. We have used this ab initio band-structure scheme to study the electronic

structure of MnO, FeO, CoO, NiO, and CuO. We find them to be wide-gap insulators, where the top of

the valence band, of predominantly oxygen p character, shows a substantial hybridization with the metal

d states.

It has been indicated that at least some of the failures
of the local-spin-density approximation (LSDA) to de-
scribe the ground-state properties of some strongly corre-
lated systems may be due to an unphysical interaction of
an electron with itself. ' The LSDA is known to fail par-
ticularly badly for transition-metal oxides giving much
too small or zero band gaps and in some cases also too
small magnetic moments. However, subtracting explicit-
ly each electron's self-interaction leads to self-interaction
corrected (SIC) —LSDA theory, ' ' which proves very
useful for describing wide-gap insulators. This is because
it results in a splitting of occupied and unoccupied states
by the substantial on-site Coulomb interaction, which is
an essential aspect of the physics of Mott insulators.

Recently, Svane and Gunnarsson have implemented
the SIC-LSDA formalism within the linear-mu5n-tin-
orbital (LMTO) method in its tight-binding representa-
tion and have applied it to the 3d monoxides. Their ab
initio results greatly improve the description of the phys-
ics of these systems proving them to be wide-gap charge-
transfer insulators, in agreement with experiment. More-
over, as has been shown by Svane, the SIC-LSDA also
leads to a correct antiferromagnetic and semiconducting
ground state for La2Cu04 with the gap and magnetic mo-
ment in good agreement with experiment.

In this paper we concentrate on a different ab initio im-
plementation of the SIC-LSDA theory, within the stan-
dard LMTO —atoinic-sphere-approximation (ASA)
method, making use of a unified Hamiltonian concept"
while seeking the solutions of the SIC-LSDA equations.
We then apply this new band-structure scheme, SIC-
LMTO-ASA, to calculate band gaps and spin magnetic
moments for some transition-metal oxides in the observed

I

LsD~5V (r)=2f, dr'+ V„, (ly (r)l, o) (2)

with V„, being the LSDA exchange and correlation
potential. Due to the orbital dependence of the SIC po-
tential, its value and total energy depend on how well lo-
calized the orbitals y (r) are and for Bloch states, extend-
ing over the whole crystal, the SIC turns out to be
insignificant, in which case one is brought back to the
conventional local-density formalism.

Exploiting the translational symmetry of a crystal and
reformulating the problem in terms of the unified Hamil-
tonian one can transform Eq. (1) into the wave equation
for the Bloch states gi, i(r) with the wave vector k and
band index A.. When implemented within the LMTO-
ASA band-structure method the matrix elements of the
unified Hamiltonian H„, expressed in the basis set of the
muffin-tin orbitals yL (r ), read as follows:

magnetic ordering, namely, in the antiferromagnetic
structure of the second kind where the magnetic order is
along the (111)direction.

In the SIC-LSDA formalism a general one-electron
state p (r) satisfies the following wave equation:

H"'p (r)=[H s —5V (r)jy (r)=QE y (r),
a'

where H" is the conventional LSDA Hamiltonian,
the Lagrange multipliers c. ~ ensure the orthogonality of
y (r)'s, violated by the state dependence of the Hamil-
tonian.

The explicit form of the SIC potential 5V is

+ &ML"„i.& Pi, x(r)1~Vi, x(r)lfi, dr) &Ml. ', i, + & g ML„i,' & Wi, , i.'(r)l&Vi, i.(r) lfi, x(r) &ML, '*, i.

+ y y ML„i. &yi, , i.(r)l&Vi, , i.(r)i/i, , i. (r) &Mr, ",i. ,
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where Ml" z=(yl (r)~Pz z(r)); L is the combined index
for the site, orbital l, and magnetic m quantum numbers;
and all real space integrals are performed over the central
unit cell. Here by "corr" we mean all self-interaction
corrected states, and by "noncorr" the rest of the states
which are not self-interaction corrected, because not for
all the occupied states the SIC potential is significant. A
very useful feature of the unified Hamiltonian [Eq. (3)j is
the fact that at a particular k point one obtains aIl the
bands just by one matrix diagonalization. Moreover, the
self-interaction corrected solutions, as well as the non-
self-interaction corrected solutions, are obtained from the
same diagonalization, and they are automatically orthog-
onal. In other words, it is a great advantage of the
unified Hamiltonian to secure the orthogonality of the
wave functions without the need of evaluating the
Lagrange multipliers matrix. Equation (3) forms the
essence of our SIC-LMTO-ASA band-structure method.

In the present implementation the Bloch wave func-
tions are expressed in terms of the one-particle orbitals
g (r),

gz z(r)=+A& '(k)e "y (r —R„), (4)

where N is a normalization factor. During the self-
consistency (SCF) cycle, to reach convergence of the total
energy and wave functions Pk z, the orbitals g (r) have a
freedom to relax towards the self-consistent solution with
the most optimal degree of localization. This is accom-
plished through an additional set of unitary transforma-
tions operating on them in every iteration of the SCF cy-
cle till the set of equations

(7)

is satisfied for every pair a, u'. The A matrix is
transformed accordingly to comply with the back and
forth transformations between gz z and y . The above
set of equations is often referred to as localization cri-
terion since it ensures that the set of mutually orthogonal
orbitals y which minimizes the total energy has the most
optimal degree of localization. This criterion follows
from the requirement that the SIC-LSD total-energy
functional is stationary with respect to unitary transfor-
mations among the occupied orbitals y . It also implies
the Hermiticity of the Lagrange multipliers matrix, so
that one can diagonalize it to obtain the SIC-LSD eigen-

where R„'s define the positions of the unit cells and the
k- and band-dependent SIC potential has the formkR„q (r —R. )
5Vk&(r)=+A& '(k)e "6V (r —R„) . (5)

a, n

The orbital unitary transformation matrix A ~(k) en-
sures the most optimal choice of the localized orbitals
which minimize the ground-state energy. This matrix is
the most important quantity in the application of the SIC
to solids. In our formalism we start from orbitals com-
pletely localized in the central unit cell ensured by the
following choice of the A matrix:

values. The SIC-LSD eigenvalues obtained by diagonal-
izing the unified Hamiltonian matrix are in a very good
agreement with those provided by the diagonalization of
the Lagrange multipliers matrix.

In all practical applications we have found the orbitals
y (r) to be nearly completely localized within the central
unit cell, and therefore we have only considered the n =0
term in Eq. (5) for the construction of 5V& z(r). More-
over, we only retain the spherically symmetric terms in
the SIC potential expansion with respect to the angular
momentum components. With respect to the basis func-
tions we have performed calculations when s, p, and d
muffin-tin orbitals have been placed on every transition-
metal and oxygen site. However, in order to check con-
vergence with respect to basis functions we have also per-
formed calculations in the case when only s and p basis
functions on the oxygen sites have been considered.
Moreover, in the latter case we have performed both one
and two energy-panel calculations with respect to the Q
2s states. In all calculations we have assumed such ASA
sphere radii which would give nearly charge neutral
spheres. In the case of CuO we have chosen a lattice pa-
rameter of 8.022 a.u. after Ref. 8 and for the other com-
pounds we have used the lattice parameters quoted in
Ref. 9.

We have applied the self-interaction correction only to
the occupied transition-metal 3d states. Applying SIC
also to the oxygen 2p states has turned out to be energeti-
cally unfavorable. The criterion for the choice of the
bands to be self-interaction corrected has been such that
the spin moment has been maximized, in accordance with
experiment and Hund's first rule. Therefore, for MnO we
have corrected the five majority-spin bands, and for FeO,
CoO, NiO, and CuO we have corrected additionally one,
two, three, and four minority-spin bands, respectively. In
any case the lowest subband contains exactly the number
of bands that are self-interaction corrected, and these are
further split into majority and minority subbands. There
are of course other possible choices. For example, in
CoO we have also tried to correct four majority and three
minority bands to minimize the spin moment. However,
it has turned out to be energetically unfavorable and led
also to a decrease of the band gap by 1 eV.

Our ab initio results for band gaps and spin magnetic
moments, corresponding to one energy-panel calculation
with s, p, and d basis functions placed on all sites, are
given in Table I, where the respective LSDA and experi-
mental' ' values are also quoted for comparison. They
indicate, in agreement with experiment, ' ' ' that SIC-
LSDA theory predicts MnO, FeO, CoO, NiO, and CuO
to be strongly correlated wide-gap charge-transfer insula-
tors, and therefore SIC-LSDA appears to be a better ap-
proximation to the density-functional theory than LSDA.
This remains true independently of the number of energy
panels or basis functions considered since the numbers
from all the calculations we have performed compare
very favorably. The inhuence of the d-oxygen muffin-tin
orbitals has been reAected on the band gap through its
decrease by typically 0.2—0.3 eV as compared to the case
when only s and p basis functions have been placed on
every oxygen site. Similar observation is true with
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TABLE I. One-panel calculations with s,p, d orbitals on transition-metal and oxygen sites.

Band gap (eV) Spin magnetic moment
(p~)

Expt.
(total)System LSDA SIC-LSDA Expt. LSDA SIC-LSDA

Total
energy SIC

difference energy
(eV) (eV)

MnO
FeO
CoO
NiO
CUO

1.45
0.00
0.00
0.40
0.00

3.57
3.25
2.51
2.66
1.00

3.6-3.8

2.4
4.3,4.0

1.37

4.49
3.46
2.38
1.06
0.00

4.64
3.55
2.59
1.49
0.64

4.79,4.58
3.32

3.35, 3.8
1.77, 1.64, 1.90

0.65

3.14
3.75
5.17
8.12

10.23

3 ~ 86
5.17
7.15
9.37

11.81
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FICi. 1. SIC-LSDA density of states for (a) MnO, (b) FeO, (c) CoO, (d) NiO, and (e) CuO. Solid curves correspond to the total den-
sities, dotted curves describe the transition-metal contributions to the density of states, and dashed curves are due to the oxygens.
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respect to energy panels. For all monoxides the SIC-
LSDA occupied 3d bands lie substantially below the oxy-
gen bands, and the latter strongly hybridize with the
transition-metal 3d states. Also, it is very reassuring
that, in spite of a very different implementation of the
SIC formalism, our results appear to be in good agree-
ment with the results of Svane and Gunnarsson.

From the last two columns of Table I one can see that
the SIC-LSDA energy functional gives a substantially
lower total energy than the LSDA energy functional, and
that the relation

SIC LSDA SIC-LSDA (8)

very well fulfilled in the case of atoms, is obviously not
true in the case of oxides. Here E»c is the expectation
value of the SIC energy operator evaluated for the self-
consistent SIC-LSDA wave functions, Es,c „sDA is the to-
tal energy of the self-consistent SIC-LSDA calculation,
and ELsDA is the total energy of the self-consistent LSDA
calculation. We also note that the average SIC energy
per orbital increases from 0.39 eV in MnO, to 0.43 eV in
FeO, 0.52 eV in CoO, 0.59 eV in NiO, and 0.66 eV in
CuO as the transition-metal d orbitals become more lo-
calized.

To gain more insight into the charge-transfer nature of
the band gap in Fig. 1 we show the SIC-LSDA total den-
sities of states and their decomposition into the metal and
oxygen components for all studied oxides. They have
been calculated on the basis of the results from one-panel
calculations with s, p, and d muon-tin orbitals placed on
transition-metal and oxygen sites. The most striking
feature is that in the SIC-LSDA scheme the occupied
metal d states are well separated from the predominantly
0 p character valence band by an energy gap of a few eV.
For NiO the occupied Ni d peak occurs about 9 eV below
the valence-band edge which is in good agreement with
the position of the experimentally observed d satellite. '

This is also supported by the parametrized many-body
calculation. '

A substantial band gap occurs between the valence
band and the remaining, unoccupied, transition-metal d
states. Even though the band gap is between non-SIC
corrected bands, its value is affected by the SIC through
the orthogonalization of the respective wave functions to
the wave functions of the SIC corrected bands. We note
that in each of the lowest two subbands there are an in-

teger number of electron states. The "transition-metal
subband" contains five, six, seven, eight, and nine states

for MnO, FeO, CoO, NiO, and CuO, respectively. The
valence band contains six states, which are roughly popu-
lated by four 0 p electrons and two transition-metal elec-
trons. Therefore, from the partial density of states one
sees a substantial hybridization of the oxygen states with
the metal states. The details of this hybridization deter-
mine the position of the 0 bands with respect to the met-
al bands and hence the energy band gap. These results
differ dramatically from the corresponding local-density
results where the top of the valence bands and the bottom
of the conduction bands are the metal d states. There-
fore, in the LSDA the band gaps occur, if at all, between
metal d states, in variance with experimental evidence.

The substantial d-band splitting in the SIC-LSDA
occurs because the self-interaction matrix element
(y ~5V ~y ) is about 10 eV, leading to a 10-eV splitting
of the d bands. The 0 p bands lie in this 10-eV gap.
These matrix elements are so substantial, firstly because
the application of the localization criterion transforms,
by a unitary transformation, the localized state &p (r) to a
new localized state cp (r) whose weight is fully concen-
trated on only one of the transition-metal sites in the unit
cell, and secondly due to the localized nature of the basis
functions for the d channel on the metal sites. For the 0
sites these matrix elements are not substantial because
the basis functions are not so localized as in the metal d
channel. Therefore, it is not energetically favorable to
self-interaction correct the 0 2p states. For example, we
obtain an SIC energy gain of 0.66 eV per metal d electron
in Cu0, while if we were to self-interaction correct also
the 0 p bands we would lose energy.

Summarizing, we would like to stress a very good
agreement of our results with the work of Svane and
Gunnarsson, in spite of a very different implementation
of the SIC formalism. Both sets of results agree well with
experiment: the band gap is between the occupied 2p ox-
ygen states, strongly hybridizing with the transition-
metal 3d bands, and the unoccupied transition-metal 3d
states. This proves that these systems are not Mott-
Hubbard insulators in a simple sense but charge-transfer
insulators as seen in experiment. ' ' ' Finally, our re-
sults prove that the SIC plays an important role in
description of the electronic properties of transition-
metal monoxides.
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