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A parameter-free technique is proposed to estimate the binding energy of a crystal from the
knowledge of the binding energy of suitably chosen small atomic clusters, the latter being computed by
an all-electron discrete variational method within local-density-functional theory. Test calculations of
the equilibrium static properties of several metals and semiconductors, including the third-row elements
from Na to Si and the group-IV semiconductors from C to Sn, will be compared with previous experi-

mental and theoretical results.

By the end of the 1980s a host of first-principles, accu-
rate methods for computing the electronic and structural
properties of solids have been shown' to be capable of
quite accurate calculations of important ground-state
properties such as the total energy. However, in the
materials-design field a need still exists for simpler pro-
cedures’ which would be extremely useful in guided
searches for new materials with specified properties.

It is with this goal in mind that we set out to look for
ways of incorporating the results obtained from atomic-
cluster calculations into some suitable expression for
determining the binding energy of a given crystal. Actu-
ally it is now possible to make first-principles calculations
of the electronic structure and of the binding energy of
small clusters in a time-effective way by using, e.g., a
modern version of the discrete variational (DV)
method.> > In this paper we propose a method for es-
timating E;", the binding energy per atom of a crystal,
from the binding energy of small clusters. E;™ can be ap-
proximated in two different ways, namely, as the average
binding energy of a small cluster or as the binding energy
of the central atom of the same cluster. To be more pre-
cise let us refer to a monatomic kind of material and let
us indicate with

Ef(n)=nE, —EI%(n), (1)

the binding energy of an n-atom cluster, where ES(n)
and E,, are the total energy of the considered cluster and
the isolated atom energy of its constituents. Since the
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contribution of the less bound surface atoms acts to
reduce the average binding energy per atom, the quantity
(1/n)ES"(n) should give a lower bound for Ef™. On the
other hand, we could define the binding energy of the n’
atoms belonging to the cluster core (1<n’<n) as the
difference between the total cluster binding energies be-
fore and after their removal, without allowing for any re-
laxation of the atomic positions, i.e.,

ES(n) =L ([ES (n—n') 4 n'E 1= B (n)
= (B~ E§"(n —n")] . @)

Since this difference can be regarded, to a very good ap-
proximation, as given by E;” plus the average excitation
energy per atom of the final state of the unrelaxed
(n—n')-atom cluster, ES'*(n) represents an upper bound
to Eg”. In the limit of an infinite cluster both methods
should give E;”. Though it is well known that this limit
means very large clusters® we would argue that the arith-
metic mean of the two bounds should give quite good ap-
proximations for E;".

For each given structure the procedure of selecting a
representative cluster is simple and straightforward. In
the case of monatomic solids one can regard any atom of
the solid as the center and include in the cluster as many
shells of neighbors—in the same positions they would
have in the bulk—as is deemed sufficient. In practice for
most calculations presented here this means two shells
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FIG. 1. Sign-reversed bulk Si binding energy per atom in the
diamond structure plotted as a function of atomic volume. Dots
are calculated points and the solid line is the result of fitting
them to Murnaghan’s equation. Minimum indicates theoretical
equilibrium quantities.

and a cluster core reduced to the cluster central atom
(n'=1). The use of larger n’ values does not lead to
significantly different results. In the case of the diamond
structure, for instance, our cluster contains a central
atom surrounded by four others located at the vertices of
a tetrahedron, plus twelve further atoms arranged as the
bulk second neighbors.” Analogous procedures can be
easily followed for other crystal structures. Volume-
dependent calculations can be made by varying the in-
teratomic distances at fixed cluster symmetry.

The second step is the computation of E{™(n) and
Ef™(n —1). As we have stated in the Introduction, in
the removal process the atomic positions of the remain-
ing n —1 atoms are unchanged, while the cluster elec-
tronic states are obviously allowed to relax. The
binding-energy calculations are done by using the first-
principles discrete variational method. The method can
be traced back to the early 1970s,? and its main idea is to
use a discrete sample of points for integrating in real
space the Hamiltonian and overlap matrix elements:

Hy=x;|H|x;)=Zpo(r)x} (0 ) H(r )y, ()
Sy =Xilx; ) =Zpo(r X x;(r,)

The choice of the grid and of the weights w(r;) can be
done according to Ref. 5: typically for the not too heavy
atoms used in this work 300 points around each atom are
sufficient for obtaining a good convergence.

The DV method is an all-electron one and typically
only a minimal basis set is required. Moreover the inner-
most atomic core levels can often be frozen in cluster cal-
culations. The exchange-correlation potential we used is
after von Barth and Hedin.®! An important point to be
stressed is that the DV method allows us to compute the
total energy and the atomic energy in the same program,
so that the binding energy, which is their difference,
should be particularly reliable.
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FIG. 2. Sign-reversed bulk Al binding energy per atom in the
fce structure plotted as a function of atomic volume. Dots are
calculated points and the solid line is the result of fitting them
to Murnaghan’s equation. Minimum indicates theoretical equi-
librium quantities.

According to the discussion in the Introduction we will
estimate E;" as

EfY=L{(1/n)E™(n)+ES™(n)} . 3)

To illustrate the validity of our approach we have per-
formed calculations on the third-row elements from Na
to Si and on the fourth-column elements from C to Sn.
Let us now discuss in detail the results we obtained for Si
in the diamond structure. Our results for the binding en-
ergy, calculated according to Eq. (3), are reported in Fig.
1 as a function of the atomic volume. E{™(n) and
E™(n —1) have been obtained by performing all-
electron DV-LDA (local-density approximation) calcula-
tions for 17- and 16-atom clusters, respectively. The dots
in the figure denote the calculated values, while the con-
tinuous line is the result of a least-square fitting to
Murnaghan’s equation.’ A separate fitting of Ef™(n)
and E{™(n —1) to an analytical form has been con-
sidered, as well as the direct fitting of their combination
Eg7, but the results, as shown in Table I, are identical

TABLE 1. The estimated equilibrium lattice constant a, binding en-
ergy ESY, bulk modulus B, and its pressure derivative By, of diamond
Si obtained by different fitting conditions compared to experimental and
previous theoretical results: a, all-electron calculations: least-square
fitting to Murnaghan’s equation; b, all-electron calculations: least-square
fitting to quadratic dependence; c, frozen-core calculations: least-square
fitting to Murnaghan’s equation; d, frozen-core calculations: least-square
fitting to quadratic dependence; e, experimental results (Refs. 11 and 12);
f, previous LDA pseudopotential calculations (Ref. 10).

a b c d e f
a, (A) 5.70 5.81 5.86 5.73 5.429 5.451
E;"™ (eV/at) 4.81 4.90 4.87 4.90 4.68 4.84
B, (Mbar) 0.96 1.32 0.60 1.92 0.99 0.98
By 3.7 —1 4.1 -1 4.2 3.2
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TABLE II. The estimated equilibrium lattice constant ag,
binding energy E;”, bulk modulus B, and its pressure deriva-
tive By of fcc Al obtained by different fitting conditions com-
pared to experimental and previous theoretical results: a, all-
electron calculations: least-square fitting to Murnaghan’s equa-
tion; b, all-electron calculations: least-square fitting to quadratic
dependence; ¢, frozen-core calculations: least-square fitting to
Murnaghan’s equation; d, frozen-core calculations: least-square
fitting to quadratic dependence; e, experimental results (Refs. 11
and 12); f, previous LDA pseudopotential calculations (Ref. 13);
g, previous LDA pseudopotential calculations (Ref. 14).

a b c d e f 4

a, (A) 4.09 4.09 4.05 4.06 4.02 441 401
E;™Y (eV/at) 3.04 3.04 337 337 336 298 3.65
B, (Mbar) 0.60 0.58 1.36 1.10 0.72 0.65 0.71

By 20 -1 4.1 —1 5

within three decimal figures. In the table we also show
the result of a quadratic fitting of the same data, as well
as the data obtained by a frozen-core DV-LDA calcula-
tion of E{™(n) and E{™(n —1). Finally our estimates
are compared to those of previous LDA pseudopotential
calculations!® and the agreement appears to be within 5%
for the lattice constant a, less than 1% for the binding
energy E;™, and 2% for the bulk modulus. This agree-
ment is practically unchanged if the comparison is made
with the experimental results.!!"'> We also found that
our theoretical a, and E;™ values depend only slightly on
the use of the frozen-core approximation and on the
analytical form actually chosen for the fitting, though of
course the bulk modulus B, dependence is much more
marked.

In Fig. 2 we reported similar results for the binding en-
ergy of bulk fcc Al. E"™(n) and E{™(n —1) have been
obtained from all-electron DV-LDA calculations for 19-
and 18-atom clusters, respectively, i.e., we have taken
into account the interactions of a bulk atom with its first
and second neighbors in the fcc structure. The dots
denote the calculated values, while the continuous line is
the result of a least-square fitting to Murnaghan’s equa-
tion. Our main results are reported in Table II and com-
pared with the experiment!’!? and with other theoretical
results.!>!* In comparison with the experiment the lat-
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tice parameter appears to be correct within 2% and the
binding energy within 9%. Previous bulk LDA calcula-
tions gave the same degree of accuracy for E;™Y and a,
but we have to point out that in Ref. 13 the binding ener-
gy is underestimated, as in our calculations, while in Ref.
14 it is overestimated. For the bulk modulus B, the error
is somewhat larger than in the case of Si, i.e., 17%,
though not so different from the value obtained in Ref.
13. Again frozen-core calculations produce results of
comparable quality for E;™ and a,.

In Table III we display our results for the equilibrium
properties of the third-row elements Na, Mg, Al, and Si.
Since four different structures are involved, from the me-
tallic bece to the insulating diamond structure, this kind of
test is particularly significant. We have already explained
the details of Al and Si calculations; for Na and Mg,
which crystallize in the bce and hep structures, we used
15- and 18-atom clusters, respectively, again including
first- and second-neighbor shells. For Mg the minimiza-
tion has been done in two steps: first, we have minimized
with respect to a, at the experimental value of £=c /a ra-
tio and then a further minimization with respect to £ has
been performed.

We would like now to suggest an alternative use of Eq.
(3), whenever the lattice constant, or some reliable guess
for it, is already known.- Table IV gives estimates for the
bulk binding energies of the third-row and of group-IV
elements, obtained by performing frozen-core calcula-
tions of Ef(n), E{™(n —1), and finally ES™ at the ex-
perimental value of the lattice constant. The accuracy of
the results turns out to be comparable, and in most cases
even better, than that obtained in the fully ab initio pro-
cess, since the relative errors with respect to experiment
do not exceed 7% for all crystals, but Ge and Sn. For Ge
the error, i.e., 12%, is still acceptable, while it is some-
what higher for Sn, i.e., 26%, but both of them are com-
parable with other theoretical predictions.'®!® The Sn
theoretical values in particular may reflect the disregard
of relativistic effects.!® We do not attach any special
meaning to the overall improvement of the results, ob-
tained with this simplified version, but we stress that
since the full procedure produces good Eg™ and a, values
quite close to experimental ones, it is quite reasonable to
obtain still good values of E;™ by using exactly the exper-

TABLE III. The equilibrium atomic volumes V,, and binding energies E;™ of third-row elemental
crystals, i.e., bcc Na, hcp Mg, fcc Al, and diamond Si, compared to experimental and previous theoreti-
cal results.

bce Na hcp Mg fcc Al diamond Si
n=15 n=19 n=19 n=17
.3 present calculation 50.59 21.97 17.10 23.15
Va (A7) previous LDA results® 35.11 27.51 21.48 20.23
experimental results® 37.64 23.31 16.58 20.01
present calculation 1.35 1.62 3.04 4.81
E;™ (eV/at) previous LDA results? 1.22 1.88 2.98 4.84
experimental results® 1.11 1.52 3.36 4.63

2From Ref. 13.
°From Ref. 12.
‘From Ref. 11.
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TABLE IV. Binding energies of third-row metals and of group-IV semiconductors in their experi-
mental equilibrium structure calculated at their experimental lattice constant a, and compared with the
corresponding experimental values E;*? (from Refs. 11 and 12) and with previous theoretical results
E$ (from Refs. 10, 13, 15, and 16). For the sake of completeness the size n of the clusters used in cal-
culations, as well as the cluster binding energies appearing in Eq. (3), E{™%(n) and E{"(n — 1), are also

reported.
a%xp n Eglus“l) E§1u5(n —1) Efry E;xp E;,:al
(A) (eV/atom) (eV/atom) (eV/atom) (eV/atom) (eV/atom)
diamond
C 3.57 17 91.772 82.363 7.40 7.37 7.58
Si 5.43 17 55.298 49.386 4.58 4.68 4.84
Ge 5.66 17 52.343 46.783 4.32 3.87 4.26
a-Sn 6.49 17 45.517 40.285 3.95 3.13 3.78
bce Na 4.29 15 15.434 14.079 1.19 1.11 1.22
hep Mg 3.21,5.21 19 12.731 10.175 1.61 1.52 1.88
fcc Al 4.05 19 47.931 43.709 3.37 3.36 2.98

imental lattice constant.

Problems related with numerical convergence and clus-
ter size will be discussed in detail elsewhere. We just an-
ticipate that for large clusters, i.e., for large n values, it
should be better to increase n' as well, in order to avoid
in Eq. (2) numerical problems connected with the sub-
traction of two large and almost equal quantities such as
Ef"(n) and E™(n —1). In this way one can easily
check that our results are insensitive within a few per-
cent, which is our method’s accuracy, to the cluster size.
We report here, e.g., that a 47-atom cluster calculation
for C and Si produces E;™ values of 7.76 and 4.52 eV, re-
spectively, to be satisfactorily compared with those of
Table IV.

In summary we have shown the possibility of obtaining
a reliable and reasonably accurate estimate of the crystal
binding energy without using large cluster sizes, with ob-
vious computational advantages. Our approach is accu-

rate enough to bear comparison with pseudopotential cal-
culations, with the added benefit of a direct computation
of the binding energy. We stress that, even though ap-
proximate, the above calculations are completely
parameter-free, no other input being required than atom-
ic number and the chosen symmetry. A further interest-
ing feature is that, whenever there is a discrepancy be-
tween experiment and first-principles LDA-based compu-
tations, our results closely follow the theoretical values.
Finally, we stress that all the above results have been ob-
tained by using just VAX-class minicomputers, namely,
models DEC 11/750 and 6410. This should encourage
extending the same method to systematic investigations
on entire families of compounds.
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