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R-matrix method for calculating wave functions in reflection high-energy electron diffraction
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We present an extension of the invariant-embedding R-matrix method for calculating wave functions
in reAection high-energy electron diffraction (RHEED). Using this method, we study the strong reso-
nances commonly observed in RHEED rocking curves. Results for an Ag(001) slab show that the reso-
nances are associated with the trapping of diffraction beams inside planar layers and the angles at which
these resonances occur can be identified by the minima in the total elastic flux. The penetration of the
electron wave field inside a slab is shown to be a few monolayers deep.

I. INTRODUCTION

The diffraction of high-energy electrons (5 —100 keV) in
a solid has found many applications. For example, in
reflection high-energy electron diffraction (RHEED), the
elastically back-scattered electrons at grazing incidence
to a slab are measured as a function of the incident angle
(i.e., RHEED rocking curves), or atomic coverage (i.e.,
RHEED intensity oscillations). Proper interpretation of
such data can produce structural information and under-
standing of the growth mode. The. diffraction of high-
energy electrons has also proved to be an essential com-
ponent in determining image intensity, contrast, and util-
ity in reflection electron microscopy (REM) and scanning
reflection electron microscopy (SREM). In order to ex-
tract quantitative information from RHEED, REM, or
SREM, it is necessary to develop an accurate and numer-
ically stable method which describes electron diffraction
in the high-energy regime. We have introduced earlier
such a method: the multislice R-matrix method of
RHEED. ' In this method, a slab is sliced into small sec-
tors parallel to the surface. Inside each sector, after
proper basis transformation, a local R matrix r is deter-
mined by solving a square-well problem; then a global R
matrix is constructed by assembling the local R matrices.
An R matrix is simply the ratio of a wave function and its
first derivative. After matching the boundary condition
across each sector, a recursion relation for the global R
matrix is obtained. The recursion starts at the bottom of
the slab and propagates toward the solid-vacuum inter-
face where the reQectivity is obtained by matching the
boundary condition.

Inside a slab, a wave function may be expressed as a
linear combination of basis functions with real wave
numbers (i.e., propagating beams or open channels), or
complex wave numbers (i.e., evanescent beams or closed
channels). For propagation in a direction normal to the
slab, half of the evanescent beams have amplitudes which
exponentially increase while the other half have ampli-
tudes which exponentially decrease. Earlier dynamical
methods of RHEED (Refs. 2 and 3) apply the iteration
process to the wave function itself. The numerical prob-
lem arises for those closed-channel basis functions which
grow exponentially because their amplitudes become

many orders of magnitude larger than those of the other
channels. When this happens, truncation errors in the
numerical process destroy the linear independence of the
intermediate iterative solutions. On the other hand, the
multislice R-matrix method is numerically stable because
the iterative process is performed on the ratio of a wave
function and its first derivative —i.e., the R matrix. This
ratio does not diverge for either propagating or evanes-
cent waves.

In this paper, we present the extension of the R-matrix
RHEED method to evaluate the electron wave functions
at any point in space —both inside and outside a crystal
slab. The wave functions are a1so useful for the analysis
of REM and SREM results. The layer-by-layer penetra-
tion of an electron wave function inside a slab combined
with the transmission is important to the understanding
of the beam-emergent resonance effect in RHEED.
In Sec. II, we present a brief review of the multislice R-
matrix RHEED theory. In Sec. III, the evaluation of the
transmitted wave function is given. In Sec. IV, results of
layer-by-layer penetration of the wave function inside a
Ag(001) slab are presented. Section V contains a sum-
mary of the results.

II. RHKED THEORY

At high energies, the scattering is dominated by a
forward-direction cone around the incident beam. There,
the crystal potential V(r) and electron wave function can
be expanded in a Fourier series:

V(R) =g Vs(z)e's t',

@(r)=e " U(r),
where

(2a)

U(r) =+Ps(z)e's't' .
8

(2c)

The Schrodinger equation for electrons in a crystal po-
tential field V(r) is given by

g2
V + V(r) f(r)=EQ(r) .2'
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Substituting Eq. (2) into Eq. (1), we obtain the following
coupled second-order differential equation:

1(z)c 0 Z M C

it)s'(z)+k)sos(z) =
2 g Vs s.(z)Ps (z),~SI, &2 g S (3a)

where

(3b)

In matrix form, Eq. (3) can be expressed as

N" (z) =W(z)N(z),

where @ is a column vector

+ t
2 —1

'(ts (z)

z=a (1)Xr.

@(z)= Ps (z)

s (z)

I Z M C

FIG. 1. Dividing a surface slab from z=a to b into rn slices.

and W is the coupling matrix

2tll
ss 2 s s ) ssg

(4c)

(i)where T" is the Hermitian conjugate of the transforma-
tion matrix T". If we define a local basis IXI as

In solving Eq. (4), we divided the crystal into thin slices
(i.e., sectors) parallel to the surface. Inside each slice, the
coupling matrix is taken to be independent of z and eval-
uated at the center of the slice. Since the coupling matrix
is Hermitian, there exists a unitary transformation that
diagonalizes it:

T"W"T"=(A,") (5)

R(I)—(~) (~) Z(~) (~)—14 l 3 Ip (loa)

X(i —1) ~(i —1,i)X(i)
U ~ L

( )
~&(i —1 ) ~(i —i, i )~~(i)

(I —
& i) (i —&)~where Q' "'=T' "T". In other words, the Q matrix

takes the local basis from sector (i —1) to sector (i).
The global R matrix is defined as that which always re-

lates the wave functions and derivatives at the outer
boundary of a sector, i.e.,

X"'=R"'X"'
U U

From Eqs. (7), (8), and (9), we can derive a recursion rela-
tion for the R matrix

X(i)(z)—T(i) @(i)(z) (6) where

XL

XU

ri r2 XL

13 14 XU
(7a)

where r are the local R matrices given by (h is the step
size)

(r", ) =(r(4'), =i(, 'coth(A, h )6

(r") =(r") =X 'csch(X h )5
(7b)

Boundary conditions require that the wave function and
its first derivative be continuous at the sector boundaries,
1.e.)

then, in this local basis, Eq. (4) becomes decoupled. For
each decoupled component, we have a simple square-well
problem.

Let U and L denote the bottom (lower) and top (upper)
boundaries of the sector, respectively (see Fig. 1), then it
can be shown that the local wave functions at the top and
bottom of the sector satisfies the following relation-
ship '"

Z(i) (r(i)+~(i —l, i) R(i —1)~(i —l, i))—1 (lob)

III. TRANSMISSION

In the R-matrix formulation, the recursion relationship
of the R matrix [Eq. (10)] is used to propagate the R ma-
trix from the bottom of the slab, where only transmitted
waves exist, to the crystal-vacuum interface. At the in-
terface, a boundary condition is applied to obtain the
reAected intensities. Since the R matrix is roughly the in-
verse logarithmic derivative of the local wave functions,
the transmission coe%cients are divided out at the begin-
ning of the propagation, and the wave functions are not
directly involved in the iteration. It is not possible to re-
cover the transmission coefticients until the reAected in-
tensities have been solved; therefore, it is necessary to
keep track of the local wave functions in each sector.
Fortunately, this bookkeeping only requires minimal
effort.

From Eqs. (7) and (9), it is easy to derive the following
relationship between the derivatives at the top and bot-
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tom of a sector:

X~(i) —r(() ( r( () R(i))XI(l )'
L 3 4 U r

By using the recursion relationship for the R matrix [Eq.
(10)],Eq. (11) is simplified to

(17) can be rewritten as

@,(z) =I(z)C,

@„(z)=O(z)M+ C,
e, (z) =I(z)m 'C,

(18)

X~( i) —g( i)Xl ( i)
L U

where

g(i) Z(i)r(i)

(12a)

(12b)

where I(z) and O(z) are diagonal matrices with e
ik~ z

and e ' as the diagonal elements, respectively.
The boundary conditions yield the following equations:

~r(i —1) ~(i —1, i)x~(i) (13a)

Since both Z and r are available from the RHEED cal-
culation [Eq. (10)],no extra work is required.

From Eqs. (8) and (12), we obtain a recursion relation-
ship for the derivative:

(19)

Thus from Eqs. (16), (18), and (19), we obtain the
transmission matrix as a function of the reflection matrix:

where

P(i —l, r) g(i —), i)B(i) (13b)

M
M++ =I' '(a) gp' " Tt [I'(b)+O'(b)M+ ] .

i=1

Recursive use of Eq. (13) propagates the derivative
from the top of the slab, where the wave function is
known from the reflection calculation, to the bottom of
the slab (see Fig. 1),

M
XI(1) ~ p(i —l, i) X&(M)

U (14)
l =2

(20)

@s(z)=I (z)M+()+ . (21)

The transmitted intensity for beam g is therefore given
by

The gth component of the transmitted wave in terms of
the transmission matrix at z ~ a can be expressed as

The derivative at the bottom of the first sector is given by

M
X( ) —g( ) ~p(' —,) X(M)Ll U

I =2

k

kio
(22)

In order to match the boundary conditions, we change
the basis function from the local representation to the
plane-wave representation; then the derivative of the
wave function at the bottom of the slab just inside the
solid is given by

M
@ I(1) ~ p(i —l, i) T(M) @&(M)

L (16)
i =1

M
P(E —1,&)

X'(~)
i =k+1

(23a)

Or in the plane-wave representation, we have

In this formulation, the wave function of the electron is
known at any given z inside or outside the slab; therefore,
its behavior can be readily analyzed. In fact, for the kth
slice, the local wave function is given by

At the top side of the slab (outside, numbered as
M + 1), there are two waves: the incident wave (k) T(k)R(k)

U

M
P(l —l, i) X'

i =k+1
(23b)

P (r)=QC e )" e
s

and the reflected wave

(17a)
Therefore, the true electron wave function for Eq. (2b) is
given by

P (r)=pe "' e "M+ C
ss

(17b) p' '(r) =e " +ps(z)e's ~ .
s

(24)

where C is a column vector consisting of incident ampli-
tude coefficients for the g beams and M+ is the
reflection matrix. ' ' ' At the bottom of the slab, the
transmitted wave can be written in terms of the transmis-
sion matrix M+ as

g, (r)=pe "' e "M+.+C
ss

(17c)

Note that there is no refiection from below (see Fig. 1).
In terms of the plane-wave expansion coefficients, Eq.

Since the coupled equations for RHEED [Eq. (3)] include
a complete set of expansion coefficients, i.e., open as well
as closed channels, numerical stability becomes a con-
cern. ' ' ' Our calculations show that the current for-
mulation is stable even when a large number of closed
channels is included. The absolute values of the eigenval-
ues of the P matrix are generally smaller than unity, indi-
cating that the error (roundoff) will not propagate or
grow from one iteration to the next; instead they will die
out as the calculation continues.
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IV. DISCUSSION OF RESULTS

Using the above formulation, we calculate the elastical-
ly scattered flux of a six-layer Ag(001) slab at E =20000
eV. The incident direction, along the [110]azimuth, and
beams included in the calculation are shown in Fig. 2.
For simplicity, bulk spacings for Ag atoms are used in
the slab. At this high energy, the real part of the scatter-
ing potential is well represented by the tabulation of
Doyle and Turner, and the imaginary part of the poten-
tial is set at 10%%uo of the real scattering potential. No
inner potential is used. ' For Ag(001) at E =20000 eV,
the beam-emergence conditions are determined from Eq.
(3b): these are 9= 1.7 for the (0,+1) beams, 9=3.44 for
the (0, +2) beams, and 9=5.16 for the (0, +3) beams.
Using the formulation described in Sec. III, we calculate
the elastic reAected and transmitted intensities of a six-
layer Ag(001) slab. In Fig. 3(a), we show the total elasti-
cally reflected flux (i.e., the sum of all reflected beams);
3(b), the total elastically transmitted flux; and, in 3(c), the
total elastic Aux, i.e., the sum of elastically transmitted
and rejected cruxes. The dashed arrows indicate the an-
gle of beam emergence. The elastically transmitted fIux
[Fig. 3(b)] increases as 9; because the scattering length
decreases inside the slab like (sin9) . Similarly, the
elastically reflected flux [3(a)] shows a broad decrease as
0; increases. This corresponds to the fact that the
scattering cone goes below the horizon as 0, increases.
The most remarkable features in the total elastic Aux

[3(c)] are a number of intensity minima associated with
each emerging beam: the (0, +2) beams emerge at 3.44'
and the three dips associated with these beams are
identified at 3.4', 3.0', and 2. 1. Other minima are at
9=0.65, 1.6' [associated with the (0, +1) beams], 4.4',
4.7', 5. 15 [associated with the (0, +3) beams], 6.3', and
6.6' [associated with the (0, +4) beams].

The following is a physical explanation of the sharp
minima observed in the total elastic Aux: As a RHEED
electron enters a solid, its amplitude can be decomposed
into a number of diffracted beams. As the electron is
scattered by the atomic potential, the amplitudes of these
beams vary according to the scattering of the electron
from one beam into another. This is the "regular

(»)
~ 0 ~ ~ lI ~ ~ ~ 4

~ ~ ~ ~ ~:: =- ~ ~ ~ ~ [$)0]
(oo) (].o)

FIG. 2. Schematic diagram of the incident azimuthal direc-
tion and reciprocal space of Ag(001). The surface primitive cell
convention is used.

0.44—

Elastic Flux For Ag(001)
Six Layers at 20 keV

(c)

0.39—
(b)

0.0 1.0
, , „crO r II I h I I II II lt, . . ., .. . „. . S , il lltl ,
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diffraction" process and it takes place at most angles.
There is another process which occurs only at specific in-
cident angles near beam-emergence conditions. This oth-
er process corresponds to having one of the beams
trapped by the average potential of a linear chain of
atoms parallel to the surface —in other words, this par-
ticular beam satisfies the bound-state condition of the po-
tential for a linear chain of atoms. When such a condi-
tion is satisfied, the electron amplitude once scattered
into the "bound-state" component will stay in that com-
ponent for a long distance. In the presence of inelastic
damping, this anomalously long scattering path along an
atomic chain parallel to the surface generates an increase
in the inelastic flux. ' This explains why the total elas-
tic flux in Fig. 3(c) shows sharp minima at such "bound-
state" conditions. Depending on the strength of the
linear-chain potential, multiple "bound states" are possi-
ble, which explains the observed minima at 3.0' and 2. 1'.

At a linear-chain bound-state condition, electrons
"trapped" in a given beam still have finite probabilities to
scatter out of the chain and populate other beams via the
regular scattering process. Furthermore, as the electron
propagates into deeper layers, it might populate bound
states in the deeper layers. Such a planar trapping can
only occur for near-grazing angles of the incidence, e.g. ,
the incidence direction 0 measured from the surface
~ 10. At larger 0, the scattering from the incident beam
into a beam at emergence becomes negligible.

We investigate the penetration of the electron wave
function into the successive layer at resonance. We
choose as examples 9=3.0' and 3.4' (measured from the
surface), which correspond to the two resonance condi-
tions associated with the (0, +2) beams. In Fig. 4, the
amplitude squared of the (02) beam [or the equivalent (02)
beam] [~$02(z) ~ ] in a range of angles near 3.0' and 3.4' is
plotted as a function of depth (z) inside the solid. We ob-

FIG. 3. Elastic flux for a six-layer slab of Ag(001) at 20 keV.
(a) is the sum of reflected fluxes for all beams; (b) is the sum of
the transmitted fluxes; (c) is the sum of the reflected and
transmitted fluxes. Dashed arrows mark the emergence angles.



47 R-MATRIX METHOD FOR CALCULATING WAVE FUNCTIONS. . . 3927

Ag(001) 20 keU
Electron Density in (02)

Ag(001) 20 ke U

Electron Density in (02)

0 = 2.8'

o =2.9

llllrrr ~ rill llln. gorilla, . srrlrr n, inn.

6) = 3.3o

Ih, „rll Illn„. . „„»Slln„n

Of( = 30

rrrmllllrr rll Illllr, c JI Iln rlllllllarn. (IIIIIII Ilfllr. , rllllllllllir, ll

.. n»Sill Illimlllllrrllllr„m. . ...„orllllir, . .„m„«~»,

lllllltlr. ,srlllllllrrrrrrrri„. , rilllrr, .

0.0 2.6 5.2 7.8 10.4 13.0
Depth(A)

0.0 2 6 5.2 78 104
Depth(A)

~ III

13.0

FIG. 4. Electron density as a function of depth for the (02)
beam. 0=3' corresponds to a local minimum in the total elastic
flux in Fig. 3(c). Depth is a line normal to the surface and it
passes through the Ag nuclei (solid circle) in layers 1, 3, and 5.
Open circles indicate Ag nuclei in layers 2, 4, and 6 projected
onto this line.

FIG. 5. Same as in Fig. 4 except for 0=3.40'.

creased, resulting in an anomalously large amount of in-
elastic excitations.

serve that in both figures there is an increase in the elec-
tron Aux of the (02) beam at the resonance angles
0~ =3.0 and 3.4', respectively. This confirms the "trap-
ping picture. " Also, we observe that the amplitude
(squared) of the (02) beam peaks at the Ag nuclei (solid
and open circles) at l9+ =3.0 and is zero at the Ag nuclei
at Oz =3.4. This resembles an even and odd parity of a
bound-state wave function. " Furthermore, both cases
demonstrate that the linear-chain trapping is not confined
to the first atomic layer only, because at Oz =3.0' trap-
ping is evident for at least three atomic layers while at
Oz =3.4' trapping is evident for all six layers of the slab.
At no incident angle does the electron wave field vanish
behind the first atomic layer, as suggested in earlier
works &»»»

The multilayer penetration of the electron beam at res-
onance also explains why, historically, one associates
bound-state conditions with intensity anomalies in which
there are sharp increases in the inelastic electrons. ' It
is clear from Figs. 4 and 5 that, at resonance, the (02)
beam is trapped in a number of atomic layers. The total
distance traveled by the electron inside the slab is thus in-

V. SUMMARY

We have extended the R-matrix method to include the
evaluation of transmission coefricients as well as the elec-
tron wave function at any point in space —both inside
and outside a crystal slab. Using this new formulation,
we find that resonance conditions correspond to the trap-
ping of an electron's wave-field "bound states" of a linear
chain of atoms parallel to the surface. The resonances
are marked by sharp minima in the total elastic fIux of an
ultrathin slab ((10 monolayers). The penetration of the
electron wave field at resonance is deep —it does not van-
ish behind the first atomic layer. The effects of the
bound-state resonance on rocking curves and intensity
oscillations will be presented elsewhere. ' '
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