
PHYSICAL REVIEW B VOLUME 47, NUMBER 7 15 FEBRUARY 1993-I

Radiative lifetimes of excitons in quantum wells: Localization
and phase-coherence effects
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A theory for intrinsic radiative decay of excitons in quantum wells including the eKects of exci-
tons bound to width fluctuations and finite phase coherence is presented. The approach is based on
Green's functions at nonzero temperature. In GaAs/Al Gai ~As quantum wells of widths 50—150 A,
lifetimes on the order of 100 ps are predicted for localized excitons. We show that the localized exci-
tons play an important role in the photoluminescence (PL) decay times over the entire temperature
range T & 150 K. The theoretical results explain the large scatter in the published experimental data.
The relationship between the homogeneous linewidth hI'& and the spectrally integrated decay rate
at nonzero temperature for the free-exciton population is derived using a Green's-function approach.
The free-exciton contribution to the PL-decay rate reduces to the infinite-lifetime result of L. C.
Andreani et al. [Solid State Commun. 77, 641 (1991)] for k~T && hi'q. In the limit kjsT && hi'q, the
result of J. Feldmann et al. [Phys. Rev. Lett. 59, 2337 (1987)] assuming finite phase coherence is

obtained.

I. INTRODUCTION

Time-resolved photoluminescence (PL) spectroscopy
has proved to be a powerful tool for the study of exciton
lifetimes and exciton-population relaxation. This pa-
per is a theoretical investigation of radiative lifetimes of
free and localized excitons in quantum wells (QW's) and
the effect on the decay time of the PL intensity integrated
over the lowest exciton peak including finite temporal and
spatial coherence effects. The mixed modes in solids in-
volving excitons and light are polaritons. The interaction
of Frenkel excitons and light was first investigated in bulk
and it was found that the resulting polaritons are station-
ary. Thus bulk excitons have no purely electrodynamic
radiative-decay path available which conserves both en-
ergy and momentum. Radiative decay must be associ-
ated with phonons or translational-invariance breaking
defects, impurities, or interfaces. QW's, however, inher-
ently break full translational invariance and so the elec-
trodynamic decay channel is open for radiative recombi-
nation of excitons lying below the crossing with the pho-
ton line [i.e. , with center-of-mass in-plane wave number

k~~ less than r = Ege /(hco) where E/h is the angu-
lar frequency of light, e~ is the high-frequency dielectric
constant of the medium, and co is the in vacuo speed of
light]. 7 s Thus QW excitons that lie below the crossing
with the photon line are quasistationary.

Andreani, Tassone, and Bassani have recently cal-
culated the radiative lifetime and the temperature de-
pendence of the PL decay time for free excitons in
GaAs/Al Gai As QW's. s For an optically active ls
heavy-hole exciton in a 100-A. GaAs/Al Gai As QW,
decay times of 25.5 ps for the k~~ =0 states were found for
decay into longitudinal (L) and transverse (T) photons. 9

(The pola" . ,ion direction refers to that of the emitted

photon with respect to the exciton wave vector. ) For the
Z polarization, the oscillator strength vanishes for the
heavy-hole exciton and so its decay rate is zero for all
k~~. Such short lifetimes have been observed recently in
time-resolved PL studies of a GaAs/A1As QW; o how-
ever, typically the measured decay times at low tem-
perature are in the range 0.25—1 ns. It is argued in
Ref. 9 that for a thermal distribution of excitons, only
a small fraction of the states lie below the crossing with
the photon line and thus the measured decay time should
be larger than the k~~

= 0 value. If the exciton popula-
tion is near thermal equilibrium, then the decay time
for the spectrally integrated PL intensity coincides with
the inverse of the thermally averaged decay rate. For
a 100-A GaAs/AI~Gai ~As QW, the PL decay time
assuming only free excitons was found to be 34T ps
(here T is the temperature in kelvins) in the tempera-
ture range 5 K& T (150 K above which scattering with
LO phonons ~ becomes important. In what follows we
shall refer to this as the high-temperature regime. It is
argued that at lower temperatures a significant fraction of
the exciton population becomes trapped due to interface
roughness and impurities. 3 The model of Ref. 9, which
predicts the linear temperature dependence of the PL de-
cay time, assumes rapid scattering of the excitons (rapid
on the time scale of the radiative decay) and neglects the
role of excitons bound to inhomogeneities in the QW.
In the following we consider the effects on the PL de-
cay time due to excitons weakly localized by well-width
fiuctuations, finite scattering lifetime (dephasing), and
finite spatial coherence. By weakly localized we mean
that the internal-motion wave function of the exciton is
adequately approximated by the expression in a perfect
QW. The model for localization is similar to that of Ref.
14; however, here we also use the model to predict the
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lifetimes of the states. For QW's of width L, ( 150 A
we find that the localized states have an important ef-
fect on the PL decay time over the entire temperature
range T & 150 K. In wider QW's, the defects are not
sufficiently strong to give rise to a large density of local-
ized states. Instead, finite temporal-coherence eKects on
the free-exciton recombination due to the dephasing are
expected to be important.

This paper is organized as follows. In Sec. II we outline
the Green's-function method by which the radiative self-
energy is obtained neglecting the dephasing processes.
Section III is concerned with the role of localized excitons
in determining the PL decay time. In Sec. IV we discuss
the effect of nonzero homogeneous linewidth (finite phase
coherence) on the PL decay time. In Sec. V we present
our conclusions.

II. RADIATIVE SELF-ENERGY

In this section we derive the proper radiative self-

energy of a QW exciton interacting with the electromag-
netic (em) field. We assume a Wannier exciton formed
from two doubly degenerate subbands. The QW single-
particle Bloch states in the conduction (valence) sub-
band are labeled c (v )) where o (o') is a spin in-

dex. We use the label (cv), to denote electron-hole pair
c v . Thus s is a spin index for the exciton. We be-
gin with the many-body Hamiltonian for excitons (with-
out exciton-exciton interactions) interacting with the em
field '8 ='8,„+'Rf + W. 'H,„ is the Hamiltonian for the
noninteracting excitons,

'H,„=) E,x(k~~)bk~~~bkll')

kll s

where bk, is an exciton creation operator for a QW exci-
kll s

ton with center-of-mass wave vector k~~ and of spin state
s. E,„(k~~) is the exciton dispersion. W is the interaction
which can be written as

W= ——) A(R) R,
Cp

2

+ . I

— ) A.(R.,) [R, , A(R, ,) R,,],
2~h co

where R,, are the electron coordinates and A(r) is the
vector potential. The sum over i is over all the elec-
trons in the solid and the velocity R; =ih ['R,„,R,,]. W
is written in second-quantized form in terms of electron
field operators which are expanded as a sum of single-
particle QW eigenstates. One finally obtains

W = ) i(bk, , —b k„,)C, dz f,(z)f„(z)A(z, k~~)

kll s

1

E, (ki„i)
dzi dz2 f,(zi) fU(zi)A(zi) k)~)A(z2) —

k~~) f,(z2) fU(zz) C„

where

C, = —F,„(0)((ev),IRIO)E,„(k~~)/h.
cp

Here F,„(0) is the exeiton envelope function evaluated
at zero electron-hole separation and f, (z) [f„(z)],chosen
to be real, is the single-particle envelope function for the
conduction (valence) subband. ((cv), IR,IO) is the dipole
matrix element between the pair state l(cv), ) and the
crystal ground state IO) (filled valence band and empty
conduction band). ((cv), IR, IO) gives the spin selection
rules for the polarization given by the direction of R,. We
consider the four excitons formed out of the two doubly
degenerate subbands and we neglect the exchange inter-
action which partially lifts this degeneracy by a small
amount. 'Nl is the Hamiltonian for the noninteracting
em Geld.

The proper radiative self-energy hZ, (k) for a given ex-
citon spin state is obtained using standard techniques. i7

A similar treatment has been applied to Frenkel
excitons. The only modification is that we treat Wan-
nier excitons of reduced dimensionality. We consider the
correlation function 'D, (w, k~~) for the operator ak~, , ——

6kll, —6* k, at nonzero temperature. The temperature
correlation functions for the noninteracting and interact-

ing systems are, respectively,

&.'"(~ k~~) = —P' ak„.(~)ak~~ ( ))
V,(, k~~ ) = —(T ak~~, (r)ak~~, (0))

where

Qk (7-) —e7'&ex/~ a e 7 &ex/&
kll s lls )

&7 B/h '-~'B/a
kll s

II

T is the ordering operator and ( ) denotes the thermo-
dynamical average. Detailed definitions of the symbols
are given in Ref. 17. The noninteracting correlation func-
tion in the frequency domain is

(0) ' -("~~) () ()D (k),
) ( )

g (k) + g ( k)

where g, (k) = [iiu —E,„(k~~)] is the zeroth-order ex-
citon Green's function and k = (iiu, k~~). The 8-matrix
expansionig of 17,(k) is easily carried out. One obtains

X.(k) = V(o)(k) + „)C'.(k)r (') (k)
Eex kff

+V(') (k)~'(k) V(') (k) + "
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where iC', (k) =C;V (k)C, and

UT (k) = —7, A
Ug(k) = . 'P,

V(k) = d r2 f, (zj)f„(zq)e '"~~'

x K (rll, zq, zz, is) f, (zz) f„(zz). (2)

Here r = rq —r2. The tensor function K (rll, zq, z2, iz) in
Eq. (2) is the photon Green's function and is derived in
the Appendix.

We now choose axes so that the tensor V (k) is diagonal
in the polarization index. We can then separate the self-
energy into terms for the difFerent polarizations e and
we have V„(k)=V, (k)6„. In QW's hZ, (k) =hZ, L, (k)+
Z,T(k)+Z,z(k). The integrals in Eq. (2) for polarization
e are performed to give V, (k) = 2+U, (k)/n, where n =
[kll

—(iu/hc) ]
~ . In QW's there are three possibilities

for e, namely T, L, and Z, which give

cay rate I', (kll) = I', [E,„(0),kll] for spin state 8. For
kll rex =E,„(0)/(hc), we have

t I'.~(kll) = 2~IF. (o) I' I((«).IR nT 10)l'

&I'. (kll) = —2 I+. (o)I'I(( ).IR Io)l'

x e-'n. „Rem,

&I'.z(kll) = 2~IF..(0)I'1&(«).l~ nzlo) I'

X E kiln ReP,

where n, is a unit vector in the direction of the po-
larization and a;,„= (kll

—rex —i6sgnrex) ~ . For

kll ) r,„, hl', (kll) = 0. For the experimental data we
shall discuss below, the four different spin states of the
excitons are equally likely. Therefore we must average
expression (5) over s. We denote the resulting rates
I', (kll) =P, I'„(kll)/4:

Kex

ex

with

dzl dz2f. (»)f.(zi)f. (z2)f.(z2)e

d»lf. (z~) I'If. (») I'

1
I'L, (kll) = —I'p

ll

1I' (kll) = —I'o g

—kex

Kex

k2

2 L-2

Here z=zy —z2.22

The two terms explicitly given in Eq. (1) are the only
types that arise. The series (1) can then be summed

exactly giving the Dyson equation 'D, (k) = 'D, (k)+
D, (k)hZ, (k)'D, (k). Finally, one obtains the interact-
ing Green's function

V&'l(k)

1 —X,"&(k)nZ, (k)
2E,„(kll)

(iw) —E,„(kll) —2E,„(kll)hZ, (k)

where the proper radiative self-energy hZ, (k) is

ex kll

) IC, n,
l

U, (k).n E,„(kll

The poles of 'D, (k) give the single-exciton excitation
energies (polariton dispersion) of the interacting sys-
tem. 'D, (k) is analytically continued to real values of
ia via i~ + E + ib with 6 a positive infinitesimal.
From the self-energy we can extract the real energy
shift hII, (E, kll) = RehZ, (E, kll) and the intrinsic ra-
diative decay rate I', (E, kll) = —ImZ, (E, kll). We shall
only require the decay rate evaluated on energy shell,
E = E,„(kll) = E,„(0) (The real .part of the self-energy
is small and shall be neglected. ) This gives the de-

where

ro
II mpcpV E ee

2 2e fll, I'p~ = e fg
mpcp +Gee

Here f~ is the oscillator strength per unit area given

by 5 =2m, E,„(o)IF.„(o)I' E.1((«).IR n& Io) I'Re&i&'
with j=,&.

I (J ) denotes photon polarization parallel
(perpendicular) to the QW plane. For narrow QW's,
ReP is the squared overlap between the electron and
hole single-particle envelope functions. In particular,
note that for heavy-hole excitons, we have P, 1((cv),IR.
nil o)I' = ~. I' »d E.1((cv).IR n~ 10)l' = 0, ~h~~~ ~-
is the dipole matrix element between bulk Bloch states.
For narrow QW's, P reduces to the squared overlap of
the electron and hole single-particle envelope functions,
and the expression for the oscillator strength takes its
usual form. The decay time for the exciton is defined
as that time over which the probability the exciton has
not decayed is reduced by a factor of e. Thus the decay
time, which is defined for the particles, is given by half
the reciprocal of the rate, which is defined for the wave
function. The pcrtit"le decay rate of an optically active
state is then given by 2 p, I'„(kll)/2, which gives the re-
sults of Ref. 9. [Note that in Eq. (3) of Ref. 9 the decay
rates are defined as particle decay rates for the optically
active states. ] As an example of Eq. (6) we consider the
ls heavy-hole exciton in a 100-A GaAs/A1~Ga& ~As for
which fll =5x10 A . Then I'p

ll

——25.5 ps. The de-

cay time for a non-spin-polarized state at kll = 0 is then



47 RADIATIVE LIFETIMES OF EXCITONS IN QUANTUM. . . 3835

[2(4 + 4)1'e
~~]

= 25.5 ps while for an optically active
state it is half this value.

III. EFFECT OF LOCALIZED EXCITONS

(case II)

wh r all and rll are the in-plane center-of-mass and rela-
tive coordinates and g is the variational parameter. Here
f, (z, ; 2:„y,) [f„(zh, x~, yh)] is the envelope function for
the electron (hole) in a well of width L, +

& exp[ —(x, +
y!)/(2b')] Ior L.+-; exp( —(*~ + y0/(2b'))]
applied to QW's where L, and b are sufficiently large so
that the single-particle states are essentially relaxed into
the interface defect. For narrow QW's with small b and
small band offsets, the single-particle state does not re-
lax into the interface defect and case II is applicable. We
write (Qi« I'Rd

I gi«) as

2

(Ao. l&~Iso. ) = — d'&~~ e """V.s(&))),

where

V,ir(Rii) = d rii dz, dzh&d IFex(r)~)

x fe(zei &e) ye)

xf„(z„;eh,yh)I' (c~e I),

Veir(R~~) = d r~~ dz, dzh R&IFe„(r~~)

x f, (z, )f (zh)I (case II).

We assume a Gaussian form for the 18 excitonic envelope
function E,„(r~~) =(A~sr) i exp( —

r~~~/2A ). The parame-
ter A is determined variationally. This gives

1 (m,*
Mb

where jpi, . Here m,* (mh) is the in-plane electron (hole)

In this section we consider the eKect of exciton local-
ization on the temperature dependence of the PL de-
cay time. We assume an interface defect due to a well-
width fluctuation of thickness 2 and lateral size b. The
model potential is then taken to be 'Rg = —V, exp[ —(x, +
y, )/(2bz)]:-(z, ) —Vh, exp[ —(xz + yh)/(2b )]:-(zh,), where
:-(z,) =1 for ~2(z, & ~2+& and 0 otherwise. V, and Vh
are the offsets in the conduction and valence bands and
L, is the well width. For GaAs/A1As QW's, a mono-
layer fluctuation gives 2

——2.83 A—half the bulk lattice
constant. We assume a variational wave function for the
localized exciton of the form

gi, (r„rp, ) = il(~) ' e ~~" F,„(r~~)

xfc(zei &e& ye)fv(zh, ', xh, , yh) (case I),
@i«(r„ri,) = il(n) ~ e ~~" F,„(r~~)f, (z, )f„(zg)

hE, = V, P—, (case II)

where m,* z (mh z) is the perpendicular electron (hole)
effective mass and P,=jdz, =(z, )If, (z, )I is the proba-
bility that the single-particle state is in the width fluc-
tuation. The expression for case I is the result of an
efFective-medium approximation. Neglecting the kinetic
energy due to the deformation of the single-particle states
(only relevant for case I), one obtains the binding-energy
enhancement Ei„= (gi«IT+'H~ Qiog due to localization,

h'g2 . bE, q2

2M ~ - A2o, , g2 + a2'
i=e, h

where a2 = 1/(2b ) —P, /(4a, ). Here 'T is the kinetic-
energy operator for the center-of-mass motion. Minimiz-
ing the energy gives the optimal value of the variational
parameter. g is determined by

bE, a20= +2M A2n, (rl2+ a2)2
i=e, h

As Eq. (8) is quartic in gz, it can be solved exactly; how-
ever, the values of the coefficients make it more conve-
nient to obtain the roots numerically. For sufficiently
small values of b (with 2 fixed), gz in Eq. (8) is negative.
Although the approach is variational, this indicates that
there is no bound state associated with sufficiently small
well-width fluctuations. Thus, for a given pair 6 and 2,
there is a critical well thickness I, greater than which
the fluctuation does not give rise to localized states. The
scattering states associated with the defect and the eKect
on the PL decay time is considered in Sec. IV. For large
6, the localized state approaches that of a free exciton
in a well of width L,+ 2. Using the variational envelope
function for the center-of-mass motion, we find the decay
rate of the localized exciton:

I'~(~) — d k~~ e l~ I'L, (T)(k~~).
(loc)

7 %II (K

The interface-defect potential V e (A~~ ) mixes free-exciton
states of both small k~~ (radiative) and large k~~ (nonra-
diative) leading to long decay times compared with the
free excitons. Thus

= 2@1o, ~~D(p) r,("' = r,
, ~

1 —&-'D(&) .

(10)

D(p) = exp( —p2) Jo dt exp(t~) is tabulated in Ref. 24.
The dimensionless quantity p is defined by p = r/il.
Note that I'& ' ——0 for the heavy-hole exciton since
f~ = 0. Summing over the decay channels L and T,
we obtain the efFective decay rate for localized-exciton
t t I'(' ') =I'

T(
') + I'z( ) ——-H(p)I'o ~~,

h H(p) =

subband effective mass. The potential strengths bE, and
bEh are given by

h Vr2a
bE, = —,s (case I),

miJ z
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FIG. 1. The lifetime w of a localized exciton as a func-
tion of 6 for a

/Al, Gas rAs QW's. The solid curves are for caseGaAsy p3 ap 7 s
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indicate the lifetimes of non-spin-polarized free exci ons a
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2 —1/ )D(p) + 1]. For b small or large, we expect the
lifetimes to approach the value for a non-sp -p-s in- olarized
exciton at

~~

= . ork =0 F b small as mentioned above, there)

is no bound state. For large values of 5, p~ oo in Eq. ( )
d H( ) 2 iving the expected lifetime for free exci-

2I ~'-~ns at k =0. Figure 1 shows the lifetime r =1/( )tons at
f b and —for sev-f localized exciton as a function o an 2 o

eral L, . The solid curves are for the model of casee I and
50-A &W case Ith dashed curves for case II. For thee as

is inaccurate because we expect the penetration of the
single-particle envelope functions into the barrier to e
large, while for the 150-A. QW case II is inaccurate. For
the 150-A QW, for 2

——2.83 and 5.66 A. the exciton is
only barely localized for any 5 (~

cases) and thus the increase in the radiative decay time
is qu~te sma . e11. Recently it was found experimenta y
that for very high quality GaAs/AlAs QW's t e m o-
mogeneous broadening is negligib'ble for I )150 A. . The
calculated lifetimes for the chosen values of b and 2 are
all on the order of 100 ps. Some of the values are slightly
lower than the observed low-temperature PL decay times
(typically in the range 0.25—1 ns).

For somewhat stronger binding to the interface de-
f t the a proximations leading to the forms we use or
V R are invalid. Nevertheless, Eqs. &

~~eA'

which express the radiative decay rate in terms oof the
parameter g, are s i et still expected to hold qualitative y.

must then be determined according to a more
appropriate model. In such cases, p, is sma . n e imi

~ can b ' t preted as a coherence area. In general,
however, the form of H(p) is such that no simple inter-
pretation along these lines is possible. In the opposite

f k r no binding appropriate for I,&I„
the resonances associated with the ''

h he interface e ec s ie
near or in the free-exciton continuum. In such a case
scattering wi e'th th defects is expected to contribute o

the lifetime of the exciton These eKects are iscuss d
below in Sec. IV.

In order to examine semiquantitatively the ternpera-
ture depen ence o ed f th PL decay time including both free

le modeland localized excitons, we have applied the simple rno e
o Ref. 26 which assumes that the free- and loca ize-
exci on popu a't 1 tions are in thermal equilibrium with each
other. ' The temperature-dependent PL decay rate or
localized and free excitons is then

I = (N I i' l + N r(."l)/N (11)

of localized and free excitons, respectively. For T &
I'& " = 2Egl'o ~~/(3k~T) [where Ey = 5 K,„/(2M)] is e
thermally averaged decay rate of non-spin-polarized free
excitons. ee e . anjS R f 9 and Sec. IV below for the deriva-
tion. ) This leads to a decay time of half the value given
in Ref. 9. We assume that the density of localized states
is narrow and centered on the energy of the free exci-
ton less the binding-energy enhancement E~, ]

associ-
ated wit par icu ar va

'
h t' 1 alues b and —. Furthermore we

assume that, for the given values b and 2, L, (L,. Thus

Nr, =4Mk~T/(27rh ) (the factor of 4 is due to the four-
fold spin degeneracy) and N&~, = N~exp[~Eioc]/(k~T)]

~ 10 —10 cm 2 (Refs. 27 and 28) is the
effective areal density of defects. At high tempera ure,
Np, )) N~~, and so the effective PL decay time in the
high-temperature regime can be written

(12)

U
'

the expressions given above, r, l'
' '

pI'if'l is indepen-sing e
dent of temperature (above 1 K . For — a

for 6 = 200 A and ~ = 2.83 A. . This givesrespectively, or
0—10NN~I'('~'l/(Nr, l'~ 'l) -7.5 x 10 N~ cm2, 1.5 x 10 N~

2 f th 50- and 100-A QW's. This number is typi-
ues of Ncally on the order of unity or 10 given the values o

cited above.b ~0th values of b and case II reduceer v
these numbers by a factor o Thus even in the
high-temperature regime the PL decay time depends on
the density of interface defects provided there is a signif-
icant density of localized states associated with defects.

The calculations in this section is variational in nature.
Th 1 tion of the single-particle states into e e ece re axa io

1 Caseshas been taken into account only approximate y. ases
I and II can be viewed approximately as giving upper
and lower bounds to the radiative lifetime.

IV. PHASE-COHERENCE EFFECTS

The decay rates associated with the free-excitons in
th f regoing discussion were assumed qed to be uantume o

W andmec anica y coh
'

ll coherent spatially over the entire
temporally on time scales giving energy sprea s sma

d with E1. Manifestly, these assumptions docompare wit
not hold. The extended states undergo scattering among
themselves an wi pd 'th honons. In addition, the extended
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states are expected to be influenced by interface rough-
ness by introducing spatially random phase variations.
The previous treatment assumed the existence of scat-
tering among the excitons suKciently rapid to maintain
a thermal population while the radiative decay is tak-
ing place. In this section we consider the effect on the
free-exciton contribution to the PL decay time due to
dephasing and show that in the proper limits the results
reduce to models previously proposed in the literature.

Early on it was suggested that the finite quantum-
mechanical coherence plays an important part in the
PL decay rate. Subsequently, in the model of Refs.
31 and 32 the Pl decay time is assumed to be deter-
mined by the smaller of an areass A~ [defined in terms of
the temperature-dependent homogeneous linewidth (full
width at half maximum) hl'h] and the area Ai of local-
izing defects. A thermal-equilibrium model is used with
populations of free and localized excitons. It is further
assumed that only that fraction of the exciton popula-
tion lying within the homogeneous linewidth can decay
radiatively. The decay time r oc 1/min{A„Ai) in the
high-temperature regime depends on the dephasing time
1/I'h. In addition, the areal density of defects enters
the model in analogy to Eq. (11). In many respects, the
model of Ref. 31 is similar to the one presented above in.

Sec. III. The primary differences between the model of
Refs. 1, 31, and 32 and of Ref. 9 are (1) exactly which
states are optically active and (2) the inclusion of a co-
herence area. Here we present a unified picture of PL
decay which reduces in the proper limits to the results
of Ref. 9 and to results similar to the model of Refs. 1,
31, and 32. The results do not depend upon a definition
of the coherence area, but are obtained directly from the
homogeneous linewidth. Toward the end of this section
we comment on the connection between the finite spatial
and temporal coherence of the exciton due to interface
defects.

We proceed to discuss the relationship between the ho-
mogeneous linewidth and the PL decay time. Because the
microscopic relationship between the decay time and the
dephasing time is expected to depend upon the dephas-
ing mechanisms operating in a given sample, we adopt
a phenominological approach based upon temperature
Green's functions. We further assume, as in Sec. III,
that the radiative decay rate is small compared to the
dephasing rate. Consequently, equilibrium populations
are employed and we identify the dephasing rate (for the
particles) with I h. The desired quantity is the thermal
average of the imaginary part of the radiative self-energy
hZ, (k) including the effects of dephasing. The dephas-
ing is assumed to be caused by some unspecified quasi-
elastic-scattering mechanism which we represent by Q(k).
For example, Q{k) might represent an exciton-exciton
interaction or the propagator and coupling contant for
low-energy acoustic phonons. The associated proper self-

energy hO, (k) = fdsqQ(k —q)'D, (q) to lowest order
where J'd k = (2n) J d k~~P P, The rachative self-

energy hZ, (k) is diagrammatically represented by the
sum of hZ, (k), the diagram hO, (k) in which all bare

propagators Da~ (k) are replaced by 'D, (k), and —AO, (k).

(This last term is nonradiative. ) The thermal average is
then

ri"l = —ImN ) d k E, (k)17, (k),

N = ) dsk'D, (k),

where 'D, (k) is the Green's function including both the
dephasing and the radiative effects. To lowest order in
the dephasing, Eq. (13) becomes

I ~"& = -ImN-' ) d'k Z, (k)V~'l(k)

= N ) d k I', (k)'D, (k),

N =) d k'D~ l(k)

I {fr) ~—1 (E)

E.„{O)+E,
dE' A(E, kii)

x ) I' (kii),
e=L,T

dE
[nag(E) —n~( —E)]

{p) 2x

(14)

where n~(E) is the Bose-Einstein distribution. We now
assume classical statistics and that the temperature satis-
fies k~T((E,„(0).For GaAs-based structures, the latter
requirement is amply satisfied. I ~r'l in Eq. (14) is now
evaluated for different ranges of the parameters.

A. 51'i, /2 (( Ei. (Note, however, hI'h, )) 2M'p
~~

in
order that the assumption of rapid dephasing holds. ) The
homogeneous broadening is negligible and the Lorentzian
A(E, k~~ ) 7rb (E—E') vr6(E+ E') On—e o'btains.

where I', (E, k~~) = —ImE, (E, k~~). Here the Green's func-

tion D, (k) only includes the dephasing effects. 'D, (k) is
used to define a spectral density function A(E, k~~) in-

dependent of s via A(E, k~~) = —2ImD, " (E, k~~) where

D," (E, k(() =lim;~ @+,s'D, (ice„,k)~) and D," (E, k~() is
the retarded Green's function for the operator ak[], in-

cluding the dephasing. We thus take

hl'h /2

(E —E') + (tel'h, /2)
M'h/2

(E+ E')'+ (nr g/2)' '

where E' = E,„(k~~). The radiative self-energy is evalu-
ated on energy shell. With these approximations, we can
write Eq. (13) as
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p(f ) 1 T ) Er/kryo 1K.

This corresponds by construction to the result obtained
above for infinite phase coherence and in Ref. 9. Note
that the PL decay time 1/(21'~f")) is half the result given
in Ref. 9.

B. 51'h, /2&) Er. Here the spectral density function is
approximately constant over the E' integration allowing
the replacement A(E, kll) —+ A(E, 0). In the E integral,
we treat A(E, 0) as a constant within the homogeneous
linewidth A(E, 0) = x(hl'h, ) (8[E—E,„(0)]8[E,„(0) +
hl'h —E]—8[—E—E,„(0)]8[E,„(0)+El'h, +E]) where 8(E)
is the Heaviside step function. Thus

(16)

This agrees with the expression for the PL decay time
employed in Refs. 1, 31, and 32 where the lifetime is
modeled as w oc hl'h/[1 —exp(—AI'g/krrT)]. The constant
of proportionality depends upon the microscopic mecha-
nism for radiative decay which is not discussed in Ref. 1.
Thus the effects of a finite dephasing time are obtained
without an ad hoc relation between A, and hI'h. For tem-
peratures low compared with hl'h/krr we expect that the
requirement of a thermal distribution is relaxed. In the
limit krrT)) hl'g/2, Eq. (15) is again obtained. Thus, at
high temperature the homogeneous broadening is unim-
portant Instea. d, the radiative decay is bandwidth (Er)
limited.

We therefore conclude that the relevant energy scales
which govern the behavior of I'( ') are k~T and A,I'h re-
gardless of Er Up to c.onstant factors, Eq. (15) corre-
sponds to that of Ref. 9 and Eq. (16) to Refs. 1, 31, and
32. In the high-temperature regime, Eq. (15) [or Eq. (16)]

is valid and thus applies to the experiments of Refs. 1 and
2 subject to the previous discussion concerning the effects
of bound excitons. The experiments of Ref. 32 are more
fruitfully considered in the light of Eq. (16).

The present treatment of the effect of the homogeneous
linewidth on the PL decay time does not so far entirely
answer the question of the effect of finite spatial coher-
ence of the exciton on the observed lifetimes, We now
consider the connection between the interface defects and
the scattering among the extended exciton states. Prom
the theory of potential scattering, the Green's function
for the exciton in the presence of interface defects is

(k) = [&~ —E, (kll) —hZ, (k)] . The imaginary
part of the proper self-energy then contributes to the
broadening of the spectral density function. We now ob-
tain a rough estimate of —21mb, Z (k). We assume the
exciton scatters elastically from the interface defect ac-
cording to the effective potentials Vrr(Rll) of Sec. III. We
proceed to obtain the interface-defect scattering contri-
bution to the self-energy. On energy shell, the imaginary
part of the self-energy can be expressed to first order in
the interface-defect density N~, as

2nr&-'(kll) = —21mhZ~" [E (kll) kll]
= —2NiocImTk (17)

where the T matrix in the first Born approximation is

+k k"+k"k'
II II II

d2+ Q (Q )
—i(kll —kll) All

kII k )

with A a unit of area in the QW plane. This gives

2nr ~-)(kll) = lac e h —
kll {a, +a& )/4I [k2(

—2 + —
2)/4]

e e
—kll/2a, Io(k2/2&2) + h e kll/2a&IO(k2/2o2)n'a'o,,a, h h

(19)

where Io(2:) is a modified Bessel function of the second
kind. Note that this result is independent of the sign of
the potential, i.e. , the scattering rate is the same whether
the barrier material penetrates into the well or vice versa.
Provided Mb/m* )& A, Eq. (19) for case I is similar to the
model of Ref. 34 where the interface-defect scattering rate
due to a slightly different potential is obtained by means
of Fermi's golden rule. For Mb/m* ((A and b( K,„,the
factor exp( —x)Io(z) is near unity within the bandwidth
Er and so 2hl'~") (kll) is nearly independent of kll for the
radiative states. Thus, although the effects under discus-
sion are due to spatial inhomogeneities in the QW, they
give rise to a contribution to the homogeneous linewidth
of approximately Lorentzian shape. For Mb/m*)) A and
b & K,„, the k~~ dependence is more important. Then
251'~' (kll)» a decreasing function of kll. As temp~~~
ture is increased and more excitons occupy states with

larger k~~, the interface-defect scattering contribution to
the homogeneous linewidth (integrated over the spectral
line) is reduced. Because of the uncertainty in the value
of JVD and its dependence on b and 2, a quantitative
prediction of this effect is made difficult. A small re-
duction with increasing temperature (T ( 50 K) in the
homogeneous linewidth in GaAs/Al Gar As QW's has
been observed. 35 This effect was attributed to the ther-
malization of excitons bound to interface defects and
was strongest in a 142-A. QW where the typical value
of the binding-energy enhancement due to the localiza-
tion is IE~„I 0.5 rneV. The effect, however, was quite
pronounced up to 50 K. This suggests that the origin
of the narrowing of the line with increasing temperature
is due primarily to the scattering of free excitons with
well-width fluctuations. The actual situation is much
more complicated due to the presence of several scatter-



47 RADIATIVE LIFETIMES OF EXCITONS IN QUANTUM. . . 3839

ing mechanisms. In addition, the quoted homogeneous
linewidth might also contain an inhomogeneous contri-
bution.

Typical numerical results for 2hl'~' l(k~~) are given in
Ref. 34 where it is implicitly assumed that Mb/m~ &) A.

Under the same assumption, Eq. (19) gives 2hl'f"& (k~~)

1 meV for L, = 100 A. , 6 = 200 A, z
——2.83 A. , and

N~, = 10ii cm in a GaAs/A1As QW in agreement
with the results of Ref. 34. Unfortunately, however, nu-
merical values for the interface-defect contribution to the
homogeneous linewidth obtained from the models under
consideration are limited in their ranges of validity and
rather crude. The linewidth depends quartically (for
Mb/m~ )& A) on b In. practice, there is a distribution
as a function of b and 2 of interface defects which is
sample dependent and not accurately known. Also, the
assumption of low interface-defect density which leads
to the simple form of Eq. (17) is not justified for cer-
tain interface morphologies. We can, however, make the
following tentative conclusions concerning the role of a
finite coherence area on the radiative decay. For wide
wells in which the density of localized states is expected
to be small and interface defects cause scattering among
the plane-wave exciton states, the interface defects con-
tribute to the homogeneous broadening and the concept
of a finite coherence area does not appear to be appro-
priate. The other extreme case is that of a narrow QW
where the potentials associated with interface defects are
strong enough to bind excitons on a length scale short
compared with the wavelength of light in the medium.
At very low temperatures, the populated states are pri-
marily those bound by the interface Huctuations. Only
in this case was it shown in Sec. III that the radiative
decay can be characterized by a finite coherence area in
the sense of Refs. 31 and 33.

V. CONCLUSION

Despite the uncertainty in some of the parameters
in the calculations in this study, we can understand
semiquantitatively the scatter in the published experi-
mental data. PL decay-time measurements on various
GaAs/A1As and GaAs/Al Gai As QW's yield very dif-
ferent results. We concentrate on two of the most ex-
tensive systematic studies of PL decay times. i 2 Except
at the lowest temperatures probed in these studies ( 4
K), we do not expect phase-coherence effects on the free-
excitons to dominate. In Ref. 1 the PL decay time r
was observed to increase with L, and to have a temper-
ature dependence moderately well descibed by the free-
exciton result9 with r(5 K) ~0.5—1.5 ns for QW's with
25 A.& L, &150 A.. The results of Ref. 2 contrast with
those of Ref. 1, where at low temperature, decay times of

250 ps were measured for several wells with I, =20,
40, and 80 A. . The decay times were about a factor of
5—10 less than in Ref. 1. Using Eq. (11), these discrep-
ancies can be tentatively explained by assuming ND of
the QW's in Ref. 2 is 5 —10 times that in Ref. 1. Fur-
ther comparison between the experimental data and the
theory for QW's in which localized excitons and phase-

coherence effects are important is hindered by the lack of
detailed information on the interface morphology and the
resulting density of localized states. Other helpful infor-
mation could be provided by systematic studies of PL de-
cay time as a function of temperature, well width, and in-
terface quality (correlated with the Stokes shift between
the PL and excitation spectra at low temperature). This
information would provide impetus for more detailed the-
oretical investigations of the binding and scattering of
excitons by interface defects and roughness.

It is important to state the limitations of the present
theory. In order to apply the assumption of thermal
equilibrium we have assumed that the dephasing takes
place on a time scale much faster than the radiative de-
cay. The dephasing time is typically a few ps. s4 The
radiative decay time for optically active states is typi-
cally I'o

~~

——13 ps (for a 100-A GaAs/Al Gai As QW).
Therefore the assumption of rapid dephasing, and hence
thermal distributions, might be near its limit of validity.
Other omissions in the present treatment are the neglect
of free carriers and the population of energetically higher
states, whether excited exciton states or excitons formed
from other subbands. The former contingency is treated
in Ref. 25 by means of the Saha equation. The latter can
be treated in the framework of the present study, though
with more parameters.

To conclude, we calculate radiative lifetimes of local-
ized excitons in GaAs/A1~Gai As QW's to be on the
order of 100 ps. PL decay times are calculated assum-
ing thermal equilibrium between localized and free states.
We find that localized excitons play a role in the high-
temperature regime for large N~ and small L, . For wide
QW's (L, & 150 A) the density of localized states is small
and coherence effects are important for k~T on the order
of or smaller than the homogeneous linewidth. We find
that the model of Refs. 1, 31, and 32 correlating the ho-
mogeneous linewidth and the PL decay time is justified
at temperatures small compared with the homogeneous
linewidth. Only for excitons localized on a scale short
compared with the wavelength of light in the medium,
however, does the coherence-area concept of Ref. 33 ap-
ply

Note added. Results on interface-defect scatter-
ing times for electron (single-particle) states similar to
Eq. (19) were obtained in R. Fierreira and G. Bastard,
Phys. Rev. B 40, 1074 (1989).
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APPENDIX

In this appendix we derive the photon Green's function
for TE and TM optical modes. We consider a dielec-
tric medium with in-plane translational symmetry and
assume that the length scale for the variations in the di-
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1. TE modes

In this case the electric field satisfies V E = 0. The
wave equation takes the form

4'
c PT,[(h,c) 6+ e~]Ez =—

&oo

where the subscript T denotes the in-plane component
transverse to kll. The Green's function for the vector po-
tential near the location zo of the QW is obtained by con-
sidering a b-function form for Pz. A simple calculationss
shows it is given by

2 Pvkll Zl)9 vkll (Zg)
KT(rll, Z1, zz, ie) = 47r(hc) ) ",

~
e'"ll "ll.

'ie
vkll

The mode label v runs over both confined and radiation
modes. The z dependence of the modes is pvkll(z) (as-
sumed normalized). The in-plane dispersion of optical
mode v is given by e k

——(hckll) + (hcP kll), where

Pvkll is the local value of the propagation constant in the
z direction at zo.

2. TM modes

For TM modes, the divergence of the displacement van-

ishes, V D=0, and consequently the wave equation is

[(hc) 4+e2]E = — e 1 + V'V' P.4~ z ~ (hc)2

&oo E'

For the I polarization we have

[(hc) d +e2]EI, =—4x 2 (hckll)21— Pi,
&oo E2

with the Green's function

KL, (1
II ) Z1) Z2I 'ie)

= 4vr(hc) ) 1—(hckll)2

vk
II

(z1)pvk, l(zg)
x 'k

(ie)z —e2k

For the Z polarization, the appropriate wave equation is

electric constant are large compared with L, . The QW
is taken to be at position zo in the structure and the
local value of the speed of light and high-frequence di-
electric constant are c and e, respectively. At the end
of the calculation, we specialize the results to the case
where the dielectric constant is the same throughout the
medium. From Maxwell's equations, the wave equation
for the electric field E is (VV —6 1 )E = ~D. 6 is the
Laplacian operator and D is the displacement given by
the constitutive relation D = e E + 4vrP. e accounts
for the high-frequency resonances of the medium, i.e. , not
including the exciton of interest, while P is the induced
polarization of the exciton. We treat TE and TM modes
separately.

[(hc) 4+e2]Ez =—4', (&cp k„)'
&oo

The Green's function is

iCz(rll, z1, z2, ie)

= 4~(hc) ) 1—
vkll

(RCPvk

(ie) 2

1
vk

II

Z1 vk
ll

Z2 dk, e-'""

(considered as an operator) and e2k ——(hckll)2+ (hack, )z

must be made in the Green's function. This gives

KT(rll, z; ie) = 47r(hc) ) e'"ll'll I,
kll

Kl, (rll, z; ie) = 4~(hc) ) e'"ll'll 1—
kll

Kz(rll, z; ie) = 4~(r c)') e'"ll'll J,
kll

where

(hckll)2
(ie)'

e—aizjdk e '""
(ir)2 —

k2II
—k2 27m

'

ir)2 (ir)z —k

1I=
2vr(hc) 2

1J—
2

1—
2vr(i1c) 2 (

+kllI P( )
(iK)z (hc)z(iK)z'

Carrying out the integrals over k, gives

ik r —nzKT (rll, z; ie) = —) e'"ll 'll e
k

2) eikll rll e ~
I
z

I

~2K . Q

kll

Kz(r, z;ie') = ) e'kll rll
I

II e ~lzl- a ( (iK)~

2a+
(

~ )2 ~(z)

The decomposition into TE and TM modes leads to a
photon Green's-function diagonal in the mode number
allowing us to drop the dyadic notation.

eikll 'I
II

vkll

The preceeding results are general and apply to cases
both with and without dielectric mismatch.

For the case in which dielectric confinement is ab-
sent, the z dependence of the optical modes are given
by planewaves. The replacements
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