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Resonant tunneling in a Luttinger liquid
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The resonant tunneling through a double-barrier structure in a one-dimensional system of inter-
acting spinless fermions is studied. The conductance is calculated as a function of gate voltage and
temperature. It is shown that even in Luttinger liquids the line shape of resonances is almost the
same as that of the noninteracting Fermi liquid provided that the temperature is not too low. The
temperature dependence, on the other hand, is drastically changed by the interaction, and the height
of the conductance peak is a nonmonotonic function of temperature for weak repulsive interaction.

The importance of the electron correlation in quantum
transport phenomena in mesoscopic systems has been
revealed by recent theoretical and experimental stud-
ies. A well-explored example is the Coulomb blockade
in ultrasmall tunnel junctions. Recently a very narrow,
quasi-one-dimensional quantum wire with double barri-
ers has also been fabricated. The conductance of this
system was measured as a function of gate voltage V~

and temperature T, and a nonmonotonic temperature
dependence of the height of the conductance peaks was
found. 2 Meir, Wingreen, and Lee analyzed the Coulomb
blockade oscillations treating the Coulomb interaction in
terms of the Hartree-type approximation. 34 They pro-
posed two characteristic energy scales, i.e., the Coulomb
charging energy U and the quantization energy Le of the
quantum dot, which they estimated as Ae 0.05meV
and U 0.5meV, respectively, and discussed that the
conductance behaves differently for T (( Ae (( fJ and
Le (( T (( U. On the other hand, in contrast to the
previous works where the Coulomb interaction is con-
sidered only near the tunnel junction or as the on-site
repulsion U, Kane and Fisher~ recently treated the inter-

action between electrons in single-channel leads by using
the bosonization method. They put a single barrier in
a spinless Luttinger liquid, and found that the electrons
are completely refIected by the barrier for repulsive in-
teraction while they are perfectly transmitted through it
for attractive interaction at T = OK. Another related
problem is the tunneling of the Wigner crystal through
the pinning barrier. 7

The aim of this paper is to investigate the efFect of
the electron correlation on the resonant tunneling in a
one-dimensional (1D) single-channel system. The model
we employ is the 1D spinless Tomonaga-Luttinger model
with two barriers at z = —R/2 and R/2. A similar model
has recently been studied by Kane and Fisher by a dif-
ferent method in the low-temperature limit. Although
some of the results are in agreement, there are several
difI'erences, in addition to our description of the crossover
around T v~/R given below. We use the units such
that I = k~ ——l.

Using the standard bosonization method, we write the
partition function at temperature T = 1/p ass

P
dr dz [0 8(z, )] + —[0 8(x, r)]

S~vg 8+@

dr (V& cos[8(—R/2, r) —kF R] + V& cos[8(R/2, 7 ) + kp'R])

where o. is a cutofF of the order of the lattice constant. v and g are expressed, in terms of a forward-scattering matrix
element g2, as

( 27I vp —gs
S/2

and q =
i

4 2Tvb+g2)'
where v~ is the Fermi velocity. For repulsive interactions g is smaller than unity, while g ) 1 for attractive interactions.
We introduce a high-frequency cutofF A v~/n to avoid ultraviolet divergences.

We shall consider a symmetric double-barrier model in which the strength of the potentials is the same: ~Vq~ =
~V2~ = Vp. Without loss of generality we can take Vj = V2 = Vp. The effect of asymmetry will be briefiy discussed
later. Integrating out the continuum phase field 8(x, r) except 8(R/2) and 8(—R/2), we obtain the effective action as
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s„= " 0(i~) l'+
2arlp 1 + exp( l~ /+e)

"
87rq

U ~ -, ev ~ eV,dr [0(r)]2 — dr 8(7-)—
(2~)' p 270 0 277

6I
' 2

dr 0(r) — dr cos 0(r) cos[ —0(r) + kF"R],
7t 0,' 2 (2)

where w„= 2+n/P (n is an integer) is the Matsu-
bara frequency and Ae = v/R. The average phase
8 = &[0(R/2) + 0(—R/2)] is related to the current 1
through the two barriers by J = —(e/27r)(d0/dt), while
the phase difference 0 = 0(R/2) —8(—R/2) is related to
the excess charge Q accumulated in the confined region
between two barriers by Q = —e0/2n. In order to take
account of the long-range part of the Coulomb interac-
tion which is not fully incorporated in the bosonization
method, we have introduced in Eq. (2) the charging en-

ergy Q~/2C = U(0/2~) where C is the capacitance; the
repulsive energy U = e /2C is assumed to be larger than
Le. We have included also the energy coming from the
difI'erence of the chemical potential across the barriers:

—R/2

pI 8~6 Gx +
R/2

pr Bx0 dx

/2

1
pRB, 0 dx = — e(V0+ Vg0)

27'

2' eVg
(p = + 2kFR,

&+ 2U

sr~

4P -
~ ~~ 1 —exp(-[~„l/a. ) p

(4a)

(4b)

Thus Vj vanishes when cos(p/2) = 0, which is just the
resonance condition. In the same way, it is easily shown
that Vq +q vanishes on resonance, i.e. , p = (2n+l)~ (n is
an integer). The second-order cumulant is also obtained

with V = (p~ —pl, )/e being the voltage difference be-
tween the right- and left-hand sides of the barrier region,
and the gate voltage Vz ——[pr —

2 (p~+ pl, )]/e The .reso-
nance is achieved by controlling V~. As can be easily seen
in Eq. (2), the charge fiuctuation 0 in the confined region
has a mass gap of the order of U while the average phase
t9 remains massless and is subject to the dissipation10, 11

whose strength crosses over from 1/2~q for lw„l )) Ae to
1/4vrrI for [~„[(( Ac. This decrease in the dissipation as
the temperature is lowered across 4e results in the non-
monotonic temperature dependence of the peak height of
the conductance resonances as described below.

We first examine the weak potential limit V0 « uA,
where a naive picture holds that free-electron propaga-
tion is slightly disturbed by barrier potentials. Since the
I9 field has the mass gap, we can safely integrate it out
perturbatively in powers of V0 to get a cumulant expan-
sion for the effective potential of the phase 0. The first-
order cumulant is then obtained as — ' cos 0(r), where

Vg ——Vp cos(p/2) exp( —p)

as —~ cos 0(r), in which V2 is given by

V2
V2 oc (1 —e ~)(1 —e ~ cosy),

vro. U

(6a)

for T « Le and

ppq p ( Vp l' (2qU'p" (ppT)p
'

—aqe A)

-""(-")'(")'"'" (-:)'
(2~U '"

x 1+
l

cosy +
q ~A

(6b)

for At. « T « U, where a, and b, are dimensionless
numbers of order 1. 3ust on resonance the second terms
vanish (cosy = —1). Since at low temperatures G —'2"
is proportional to T ~" ~ away from resonance and to
T ~ ~ & on resonance, the expansion is valid down to
T = 0 if g ) j. and g ) 4, for respective cases. Otherwise,
the above expansion is justified only above the temper-
ature T at which the temperature-dependent correction
becomes comparable to the first term e2q/2n. Below T
the conductance 0 will scale to zero as T —+ 0.

Next we shall consider the strong potential limit V0 ))
o,A. The electron transport in this limit can be viewed

which shows that V2 never vanishes even on resonance,
since the exponential factor of cosy is always smaller
than unity. Hence away from (on)resonance the trans-
port through the barriers depends on whether or not V1

(V2) is a relevant perturbation. By a renormalization-
group method, we obtain the lowest-order flow equations
as de/dl = (1 —q)Vj and dV2/dt = (1 —4')V2 where
t = —lnA. Thus Vj (V2) becomes relevant when rt ( 1

(1/4). Hence in this weak potential limit, the phase
boundary lies at g = 1 in the oK-resonance case while
at q = 1/4 in the on-resonance case, in agreement with
the results by Kane and Fisher.

The conductance G as a function of the temperature T
and the gate voltage Vz is calculated perturbatively with
respect to the potential V0 up to the fourth order:

, (vp)' i2,vi"
(~T)

"p-"

-'"(-" (")
" '(")"(-:)'
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as the tunneling between minima of the cosine poten-
tial. For simplicity we assume k&R —= 0 (mod 2z) and
—U —2„6e & eV~ & 0. Then the potential minima

are (8, 8) = (2nl, 2~m) with l and m being integers
[Fig. 1(a)]. Since the 8 field has the mass gap, possi-
ble configurations of the phase fields may be restricted
for T « U+ 2 Ae to the filled circles neighboring the

dashed line, 8 = 2+eV~/( —„Ae+ 2U), in Fig. 1(a). Thus
I

the problem reduces to a 1D tight-binding model with
a hopping matrix element t and an off-resonance energy
s = eVg + U+ 2 Ae [Fig. 1(b)]. By introducing a heat
bath consisting of harmonic oscillators linearly coupled
with the phases 8 and 8, we can construct an equivalent
model to Eq. (2) as Caldeira and Leggett did. io The tun-
neling conductance G is calculated from the second-order
hopping (tunneling) process as

G=Pe t iH;{& —41+t2) iH t —iHf~O iH b2$ r{~,+C,)/e a e e e /, e (?)

where (Q), = TrQe t '/Tre i '. The three Hamiltonians H, , H, and H/ are those for the harmonic oscillators
with shifted origins: H, = H(0, 0), H~ = H(vr, —2x), and H/ = H(2vr, 0) where

p2 A2 82
H(8, 8) =)

~

+-,'M O'X'+A 8X +, +) ~

~ +-,'mpid&z&+A&8x&+

1 ~v ) -2 eV- eV~ - 2Vo
~

82 — 8 — ~ 8 + (1 —cos 8 cos 8)
8ir2 rlR) 2' 2~ ircr

(8)

with

~A2) b'(~d —0 )

1—+ irAe ) 6[~d —iree(2n —1)], (9a)
7m 2

~A2p) 6(id —Cdp)

p
2mp4) p

1—+ ~De ) 6(~d —27rnAe) . (9b)
4m' 2

I

interacting case (iI = 1) Eq. (11) reproduces the correct
result, G =

2 jg(E —z)[ f'(E)]dE—, where f(E) is the
Fermi distribution function and g(E) is the transmission
probability I' /(E +I' ). For general interacting systems
(Luttinger liquids), however, Eq. (11) can be justified
only when T )) z, I' or e )) T, I'. In other words, Eq. (11)
is valid as long as the conductance is much smaller than
e2rl/2vr. In the case of T )) s, F Eq. (11) is approximated
as

4

(12)

The lifetime effect of the intermediate state m is taken
into account by the exponential factor e r{"+"&in Eq.
(?), which is equivalent to the Weisskopf-Wigner theory
of the resonant scattering. The escape rate I' from the
state m via the first-order tunneling process is given by

(&)

0
eH

0
f0 2&() 4l

dt (e iHmtoeiHiio—
)

T((Ae
(10)

Ae « T « U,

2~ g( R)

0 O..
''

4l 0 0

. .. '' 0 () 0 0

(b)
where the c, 's are dimensionless numbers. After some
manipulations Eq. (?) can be transformed to

e2P oo
G=

8m
2n

where F(x) is the gamma function. Note that for the non-

FIG. 1. (a) Illustration of possible configurations of the
phase fields for T « U; the dashed line is 8 = 2vreV~/( —„"Ae+
2U). (b) Schematic of the tight-binding model.
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2
which is proportional to e (Ps) ~ e ~'PI' for Pe' && l. In
this case the tunneling can be thought of as the thermally
activated sequential tunnelings via a real transition to the
intermediate state m. In the other case of c )) T, I Eq.
(ll) is approximated as

p2Q'~ g2
p2

This conductance originates from a tunneling via a vir-
tual transition to the intermediate state.

The line shape of the resonance peaks, i.e. , c depen-
dence of G, is now ready for discussion for T )) I', which
is most relevant in experiments. In this temperature
range the s dependence is given by Eq. (12) for s & T
and by Eq. (13) for s )) T (far away from resonance). We
plot ~I'(2„+ i~z)/I'(&„) in Fig. 2. One can see that for
T )) I' the line shape is very similar to that for the non-
interacting Fermi liquid f (s)—, when the temperature in

f(s) is properly adjusted. Therefore the temperature ob-
tained from the experimental data by applying the non-
interacting electron formula is higher (lower) than the
true temperature when the interaction is repulsive (at-
tractive). The line shape in the low-temperature regime
(T (& I') will be briefly discussed later.

The T dependence of the resonance peak height or
width, on the other hand, is quite difI'erent from the
Fermi liquid due to the renormalization of I'. In con-
trast to the noninteracting case (rl = 1 and U = 0), I' in
Eq. (10) in general depends on T. Note that the interac-
tion is taken into account through U as well as g difI'erent
from 1. From Eq. (10) both I and I'/T depend on T and

2 —1 2 —2behave as I' T~, I'/T T~ for T &) Ae, and
I' T~, I'/T T~ for T (& Ae. When rl & 1/2,
both I and I'/T monotonically decrease as T is lowered.
When 1/2 & rl ( 1, I' keeps decreasing while I'/T de-
creases for T & Ae but turns to increase below Ae. When( q & 2, I' decreases for T & Le and turns to in-
crease below Ee while I'/T increases monotonically with

decreasing temperature. When q ) 2, both I' and I'/T
always increase. Thus I' or I'/T is a nonmonotonic func-
tion of T for 1/2 & rl & 2. For T & I' the temperature
dependence of I' is directly observable as the width of
the resonance peak, while for T & I' it is refIected not
in the width T but in the peak height e2I'/T. For
moderate repulsive interaction (1/2 & rl & 1), which we
consider to be the most relevant case to experiments, the
typical T dependence of the conductance line shape is
summarized in Fig. 3. Starting with the temperature T
() I' and ) Ae), as the temperature is lowered, both the
peak height and the width decrease first as T ~ and T,
respectively. Around T = Ae, however, the peak height

1
has a minimum and turns to increase as T~ below Lt,
while the width continues to decrease as T. Further low-
ering the temperature to some temperature T* (& Ae),
I' will become comparable with T, i.e., the peak height

e2. Below this temperature T*, the peak height satu-
1

rates to be e while the width decreases as T ~

Combining the above results for Vo (( aA and Uo ))
nA, we arrive at the following schematic phase diagram
at T = 0, which was first proposed by Kane and Fisher.
There are three phases A, B, and C separated by two
lines rl = 1 and rl = rI*(Vo), where rl*(Vo) continuously
changes from q*(0) =

4 to q*(oo) = 2. In the A phase
(rl ) 1) the barrier potentials are irrelevant perturba-

2

tions, and the conductance at T = 0 is always '2„" ir-
respective to Vz. In this phase the perturbative calcu-
lation in powers of Vo/nA works well. In the C phase
(0 & rl & rl*), on the other hand, the potentials are rele-
vant and the conductance is always zero at T = 0. Lastly,
in the B phase (rl' & rl & 1), the conductance at T = 0

2
is '2" precisely on resonance and zero otherwise. The
line shape of the resonance peak in this phase is shown
for T* & T ( Ae in Fig. 2; the peak grows higher as

1
T~ . The noninteracting Fermi liquid (rl = 1) locates
on the phase boundary between A and B so that, as is
well known, the line shape of the resonance peak is f'(s)—
at high temperature and Lorentzian with T-independent
linewidth at low temperature; with decreasing tempera-
ture the peak height first increases as T, and eventually
reaches e /27r at zero temperature.

~e

2'

0
—10 10

I

Tg
temperature

FlG. 2. The normalized line shape of the conductance G
for T )) I' in Eq. (12), i.e. , ~I'(~'„+ i~)/1 (~'„)~

as a function

of e'. For g = 1 it is equal to —4f'(e) = sech

FIG. 3. The temperature dependence of the height and
the width of the conductance peak for 1/2 & rl & 1. The peak
height has a minimum around T Ae. The width eventually
vanishes as T —+ 0.
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Now we comment on the low-temperature line shape of
the conductance resonances in the B phase. At low tern-
perature and just on resonance the perturbative treat-
ment with respect to Vo/aA is valid, and the peak value
of the conductance is given by Eq. (6b) with cos y = —1;
G = e g/2vr. Far away from resonance, on the other
hand, the perturbative calculation in powers of t becomes
appropriate, and the conductance is obtained from Eq.
(11) as G = ezI' /s . It is not easy to calculate the con-
ductance for the intermediate regime between the two
limits, just on resonance and far away from resonance,
since one must sum up all the contributions from the
higher-order tunneling processes. Very recently Kane
and Fisher have argued by using the renormalization

2

group that G = e (cc/T ") ~ in this regime, where c is
a dimensionful constant. Therefore one can expect that
as s is increased, the conductance decreases, from the

2
maximum value of order e rl/2n, first as s ~ and then
as e ~. Thus there must be a characteristic crossover
energy around which the exponent changes from ——to
—2. In our theory this energy scale is implicitly assumed
to be of order I'. However, further studies on this point
are needed.

Finally we discuss the effect of asymmetry of barrier
structures. In asymmetric structures (~Vj~ g ~Vz~), the
resonance cannot be achieved both in the weak-potential
limit and in the strong-potential limit. In the former
limit, the lowest-order cumulant of the double-barrier

potential is proportional to (Vj + V2) cos8 cos $ + (Vt-
V2) sin8sin $, which cannot be identical to zero unless
~VI~ = ~V2~. Also in the opposite limit it is shown by
a renormalization-group argument that the true reso-
nance cannot be achieved.

In summary, we have studied the resonant tunneling
through a double-barrier structure in a 1D interacting
spinless fermion system. We have calculated perturba-
tively the conductance as a function of T as well as of
Vz or e. It is found that for T )) I' the line shape
of the conductance peaks, the z dependence, for Lut-
tinger liquids is very similar to that for the noninteract-
ing system. It is the T dependence of the peak height
or width that is dramatically changed by the interaction,
and the nonmonotonic temperature dependence of the
peak height is predicted for the moderate repulsive in-
teraction. Although further detailed analysis is needed,
this mechanism may give a possible explanation of the
puzzling temperature dependence of the conductance ob-
served experimentally because the relevant temperature
( 0.5 K) is of the same order of the discretization energy
Le ~ 0.05meV for B 1000nm.
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