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Low-temperature thermal relaxation of electrons in one-dimensional nanometer-size structures
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We calculate the low-temperature power loss due to acoustic-phonon emission via the deforrnation-
potential electron-lattice coupling by warm one-dimensionally confined electrons in GaAs quantum
wires. The most spectacular feature of one-dimensional thermal relaxation, arising from the dominance
of 2kF scattering at very low temperatures, is an exponential temperature dependence of power loss at
the lowest electron temperatures, in contrast to the well-known Bloch-Griineisen algebraic temperature
dependence in higher dimensions. We find that, in contrast to two- and three-dimensional systems, the
temperature dependence of the power loss is rather strongly density dependent and remains qualitatively
unaffected by electronic screening in one dimension. The magnitude of the one-dimensional power loss
is comparable to that in two-dimensional heterostructures except at the lowest temperatures, where the
one-dimensional power loss is exponentially suppressed.

One of the early technological motivations for studying
one-dimensionally confined electrons in semiconductor
quantum wires was the suggestion' that at low tempera-
tures, when the Fermi surface is sharply defined, elastic
impurity scattering of the carriers will be drastically re-
duced because energy conservation in one dimension a1-
lows only 2kF resistive elastic scattering. In fact, if one
takes the one-dimensional model seriously, then within
the leading-order random-phase-approximation (RPA)
zero-temperature screening becomes logarithmically
divergent precisely at 2k+, completely suppressing any
elastic (resistive) scattering. Of course, in real quantum
wires at finite temperatures there will be residual impuri-
ty scattering arising from thermal broadening of the Fer-
mi distribution function and from intersubband process-
es. But, in high-quality modulation-doped semiconduc-
tor quantum wire structures, it is probably reasonable to
assume that impurity scattering contribution to linear
Ohmic resistivity will be small. It is, therefore, of some
importance to understand the nonlinear transport proper-
ties of semiconductor quantum wires. In particular,
thermal relaxation of hot quantum wire carriers at low
temperatures (with the carrier temperature slightly
higher than the ambient temperature) is controlled by the
acoustic phonon emission process. We point out that at
ultralow temperatures phonon scattering is also
suppressed in one-dimensional systems, leading to ex-
ponentially weak hot-electron relaxation at the lowest
electron temperatures. In this paper, by considering two
different phonon models, we develop a theory for the en-
ergy loss rate of warm one-dimensionally confined elec-

trons at an electron temperature T which is slightly
above the lattice temperature T&„so that acoustic-
phonon emission is the only important dissipative pro-
cess. In one model, more appropriate when the electron
gas is strongly coupled to the substrate lattice, the pho-
nons are chosen to be the usual bulk three-dimensional
phonons (referred to as the 3D model). In the other mod-
el, more appropriate for free standing quantum wires
where the phonon modes are also one-dimension ally
confined, both the electrons and the phonons are taken to
be one dimensional (the 1D model). Note that the elec-
trons are treated in exactly the same one-dimensional
confinement model in both cases. We assume the validity
of the electron temperature model throughout, describing
the warm-electron gas by a Fermi distribution function at
an elevated temperature T) T&„. This model is known
to be a reasonable model in the steady-state electric field
heating situation. We consider only the intrasubband re-
laxation within the lowest one-dimensional subband,
neglecting all effects of higher subbands in our calcula-
tion.

The average energy-loss rate via acoustic-phonon
scattering can be written as

where X is the total number of electrons, A'm is the pho-
non energy for wave vector q, and de /dt is the rate of
change of the phonon distribution function. From
Fermi's "golden rule, "de /dt is easily calculated to be

dN =2 g ~M(q)~ 5(Ek+fico E~+ )I(N +1)f—(Ek+ )[I f(E~)] N f(Ek)[—1 f(E—~+ )]], —

where the summation is over the electron wave vector k
and the phonon wave vector q=(q~~, q~) is decomposed
into components parallel and perpendicular to the elec-
tron wave vector. The matrix element ~M(q)~ is the

electron-phonon interaction matrix element via the
deformation-potential coupling. The quantities f and E
are the electron distribution function and energy, respec-
tively. Putting Eq. (2) in Eq. (1), one obtains the basic
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equation for the hot-electron energy-loss rate via phonon
emission in any dimension ' —the information about
confinement and dimensionality enters through the in-
teraction matrix element ~M(q) ~

. One can include
screening in the calculation by using the appropriately
screened deformation-potential interaction matrix ele-
ment.

It is instructive to write the equation for power loss
P = (dE/dt ), obtained by substituting Eq. (2) in Eq. (1),
in a mathematically equivalent form by using the
fluctuation-dissipation theorem:

P= —+fico ~M(q)~ [Nz-(coq) Xr —(coq)]
1

q

X ImIIr(q, coq), (3)

where II is the electronic polarizability function and
Xz-[~ ], as before, is the Bose factor at the temperature

lat

T( T~„). In Eq. (3), confinement and dimensionality show
up in calculating II&.(q, co~) and ~M(q)~ (as well as the
phonon frequency co ). This expression for the hot-
electron power loss, which is formally independent of di-
mensions and the phonon modes involved, has been ex-
tensively used in the literature in calculating the
longitudinal-optical phonon emission rate. '

We have used the deformation-potential approxima-
tion for the electron-acoustic-phonon coupling matrix
element:

Z A
~M(q ) ~'= [I(q~ )I(q, )],

2pu
(4)

where the first term in the square brackets is the usual
deformation-potential coupling with Z the deformation-
potential coupling constant, p and u being, respectively,
the ionic mass density and the longitudinal sound veloci-
ty. The second term within the curly brackets of Eq. (4)
is the quantum-mechanical form factor arising from
confinement in y and z directions. We calculate the quan-
tum form factors in the infinite square potential-well
confinement model ' with the same confinement width in
the y and z directions. We assume the one-dimensional
limit in our calculation, taking only the lowest subband
for y and z motion to be occupied by the electrons, and
consider intrasubband electron-phonon scattering pro-
cesses only. Our calculation is for GaAs quantum wires,
where the one-dimensional limit of a strict one subband
occupancy has recently been achieved experimentally.

In the rest of this paper we present our numerical re-
sults for the calculated hot-electron power loss via acous-
tic phonon emission in GaAs quantum wires (taking
Z= 10 eV) as a function of electron and lattice tempera-
tures and carrier density. The electron wave vectork:—k is one dimensional in all our equations. For the
3D model, we take q to be the three-dimensional phonon
wave vector and I(q ),I(q, ) are calculated corresponding
to infinite square well confinement defined by the widths
Ly L 100 A. For the 1D model, the phonon wave
vector q=q is one dimensional as well and, because we
are interested in qualitative behavior, we make the addi-

tional simplifying approximation of choosing
I(q~) =I(q, ) =1 without worrying about the details of
the phonon confinement. We also assume that the form
of the deformation-potential coupling matrix element,
given by Eq. (4), is the same for the 3D and the 1D model
and that the acoustic phonon dispersion is of the same
linear form, co =u ~q~, in both cases. The calculation of
power loss then involves carrying out a two-dimensional
integration in the right-hand side of Eq. (3)—one to ob-
tain Hz at finite temperatures and the other over the
magnitude q of the phonon wave vector to do the sum
over q. [The form factors I(q ) and I(q, ) are also two-
dimensional integrals making the total integral for P a
four-dimensional one for the 3D model. ] The integral
over the wave vector q is cut off at a Debye wave vector
qD to eliminate the artificial ultraviolet divergence arising
from the use of an electron gas model. Screening is in-
cluded in some of our calculations within the static
random-phase approximation by using the reducible (i.e.,
screened) one-dimensional electron polarizability func-
tion' for II.

The most spectacular feature of one-dimensional
thermal relaxation is the ultralow-temperature
(kii T &(Fz) behavior of the calculated power loss which
is exponentially weak in contrast to the well-known
Bloch-Gruneisen algebraic temperature dependence in
two- and three-dimensional systems. This exponential
behavior follows from the peculiar nature of the one-
dimensional Fermi surface which at low temperatures
(ks T &(EF) is simply two points at k =+kF with all the
states in between completely filled and those outside (i.e.,
with ~k

~

) kF) empty. The only possible intrasubband re-
laxation mechanism at this ultralow (ks T (&EF) temper-
ature is provided by the 2kF scattering as an acoustic
phonon of wave vector 2kF is emitted. At low tempera-
tures, the emission of such a phonon is obviously ex-
ponentially suppressed leading to the temperature depen-
dence (for ks T ((EF)

—fi(2ukF i/kB TP~e

for the electron energy loss (with T&„=0), where
2uk~ =~2& is the frequency of the emitted 2k~ acoustic

F
phonon. The same result follows easily from Eqs. (2) or
(3) as well.

In Fig. 1 we show our numerically calculated low-
temperature power loss as a function of the electron tem-
perature T (with T&„=0) for various 1D electron densi-
ties in both the 3D and the 1D model. The exponential
drop in the power loss is obvious in the low-temperature
regime of Fig. 1. Note that with decreasing electron den-
sity, the exponential regime gets shifted to lower electron
temperatures because the condition k~ T &&EF is satisfied
at lower temperatures for lower electron densities. Note
also that the inclusion of screening decreases the power
loss slightly without affecting its qualitative temperature
dependence. This spectacular exponential suppression of
the low-temperature one-dimensional intrasubb and
thermal relaxation rate is the most important qualitative
result of this work.
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At electron temperatures which are not too low com-
pared with the Fermi temperature (T~ TF or higher,
where TF=EF/ks is the Fermi temperature), but still
low compared with the characteristic phonon energies
(i.e., for TF & T «HD, where OD is the Debye tempera-
ture), the power loss (for T„,=O) is characterized by a
"Bloch-Cxruneisen" type algebraic temperature depen-
dence, P —T", where the exponent n can be estimated
from Eq. (3) [or Eq. (2)] by the usual power-counting
technique. The crossover from the exponential tempera-
ture dependence at ultralow temperatures (T«TF) to
the algebraic temperature dependence at intermediate
temperatures (TF & T «OD) in the calculated power loss
can be seen in Fig. 1 essentially around T-1 K tempera-
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ture region. We explore this intermediate-temperature
region in Figs. 2 —4. In the results discussed below (Figs.
2 —5) we do not further discuss the exponential ultralow-
temperature (T «1 K) regime and concentrate on the
intermediate-temperature regime instead (T-1—10 K).
The exponential temperature dependence around T-0 K
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FIG. 1. Shows the calculated one-dimensional power loss, P,
in watts as a function of the electron temperature, T, in kelvin
(for T~„=O K) on a log-log plot for (a) the 3D and (b) the 1D
phonon models. In the inset of (a) statistically screened 3D pho-
non results for two densities are shown (all the other results are
unscreened). Different curves indicate different 1D electron
densities: N =0. 1 X 10' (dashed curve), 1.0 X 10' (thin solid
curve), 3.0X10' (dotted curve), and 5.0X10' cm (thick solid
curve) in (a) and (b) whereas in the inset of (a) the dashed and
the thin solid lines represent, respectively, the unscreened and
the screened N=1.0X10' cm ' case, and the dotted and the
thick solid lines represent, respectively, the unscreened and the
screened N=5. OX 10 cm ' case. The low-temperature ex-
ponential behavior and the intermediate-temperature algebraic

0
behavior can both be seen in these results. (L~ =L, = 100 A.)
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FICx. 2. Shows the calculated power loss P (per electron) as a
function of the electron ( T) and the lattice ( T~„) temperature
difference for the 3D model and for several carrier densities
N =0. 1 X 10' (thick solid curve), 1.0 X 10' (dashed curve),
5.0X10 cm (thin solid curve), and for T~„=O K (a), 1 K (b), 5
K (c). In Fig. 1(a) the screened results are also shown for
N =O. 1 X 10' (dot-dashed curve) and 1.0 X 10' cm (dotted curve)
densities. Only the intermediate-temperature regime can be

0
seen in these linear plots. (L~ =L, = 100 A.)
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for the power loss is not manifest in the linear tempera-
ture scale of Figs. 2 and 3.

In Fig. 2 we show, for the 3D model, the calculated
power loss as a function of the electron and lattice tem-
perature difference ( T T—&„) in the intermediate-
temperature range for a number of different carrier densi-
ties and for T&„=0 [Fig. 2(a)], 1 K [2(b)], and 5 K [2(c)].
In Fig. 2(a) we also depict the screened results for the
sake of comparison. In Fig. 3 we show P as a function of
(T T&„)—for the 1D model. The calculated power loss
for 1D and 3D models are comparable (in the 10 ' W
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range for T T—t„around a few K) in magnitudes and it
is, in fact, similar to the hot-electron energy loss rate in
two-dimensional heterostructures for the same range of
parameters. But the temperature dependence of P is
different in the two models with the temperature ex-
ponent of P being much higher for the 3D model than for
the 1D model [compare Fig. 2(a) with Fig. 2(b)]. This is
actually expected on the basis of simple dimensional ar-
guments which indicate that the 3D model should have
an exponent n (i.e., P —T" for T~„=O) which is higher
than that for the 1D model by 2. One interesting feature,
which distinguishes one-dimensional hot-electron power
loss from higher-dimensional results, is that screening
[see Fig. 2(a)] does not change the qualitative low-
temperature behavior of the calculated power loss, i.e.,
the exponent n is unaffected by screening in one dimen-
sion (in contrast to higher dimensions). This behavior
follows naturally from the weak wave-vector dependence
of one-dimensional screening. '

In Fig. 4 we show the carrier density dependence of the
calculated power loss for the 3D and the 1D model. The
power loss is more than an order of magnitude larger in
the 3D model compared to the 1D model at higher elec-
tron temperatures because of the much stronger tempera-
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FIG. 3. The same as in Fig. 2 for the 1D model (without any
screened results).

FIG. 4. Shows the carrier density (N) dependence of P for
T=5 K (thin solid line), 10 K (thick solid line), 20 K (dashed
line), and for (a) the 3D and (b) the 1D model. (T~„=1 K,
I y L 100 A )
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FIG. 5. Shows P as a function of (T—T~„) ' on a semiloga-
rithmic plot for the 3D (solid line), 1D (thin solid line), and the
LO-phonon emission (dashed line) models.

ture dependence of the relaxation rate in the 3D model.
Also, the density dependence of the calculated power loss
is strong in both the models, in sharp contrast to two-
dimensional heterostructures, where the low-
temperature power loss due to acoustic phonon emission
is essentially density independent. The strong density
dependence of Fig. 4 arises from the rather low degenera-
cy temperatures (Fermi temperatures T~) in the achiev-
able carrier density range (-10 cm ') in one-
dimensional systems. In fact, for high densities or for
low electron temperatures, the one-dimensional result is
also essentially density independent in qualitative similar-
ity to higher-dimensional acoustic phonon emission
mediated cooling results. The large ( —a factor of 10 for
higher values of T) diff'erence in the power loss between
3D and 1D results is also real because the 1D model, be-
ing severely restrictive in phase space, allows substantial-
ly less cooling. This difference, as well as the qualitative
difference in the temperature dependence of P at low T,
should be sufhcient to differentiate between the models
when experimental data become available. We believe
that the actual results should lie somewhere between the
two models (our two models being two extreme
simplifications), perhaps closer to the 3D results than the
1D ones. For truly free standing quantum wires, the 1D
model may be more suitable.

Finally, in Fig. 5 we show our calculated one-
dimensional power loss via acoustic phonon emission for
the two models over a wider temperature range, compar-
ing it with the corresponding bulk (i.e., 3D) LO-phonon
emission mediated power loss. For (T T&„))40 ——50
K, the calculated power loss is exponentially greater via
LO-phonon emission, and acoustic phonon processes are
unimportant. But below 30 K power loss via acoustic
phonon emission is the dominant process, because LO-
phonon emission is exponentially suppressed.

We now brieAy consider the asymptotic temperature
dependence of the power loss as implied by Eqs. (1)—(4) in
the intermediate-temperature range (TI; & T((OD). For
T&„=0 (and without any screening) it is straightforward

to extract the intermediate-temperature ( ks T ((Ace
-RcoD) behavior of the power loss by a simple power
counting. One gets P —T" with n =5 for the 3D model
and n =3 for the 1D model. At very low T, as em-
phasized earlier, the temperature dependence of the
power loss is exponential, arising from the peculiar na-
ture of the one-dimensional Fermi surface which makes
the 2kF scattering the only allowed relaxation process-
but, the crossover occurs at a very low temperature
where the power loss is small ( ~ 10 ' W). Our numeri-
cal results shown in Figs. 2 —4 are consistent with these
intermediate-temperature Bloch-Gruneisen exponents
(n =3 and 5 for the 1D and the 3D models, respectively).
One can see from a comparison of Figs. 2 and 3 that the
numerical value of intermediate temperature n for the 3D
model (Fig. 2) is substantially larger than that for the 1D
model (Fig. 3). For large T, the Bose factor in Eq. (3)
dominates and gives P —T (i.e., n = 1)—this, however, is
not a physically meaningful result because in the high-T
()30—40 K) regime, LO-phonon emission is the dom-
inant dissipative process. We should also mention that
for T&„%0, the power loss is linear in ( T Tht ) =4—T for
small values of AT which is consistent with our numeri-
cal results of Figs. 2 and 3.

It is well known that in two-dimensional heterostruc-
tures the bare exponent n changes drastically when
screening is included in the theory. A curious aspect of
one-dimensional screening behavior is that the exponent
n remains unaffected by screening. This can be seen in
Fig. 1(a) where screening lowers the quantitative magni-
tude of the power loss, but does not change the low-T ex-
ponent. It is easy to show that one-dimensional RPA
screening' at long wavelengths, as given by the static
dielectric function, goes as E(q ) = 1+3 ~ln(qa )

~

where
'=A c&„akF /4me is a constant. Inclusion of screen-

ing in Eqs. (1)—(4), therefore, would only introduce loga-
rithmic temperature corrections to the bare result,
without affecting the exponent n.

We emphasize that there is really no true Bloch-
Griineisen regime in one-dimensional systems where the
low-temperature power loss via acoustic phonon emission
has an exponential electron temperature dependence.
The asymptotic low-temperature dependence of the
-power loss is always exponentially activated in tempera-
ture due to the peculiar dominance of 2kF scattering in
one dimension. The very-high-temperature behavior is
linear in temperature. There is an intermediate-
temperature regime (1—10 K), where the power loss
simulates an algebraic temperature dependence, P —T",
with n —3 —6 depending on the phonon model. But this
is a crossover regime and not an asymptotic temperature
dependence in contrast to the usual Bloch-Gruneisen be-
havior in higher dimensions. There are corrections to the
exponent n in this intermediate crossover temperature re-
gime, arising from the temperature dependence of the
electron Fermi factors in Eq. (2) ror, equivalently, fromm
the temperature dependence of ImH in Eq. (3)], which
are, of course, exactly included in our numerical results
but are missed by the simple counting arguments leading
to n = 3 or 5 in one dimension.

We conclude by mentioning that in two-dimensional
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heterostructures the exact value of the deformation-
potential coupling constant Z has been a controversial
issue with Z=7 —14 eV being used in the literature for
GaAs. We have used Z=10 eV in all our calculations,
but, of course, one can change Z by simply scaling our
numerical results by Z . It will be interesting to see
whether the experimental results for power loss in one-
dimensional quantum wires will also require an enhanced
value of Z as is the case for heterostructures. It should
be pointed out that our single-subband model of a sym-
metric square cross-section quantum wire with infinite
potential barriers is not a very realistic one and may need
to be improved for comparison with experimental results.

A comparison with experimental results, when they be-
come available, may also require a substantial extension
of our theory by including, in general, the effects of
higher subbands and, in particular, the effect of intersub-
band scattering on the relaxation rate. Intersubband
scattering will modify some of the purely one-
dimensional peculiarities of our results —in particular,
the exponential suppression of power loss at low tempera-
tures should disappear if intersubband scattering is
significant.
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