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Orthogonalized-moment method and the study of the electronic structure of heterostructures:
Application to CdTe/ZnTe superlattices
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We present an approach that uses power moments of the Hamiltonian to calculate the electronic states
in low-dimensional structures, such as quantum wells or superlattices. From a microscopic tight-binding
description of the crystals, the orthogonalized moments of the Hamiltonian are used to obtain the
coefficients of the continued fraction representing the density of the electronic states. This method al-

lows us to calculate quite efficiently the electronic states of large-period systems and clusters. Applica-
tion to a one-dimensional quantum-well model shows the ability of the method to determine the local-
ized states with good accuracy. Then, we calculate the electronic structure of a strained CdTe/ZnTe su-

perlattice and we study the dependence of the highest valence states at the center of the Brillouin zone,
with respect to the valence-band offset. Existence of type-I —type-II transition for a critical value of the
valence-band offset is brought out.

I. INTRODUCTION

The electronic structure of semiconductor systems has
become a subject of increasing importance. These sys-
tems are artificially grown layered structures such as
quantum wells, multiquantum wells, or superlattices. ' In
the first two cases, there is a break of the translational
symmetry in the growth direction and only two-
dimensional translation symmetry in the plane of the in-
terfaces is retained. Superlattices have three-dimensional
translation symmetry with a large period along the
growth axis. Recently, substantial progress has been
realized in epitaxial growth and nanostructure techniques
and new structures, quasi-one-dimensional-like quantum
wires, or zero-dimensional-like quantum dots have been
produced with good quality. These systems are very
promising for making electronic devices and knowing
their electronic structure is important for the understand-
ing of their physical properties. All the band calculation
methods can be a priori used to obtain the electronic
structure of these systems. However, their implementa-
tion can lead to a very large amount of calculations,
which requires more efficient computational procedures.
The tight-binding approximation based on an empirical
description of the bulk states has often been applied to
the heterostructure studies. The interest of this method
is to give a microscopic description of the material which
allows the full symmetry of the system to be taken into
account. This avoids the assumption that there is the ab-
sence of mixing between the light- and heavy-hole states
at the Brillouin-zone center and the presence of inversion
symmetry. Moreover, the tight-binding method describes
the states of the whole of the Brillouin zone which is
necessary when states both near and far from the zone
center must be considered at the same time as, for in-
stance, in the case of an indirect band gap. In the tight-

binding method, the electronic wave function is expanded
in terms of atomic orbitals. A basis set often used for the
study of semiconductors consists of s and p states of each
atom. For bulk systems, there are two atoms in the unit
cell and energy band calculations require diagonalization
of 20 X 20 matrices when spin-orbit and s * orbitals are
included. In the case of superlattices, the number of
atoms in the unit cell is large and the direct diagonaliza-
tion becomes intractable for large-period heterostruc-
tures. Calculations of the electronic structure of quan-
tum wells, quantum wires, and quantum dots is still more
cumbersome because of the lack of translation invariance.
In these cases, the very large size of the unit cell to be
considered prevents even any direct diagonalization of
the Hamiltonian matrix.

Several methods have been developed to determine the
electronic properties of such systems. The recursion
method gives one way to solve the problem, providing a
procedure to determine the Green's function of the Ham-
iltonian operator. Starting from an initial basis state, a
new basis set is constructed by a three-term recursion re-
lation in such a way that the Hamiltonian is tridiagonal
in this basis set. From the matrix elements so obtained,
the density of states projected on the initial state is gen-
erated as a continued fraction. This approach has been
used to perform calculations in real space for semicon-
ductor clusters and quantum wells. It has also proved
its eKciency when the recursion is performed in the k
space as for the study of translationally invariant sys-
tems. A second method to enable the handling of sys-
tems leading to large-dimensioned Hamiltonian matrix is
based on the renormalization techniques. " In this
method, the Green's function projected on a given layer
is calculated by successive elimination of all the other
layers. At each step, a renormalized energy-dependent
Hamiltonian of lower dimension is obtained and the pro-
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cess is repeated until only the layer concerned remains.
The renormalization method is closely related to the re-
cursion method. ' Recently, it has been applied to study
the electronic band structure of large-period systems in
order to interpret the intrinsic origin of the
semiconductor-semimetal transition of InAs/GaAs super-
lattices. ' However, these methods can only be used for
renormalizable systems. An alternative way to obtain the
Green's function is to expand it in power moments. '

However, the calculation of these moments presents great
difficulties. The use of generalized moments' ' which
seek to keep the linearity of the moments in the Green's
function leads to numerical instabilities. A particular
form of the generalized moments, called the orthogonal-
ized moments, was proposed. ' They can be calculated
exactly by a numerically stable procedure and this
method is equivalent to the recursion method. Recently,
this orthogonalized-moment method (OMM), called spec-
tral moment method in lattice dynamics, has been ap-.
plied to the direct determination of the infrared absorp-
tion, Raman or Brillouin scattering of light, and inelastic
scattering of neutrons. ' ' This method has been re-
vealed to be a powerful tool to obtain the spectral densi-
ties of systems such as perfect crystals or those with im-
purities and disordered systems. ' ' The purpose of this
paper is the extension of this new approach to the study
of the electronic properties of superlattices or multilayer
heterostructures. This constitutes, to our knowledge, the
first application of the OMM to the calculation of elec-
tronic states of these systems. In Sec. II we give a brief
outline of the method and we describe the algorithm
which allows us to obtain the orthogonalized moments
and to deduce from these the projected density of states.
In Sec. III we apply the method on a simple one-
dimensional model superlattice in order to verify the pre-
cision and the convergence of procedure. In Sec. IV an
application of the OMM to the calculation of the elec-
tronic structure of a realistic CdTe/ZnTe superlattice is
presented. From a semiempirical tight-binding descrip-
tion of the microscopic interactions, we show the great
precision obtained by using the OMM and we discuss the
existence of a type-I —type-II transition when the
valence-band oA'set varies.

II. ORTHOGONALIZKD-MOMENT METHOD

We consider a Hamiltonian represented on an orthogo-
nal local basis such as, for instance, a tight-binding model
Hamitonian, and define no(E) the local density of states
(LDOS) on local orbital ~uo) as

no(E) = ( uo ~5(E —H) uo ) = ——lim ImGO(E+i E),1

~ E~o

where Go(E) is the diagonal matrix element of the
Green's function which is given in the eigenbasis by

G(z) =(z —H) (2)nk,
where E„k is the energy of the eigenstate ~nk ). In this

Go(z) =
z —a, —

z Qp

b&

b2

(4)

z Q3
z —a 4

The recursion coefficients an and bn are real and posi-
tive. On the other hand, the Green's function can be ex-
panded in Laurent set

G(z)= g
n —0 z

where the power moments are defined as

p„=(uolH"lu, ) = fE"n,(E)dE .

(5)

The two expressions (4) and (5) are formally equivalent,
however, the expansion (4) is convergent as n goes to
infinity while (5) is not. The coefficients of the continued
fraction are related to the moments by the ratios of
Hankel determinants A„and 5„. These determinants are
obtained from the Hankel matrices, the elements of
which are the power moments. However, it is not easy to
compute the coefficients an and b„ in this way because
the calculation is ill conditioned. To overcome this
difficulty, Gaspard and Lambin' ' have defined general-
ized moments p„ from a sequence of polynomials

P2,n
= nO E Pn E Pn E dE

pz„&= f no(E)p„(E)p„&(E)dE,

where p„(E) is a polynomial of degree n in energy which
satisfies a three-term recurrence

p„+,(E)=Ep„(E) c„+@„(E) d„p—„,(E) . —

The coefficients c„and d„must be defined a priori and
their choice determines the success of this method. This
one is tricky to work because it requires the knowledge of
a sequence of polynomials close enough to the sequence
of the polynomials which are orthogonal to the function
a priori unknown no(E). In fact, the recurrence process
is led with a set which is not rigorously orthogonal. The
accuracy of results is very sensitive to input parameters
and small changes in their values can give large variation
in the results. An important improvement recently sup-
plied by Jurczek' has shown that it was possible to gen-

basis, no(E) can be written as

~0(E)= g l(u&lnk) I'5(E E,k) .
n, k

The main interest of the Green's functions is that they
allow one to obtain the relevant physical information
while avoiding the direct diagonalization of the Hamil-
tonian matrix. The poles of the Green's function are the
energies of the eigenstates and the residues at these poles
give the local contribution to the eigenstates. The matrix
elements of the Green's function can be expressed as a
continued fraction
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the continued fraction coefficients are given by

vn vn
a„+,=, b„= for n ~1 .

vn vn —t

These equations together with Eq. (8) allow us to deter-
mine all the v„and v„coefficients from the initial values
v0= 1,p, =0, and po = 1, by the following algorithm:

p„~(v„,v„)~(a„+,, b„)~p„+1 .

With the relations (11), the orthogonalized-moment
method is equivalent to the recursion method.

For an infinite system, the basis set contains an infinite
number of atoms and the development in continued frac-
tion requires an infinite number of recurrence levels. As
only one limited number of terms can be considered, the
expansion must be truncated to a given level. Several ap-
proaches have been proposed to cut off the development
and to include the asymptotic form of the continued frac-
tion coefficients. As discussed in previous works, ' '

their asymptotic variation depends both on the oc-
currence of Van Hove singularities in the density of states
which give damped oscillations in the recursion
coefticients and on the existence of band gaps which pro-
duce undamped oscillations. However, a large part of
these results is conjectured and the precise behavior of
the coefficients a„and b„ for large physical systems is
often more complicated. On the other hand, the conver-
gence of the continued fraction increases with the num-
ber of calculated moments and the precise choice of the
infinite tail is not very crucial when considering a large
number of a, and b„coefficients. ' If necessary, the ac-
curacy of the method can be increased by developing the
coefficients in Fourier series and taking a periodic tail.
By this procedure, the densities of states of very large
harmonic systems have been determined with good pre-
cision.

For materials with a periodic structure, such as crys-
tals or superlattices, it is possible to take into account the
periodicity of the system and to build a new basis of
Bloch functions 0& (k, r) from a localized basis u (r —R„)
by the relation

ik-R„
C&, (k, r)= —g e "u (r —R„),+& n=l

(12)

where X is the number of unit cells of the crystal and a
denotes one of the p different basis functions centered on
the lattice site R, . In this new basis, the Hamiltonian is

crate a sequence of polynomials which is a priori orthog-
onal to an unknown function. This method provides an
exact determination of the continued fraction coefficients
by making use of a particular form of generalized mo-
ments. These orthogonalized moments v„are obtained
from another recurrence relation for 5„, in which the in-
put coe%cients do not appear. If one defines the new ele-
ments

v„=I n0(E)p„(E)dE,
(9)

v„=I n0(E)p„(E)E dE,

block diagona1 because all the matrix elements between
Bloch functions with different k vectors are equal to zero.
Then, the Hamiltonian matrix is expressed as a set of N
matrices H(k) each of them with a dimension equal to p;
and consequently the 1V k points in the Brillouin zone
must be considered. However, as usual, only a limited
number of k points is included in the calculations such
as, for instance, when a special k-point method is used.
The Green's function can be obtained in the Bloch basis
and the recurrence equations can be applied to the Ham-
iltonian matrices directly in the k-space representation.
To find the local density of states, one starts from a given
state ~u0) which is usually localized in the direct space.
When the recurrence is implemented in the k space, the
~u0) state is decomposed in contributions originating
from different k points and the recursion must be per-
formed in each orthogonal subspace.

It is important to note that it is equivalent to proceed
to the calculation of moments in the direct space or in the
k space because the relation between the basis functions
given by Eq. (12) is unitary. However, the manner to im-
plement calculations is different. In the real space, only a
finite cluster is considered and, after some recurrence lev-
el, the state vector is no longer contained in the initial
cluster and some approximations must be made. In the k
space, each submatrix is finite. Usually, its dimension is
much weaker and the moment calculation is performed
without the choice of an asymptotic form being neces-
sary. On the other hand, the moments must be calculat-
ed for all the k points. As only a finite number of these
points can be considered, special k-point method is often
used.

III. APPLICATION TO THE QUANTUM WELLS

To illustrate how the orthogonalized-moment method
can be applied to electronic band-structure calculations,
we first consider an infinite one-dimensional lattice
formed by two kinds of atoms with one s state, for in-
stance, an anion 3 and a cation C, alternatively distribut-
ed on the chain with a spacing between two sueeessive
sites equal to a. A model Hamiltonian in the tight-
binding approximation, retaining only the nearest-
neighbor interactions, is

H= g ( 1) ECncn +g r , +n1(nC +1Cn+CnnCn +1)+E

(13)

where c„and c, are, respectively, the creation and an-
nihilation operators for one electron on the nth site,
E=(E„Ec)12is the half differe—nce between the anion
and cation one-site energies, E =(E„+Ec)/2 the mean
energy, and t„„+,the hopping integral assumed constant
with t value. This system is periodic with a period 2a and
it is easy to obtain the total density of states by atom
(DQS) as
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i«' ~ IE I

~ (E'+«')'"
n, (E+E)= ~ [(E'—s')(E'+4r' —E') j'"

0 otherwise . (14)

As a test case, we shall consider a biatomic chain com-
posed of 100 atoms with the parameters E~ =0.5 eV,
E&=1.5, eV, and t= —4 eV. Figure 1 shows the local
density of states on an anion site and the DOS calculated
by OMM. We have obtained these densities from the
contribution of the first ten moments with the usual
square-root termination which accounts for the oscilla-
tions originating from the energy gap E =2c. To evalu-
ate the precision of the method, we have also reported, in
Fig. 1, the DOS calculated from Eq. (14). The agreement
with the DOS obtained by OMM is very good and the
comparison clearly shows that OMM allows one to ob-
tain the features of the DOS with only a few moments.
We have also calculated the DOS by direct diagonaliza-
tion of the Hamiltonian matrix. For a chain with 160
atoms, the computation time for the DOS determination
with 12 moments is 15 s as compared with only 2 s with
OMM, all the calculations being performed on an IBM
3081 computer.

The study of the electronic structure of semiconductor
quantum wells and superlattices has recently known a
large development because the quantum size effect leads
to a spatial localization of the electrons and holes into
layers. The confinement of these carriers leads to the ap-
pearance of states which are localized in the direction

perpendicular to the layers and the calculation of the cor-
responding energy states must be implemented with a
great precision whatever the well size, in order to be used
in the interpretation of optical spectra. It was interesting
to check how the OMM can be applied to obtain the lo-
calized state energy of large systems. We have con-
sidered a quantum well formed by 20 layers of a new ma-
terial surrounded with 50 layers of the previous material
on each side. The two materials, described in the same
way as before, are supposed to have a common anion
(E„=E~) and the same hopping integral t We .take
EC.=2.5 eV so that the offset appearing between the
highest (conduction) bands of each compound is 1 eV.
To test the accuracy of the OMM, we have first calculat-
ed the quantum-well state energies by numerical direct
diagonalization of the Hamiltonian which, in theory,
gives the exact eigenvalues. On the other hand, we have
determined these values from the OMM as the maxima of
the LDOS calculated on the layer at the center of the
well, varying the number of moments which are included
in the evaluation of the LDOS. The calculations have
been performed to obtain the energy values with a given
precision and require a larger number of moments than
those needed to calculate the main features of the LDOS.
Considering 20 moments, we obtained the localized state
energy within 5 meV of that given by the direct diagonal-
ization. When 40 moments are included in the calcula-
tion, the agreement between the energies is better than 1

meV. These calculations of the eigenstates using the
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FIG. 1. Densities of states for a biatomic one-dimensional
chain. Solid and dotted curves, respectively, refer to the DOS
and to the LDOS on an anion site obtained from the first ten
moments by the OMM. Black circles give the exact total DOS
calculated from Eq. (14).
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FICs. 2. LDOS on the layer lying at the well center, at k=0,
for a one-dimensional quantum well.
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OMM method do not require much computer time.
Moreover, the great advantage of the method is that the
computation time varies linearly with the moment num-
ber and matrix order. We have shown, in Fig. 2, the
LDOS at the center of the well determined by OMM
when 20 moments are included in the calculation. As ex-
pected, a localized state appears in the gap under the bot-
tom of the conduction band. The great advantage of the
OMM lies in the high speed of the calculation with
respect to the direct diagonalization, which is very im-
portant for the application of the OMM method to sys-
tems with a large number of atoms.

IV. CdTe/ZnTe SUPERLATTICES

Our purpose is the study of semiconductor superlat-
tices by the OMM. Therefore, after this preliminary
study of a very simple one-dimensional model, we will
consider more realistic semiconductor heterostructures
and we will study as an example the case of strained
CdTe/ZnTe superlattices. This system presents an in-
teresting property according to the heter ostructure
characteristics. It is possible to find the two kinds of car-
riers in the same semiconductor layer or in two neighbor-
ing layers. In the first case, the superlattice is type I and
the optical transitions are intense because of the large
overlap of the electronic states localized in the same lay-
er. Otherwise, hole and electrons are in neighboring lay-
ers, the superlattice is type II, and the oscillator strengths
are weaker. To describe the bulk crystals, we use a
tight-binding approach. The interest of this method lies
in the microscopic description of the materials from the
atomic interactions between anions and cations. It re-
tains the full symmetry of the crystal. We use a modified
sp s* basis including spin-orbit interactions. In order to
analyze more easily how the superlattice valence states
are formed from the bulklike hole states of the two com-
posing materials, we have taken as basis functions the
linear combinations of the Bloch states which are the
eigenstates of the total angular momentum and of its
components along the z direction. Only interactions up
to first neighbors are retained. However, these limita-
tions aie not necessary to use our method, which can be
applied to more general situations. Consideration of
spin-orbit coupling leads to a basis of ten orbitals per
atom which gives a Hamiltonian matrix in k space with
the dimension (M+N) X20. All the matrix elements are
fitted to bulk band structures of the two semiconductors.
Two sorts of requirements can be imposed for the param-
etrization. One can try to reproduce the energy bands at
the high symmetry points of the Brillouin zone; this way
is well adapted to a description of overall properties of
the crystals. On the other hand, if we are interested in
the optical properties, only states near the fundamental
band gap of the crystals are concerned, and it is impor-
tant to have an accurate description of the band disper-
sion into this region. We have proceeded in this latter
manner in order to describe precisely the energy bands
near the I and X extreme.

CdTe and ZnTe materials present a lattice mismatch of
about 6%%uo. This results in heavy biaxial stress which

TABLE I. Effective masses (in units of electron masses) and
deformation potentials (in eV) calculated from our tight-binding
approximation and compared with experimental values. a and b
are, respectively, the hydrostatic and the uniaxial deformation
potentials. m „„[100]and m, „[100]are the heavy- and light-hole
effective masses in the [001]direction.

m„„[100] m»[100]

CdTe

ZnTe

Theory
Expt.
Theory
Expt.

—3.17
—3.17'
—5.19
—5.19'

—1.2
—1.17'
—1.2
—1 3

0.5128
0.5128
0.3985
0.3984

0.1597
0.1595
0.1778
0.1776b

'Reference 31 ~

Reference 32.
"'Reference 33 ~

d Reference 34.

deeply modifies the electronic structure of materials,
shifting the conduction band and splitting the valence
band, in a superlattice built with two mismatched semi-
conductors, two neighboring layers experience antagonis-
tic stresses. This gives a contribution to the band offset
which mainly depends on the thicknesses of the layers.
This component adds to the band offset which exists if
the two semiconductors are unstrained. The lattice
mismatch of the two compounds causes the cations and
anions to move from the perfect lattice sites. This entails
changes in the length and the orientation of the bonds
and consequently, modifies the Hamiltonian. The off-
diagonal matrix elements V &(d) between two atomic or-
bitals a and P, centered on adjacent sites at a distance d
are assumed to vary according to the law

g p

V p(d)= V p(d) (15)
L

where d and do are the nearest-neighbor distances for the
strained and unstrained cases, respectively. The ex-
ponents q &

are determined by fitting to the experimental
pressure variations of bulk energy states of the semicon-
ductors. So, to obtain accurate results for strained super-
lattice energy states, we must require our parameter set
to reproduce, at the same time, the experimental values
of the effective masses and the deformation potentials of
each compound. As the main scope of this paper is to
show the great interest of the OMM in the electronic
structure calculations, we do not detail the parametriza-
tion method for such strained superlattices. Only the
values of effective masses and deformation potentials ob-
tained from tight-binding parameters are compared with
experimental data in Table I.

We now present some results obtained with the OMM
on [001] CdTe/ZnTe superlattices in order to illustrate
the ability of the method to calculate the electronic band
structure of realistic systems. We consider a superlattice
in a free-standing configuration. In this case, the lattice
mismatch constant is determined by minimizing the
strain energy density in the superlattice, assuming com-
plete relaxation with respect to the buffer, and forcing the
in-plane lattice constant to be equal on the two sides of
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the interfaces. For superlattices made up of two semicon-
ductors having the same number of layers N, the in-plane
lattice constant is independent of N, like the strain
effects. Varying N only changes the confinement. The
valence-band offset at the CdTe/ZnTe interfaces in the
absence of the strain Vo is defined as the valence-band en-
ergy difference Ez —Ez where Ev is the valence-band

2 1 1

energy of the semiconductor of a larger gap, here ZnTe.
So, Vo positive value corresponds to an upward step in
going from the valence band of the wide gap compound
ZnTe to the valence band of the narrow gap compound
CdTe. The Vo value is not known with great precision.
Most of the valence-band offset estimations are deduced
from a comparison between optical studies and calcula-
tions based on the envelope function approximation.
The precision of these determinations is limited by the
accuracy with which exciton binding energies and strain
effects are known. Optical studies give small values for
Vo. However, a larger value of Vo has recently been ob-
tained. Because of the large range of these determina-
tions, we have first studied the inAuence of the offset of
the electronic states. Figure 3 shows the dependence of
the highest valence states at the center of the Brillouin
zone H& and L„upon the valence-band offset value Vo
for a ZnTe(10)/CdTe(10) superlattice. H and L denote
the nature of the superlattice states at the zone center ac-
cording to whether, mainly or wholly, they originate
from the bulk heavy- or from light-hole states. The
valence states strongly depend on Vo. For the considered
offset values, the electrons are always localized in CdTe
layers. When Vo=0, CdTe is the well material for the
heavy-hole states and the superlattice is type I. For posi-

tive offset values, the localization of heavy-hole state H,
in CdTe layers increases and the band gap is reduced.
The light-hole state L

&
becomes more extended and is al-

ways less energetic than the heavy-hole state H& ~ The
case of negative values of Vo presents a more interesting
feature and gives evidence of a superlattice type-I —type-
II transition. Vo decreasing has two effects. It lowers the
barrier height for the heavy-hole states which delocalize
in all the superlattice and increases the localization of the
light-hole state which becomes the hole ground state. So,
Vo= —60 meV appears as the value of the valence-band
offset for which the transition from a type-I to a type-II
superlattice occurs. For weaker Vo values, light-hole
state L, lies lower than the heavy-hole state H& and the
superlattice is type II. The excitonic transition becomes
indirect in the real space with weak oscillator strength.
Similar trends have been obtained by previous tight-
binding approaches ' using a different parametrization
of the Hamiltonian.

We now continue our study of the ZnTe(10)/CdTe(10)
superlattice assuming a zero valence-band offset. Figure
4 shows the electronic band structure of such a sample
along the growth direction I -Z [001] and the in-plane
direction I -b, [100]. The highest-energy band H

&
is

strongly bound in the CdTe layers which constitute wells
of depth 102 meV and consequently shows little disper-
sion. The H2 and H3 bands lie in the continuum and
possess a strongly marked character of folded bands. The
ZnTe layers form a deeper well (199 meV) for the light-
hole states and all these states except L, (I ) are in the
continuum and show a nearly parabolic dispersion. It is
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FIG. 3. Dependence of the two highest-energy valence states
at the center of the Brillouin zone, upon the valence-band offset
Vo for ZnTe»/CdTe» superlattice. The energy origin is taken
on the top of the valence band of the wider gap semiconductor
(Zn Te).
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FIG. 4. Electronic band structure for ZnTe»/CdTe» super-
lattice calculated with a valence-band offset Vo =0 meV.
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interesting to discuss the anticrossings which appear in
the two considered directions. For superlattice wave vec-
tors directed along the [001] direction, there is only one
two-dimensional irreducible representation. All the
bands are twofold degenerate and cannot cross each oth-
er. However, the energy difference between the two
states is weak and cannot be seen in Fig. 4. For superlat-
tice wave vectors directed along the [100] direction, there
are two one-dimensional irreducible representations
which entail a splitting of the superlattice bands. In this
case, crossing is only forbidden for subbands belonging to
the same irreducible representation. This explains the
anticrossing which occurs between the L j and &2 bands.

V. CONCLUSION

We have shown that the orthogonalized-moment
method is a very efficient method to determine the elec-
tronic band structure of superlattices and multilayer het-
erostructures. This method presents great ability to deal
with systems having a unit cell of large size and to suc-
cessfully describe systems with low-dimensional transla-
tion symmetry. We have used this approach to perform
two applications concerning tight-binding Hamiltonians.
First, we have considered a one-dimensional model of su-
perlattice. The results show the efficiency of the method
in the determination of quantum-well states and compare

favorably with the values calculated by the direct diago-
nalization of the Hamiltonian. Then, we have applied the
OMM to a realistic ZnTe/CdTe superlattice within a
serniempirical tight-binding description. The Hamiltoni-
an parametrization of such strained semiconductors in-
cludes spin-orbit interactions and reproduces correct
values for effective masses and deformation potentials.
The electronic band structure of ZnTe/CdTe superlat-
tices is obtained with very good accuracy and is in agree-
ment with those derived by other methods. These results
show that the moment method, which has been limited
for a long time to the whole description of systems
through the determination of the density of states, consti-
tutes, in reality, a powerful method to calculate the ener-
gy states provided that the orthogonalized moments are
used to obtain the recursion coefficients. Application of
this method to the calculation of the electronic structure
of quantum wires and quantum dots should be promising.
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