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Multichannel ballistic magnetotransport through quantum wires with double circular bends
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A theoretical study of magnetotransport through two-dimensional quantum wires with double circular
bends is made within the ballistic approximation. By means of the mode-matching method, the S matrix
of the single bend with a hard-wall confining potential is calculated as a function of the magnetic field or
the Fermi energy for the bending radius and the bending angle as parameters. The combination of S ma-
trices is performed for bends in series. The technique is applied to systems consisting of double bends.
The symmetry properties of the S matrix are clarified for the two-terminal systems with rotational sym-
metry or mirror-plane symmetry. The transmission matrix is evaluated in detail for the case of three
propagating channels. The strong dependence of the interchannel scattering on the magnetic field is
found. The structure of dips (antiresonances) appearing in the conductance is studied as a function of
the distance between bends.

I. INTRODUCTION

During the past decade, there has been a rapid devel-
opment in the physics of semiconductor nanostructures. '

Experimentally, many interesting effects have been ob-
served in the magnetotransport of quantum wires, e.g. ,
the anomalous quenching of the quantum Hall effect,
the negative bend resistance, and the energy gaps and
minibands in the periodic stub structure. The models of
these quantum-wire systems are usually solved numeri-
cally by the coupled-channel method, ' by the mode-
matching method, " ' or by the recursive calculation of
the discrete Green function. '"' '

There are groups of studies on the ballistic transport
and bound states in open systems like the cross-shaped
junction' ' and the broken-strip configuration with a
right angle' or with an arbitrary angle. ' The
broken-strip configurations are studied mainly in the ab-
sence of magnetic fields. The external magnetic fields
have been considered only by Schult, Wyld, and
Ravenhall. ' The resonance effects have been found ex-
perimentally in the broken-strip double bend with right
angles. As for the single circular bends, there are studies
concerned with bound states ' and transmission
probabilities ' in the absence of magnetic fields. In a
previous Letter and paper, we have included external
magnetic fields in the treatment of single circular bends.

Being motivated by the recent measurement of the
entire transmission matrix of the mesoscopic conductor,
we want to present a study of simple quantum devices in
which the conductance plateaus are almost unchanged
over a wide range of parameters. However, the inter-
mode scattering is strong and depends on the applied
magnetic field. The devices are tentatively proposed to
be built from double circular bendings of an otherwise
uniform two-dimensional quantum wire. We also investi-
gate the sharp increase of the backward scattering in the
limited regions of Fermi energies where narrow dips ap-
pear in conductance plateaus. The paper is organized as
follows. In Sec. II, we consider quantum motion of a

charged particle in circular bends with a hard-wall
confining potential in the presence of magnetic fields.
Then we determine the S matrix and perform the com-
bination of S matrices in order to calculate the transport
properties of bends in series. In Sec. III, we study the
system of double circular bends separated by a piece of
the straight wire of various lengths. In Sec. IV, the con-
clusion is given and some of the yet open questions are
stated. In the Appendix, the properties of wave functions
i.n bent quantum wires in the presence of magnetic fields
are discussed.

II. THE MODEL

Due to symmetry, there are two different possibilities
of how to combine two bends. One arrangement is with
bends turning to alternative directions. We choose bends
turning to the left and to the right, called an S-shaped
system, as shown schematically in Fig. 1(a). Another
combination is with both bends turning to the same
direction. The system with both bends turning to the
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FIG. 1. The schematic view of quantum wires with double

circular bends: (a) the S-shaped system (represented by a corn-
bination of the left-turned and right-turned bends), (b) the U-
shaped system (represented by a combination of two left-turned
bends). The width of the wires is u and the distance between
bends is L. The potential is zero inside wires, and infinite out-
side. The magnetic field B points out from the picture. The
bending angle of individual bends is not required to be equal to
~/2.
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left, called a U-shaped system, is shown in Fig. 1(b).
Since we limit ourselves to the ballistic approximation,
the transport properties of these systems are determined
by the scattering matrix (the S matrix).

A.. The S matrix

(+)

(-)
a

(+)
(i

(i

(a)

b(+)

b(-)

b(+)

b(-)

The Hamiltonian for ballistic motion of a single elec-
tron of eA'ective mass m* and charge —e in the two-
dimensional quantum wire is

H= 1

2m

2
e—iAV+ —A + V,
C

(2.1)
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2m
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. eB B2—i y, +

Ac By 1

+EF—V(x, ,y, ) 'iIl'"(xi, yi)=0, (2.2)

where we use the Landau gauge, A' '=( —yiB, O, O). The
longitudinal x1 and transverse y1 variables are separable.
The solution is

where Vis the confinement potential and A is the vector
potential of the external magnetic field B=(O,O, B). Let
us consider multichannel transport through the scatter-
ing region in the quantum wire (see Fig. 1). The
Schrodinger equation in a perfect lead of width w (region
I) stretching from the scattering region III can be written
as

FIG. 2. (a) The schematic picture of a scatterer in the quan-
tum wire. The incoming amplitudes are vectors a'+' and b'
of the size M X 1, the outgoing amplitudes are vectors a' ' and
b'+' of the same size. (b) The schematic picture of the combina-
tion of two scatterers in series. (c) The diagrammatic represen-
tation of the scattering matrix as the result of the combination
of two scatterers in the quantum wire. Only the series for the
submatrix t is shown; the submatrices r, t, and r are obtained
similarly.

g(+) a(+)
( )

=[s] b( )

t r
[s]= (2.5)

where t and r are the submatrices of the transmission and
the reflection amplitudes for an electron incoming from
region I. Similarly, t and r are the submatrices of the
transmission and the reAection amplitudes for an electron
incoming from region II.

+'"(xi »)= 2 f(» pi) exp(tpixl)~l'+'
1=1

+ g f(yi pl)exp( —tpixi)~i' —'

/=1
(2.3)

B. The combination of S matrices

For the scattering region divided into two regions with
S matrices [s,] and [s2] [cf. Fig. 2(b)], the total S matrix
[s] can be represented as in Fig. 2(c). This leads to formu-
las

where a1' —' are the mode amplitudes. The wave function
'(x2, y2) with the mode amplitudes bl( —' in region II is

written similarly. We approximate the confinement po-
tential by the hard-wall type, V(x, ,y, ) =0 for
—w/2 (y; (ul/2 and V(x, ,y, ) = ~ elsewhere, i = 1 and
2. The transverse wave functions f (y,pl ), 1 = 1,2, . . . , ~,
then satisfy the equation

2
d 7T+ E'y P1

dy w w
y f (y,pl) =o, (2.4)

with the boundary condition f (y,pl)=0 for

y = —w /2, w/2. For convenience, we use the dimension-
less Fermi energy eF=E„/E, , where E, =Pi rr /2m*w
is the energy threshold for propagation in the lowest sub-
band in a perfect wire for zero magnetic field. The di-
mensionless magnetic field is %=B /BD, where
Bp =Ac /ew . The transverse wave functions possess
symmetry f (y, pl, B)=( —1—)'+'f ( y, pl,B)—

The incoming amplitudes a '+ ' and b' ' and the outgo-
ing amplitudes b ' ' and a ' ' are shown schematically in
Fig. 2(a). The scattering matrix [s] relates the incoming
and the outgoing channels in the following way:

t =t, (I r, r,)—
r =ri+tir2(I rir2) 'ti, —

t = t, [I+ r2(I r i r2 ) 'r, ]tq, —

r =r2+t2(I rir2) 'r, t~ . —

(2.6a)

(2.6b)

(2.6c)

(2.6d)

2e2 N
G= g t*„t „,

m, n =1

and to monitor the unitarity condition,
N N

lm ln + g rim rln ~mn
1=1 1=1

(2.7)

(2.8)

Here, X denotes the number of propagating channels in
perfect leads. However, in the present situation we need

In the presence of magnetic fields, this sequence of sub-
matrices cannot be reversed. Usually, when we consider
multichannel ballistic transport in mesoscopic systems,
we use only the asymptotic limit of the scattering matrix,
which enables us to calculate the two-terminal conduc-
tance G from the Landauer formula,
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to combine two scatterers which are a finite distance
apart. Thus we must consider scattering matrices includ-
ing the evanescent channels. In spite of the number of
evanescent channels being infinite, we will consider only
M propagating and evanescent channels together. The
number of channels M is large enough to achieve conver-
gency. After performing the necessary combinations, we
will use again only the asymptotic limit of the total
scattering matrix to obtain the two-terminal conductance
from Eq. (2.7).

C. The S matrices for individual scattering regions

the positive direction of angle y. Similarly, we associate
a discrete set of eigenvalues v'I ', l =1,2, . . . , ~, with the
motion of the electron in the negative direction of angle

The orthogonalization and normalization to the unit
flux in each channel in the bend region are shown in the
Appendix. For X=0, there is a simple relation of
v&

'= —v&+'. The transverse functions are then the same
for the motion in both directions g (r, vr ) =g (r, —

v&) and
can be expressed by Bessel functions of the first and
second kind.

In order to unify the gauges into the symmetric type,
the wave functions are multiplied by appropriate phase

Here, we describe the scattering matrices of left-turned
and right-turned bends and of an intermediate piece of
the straight wire. The scattering matrix [s'] for a piece of
the straight wire of length L is

r

S

oB

[s']=
r tS S 7 (2.9)

see Fig. 3(a). The trivial matching at the boundary I-III
and III-II gives t'„=t'„= exp(ip L)5 „,r'„=r'„=0.
The perfect wire introduces no coupling between chan-
nels and no backscattering. The only effect of the
straight wire appears in the phase shifts of the diagonal
elements in the transmission submatrix.

The scattering matrix [s ] of the left-turned bend with
bending radius Ro and bending angle 6 [cf. Fig. 3(b)] is

tL -L
(2.10)

Iw

The Schrodinger equation in the left-turned bend in polar
coordinates can be written as

(b)

B' 1B
r Br

eB i B

2Ac r By

2

+E —V(r, q)) '4'""(r,y) =0, (2. 1 1)

where the symmetric gauge is used, 3' ' '=Br/2. By
separation of variables, 4" ' '(r, y) can be solved as

e""'(r,y) = y g (r, vI+') exp(i v,'+I@)c~+'
1=1

+ y g(r, vI ')exp(iv', 'p)c, '

1=1
(2.12)

where cI' —' are the mode amplitudes in the bend. The
transverse wave function g and the eigenvalues v&

—',

l = 1,2, . . . , ~, satisfy the eigenvalue equation

+— + eF—
dr r dr m

(+)+ r g(rvI —')
2m

=0, (2.13)

with the boundary condition g ( r, vI ') =0 for-
r =R0,Ro+ m. We associate a discrete set of eigenvalues
v&+', l =1,2, . . . , ~, with the motion of the electron in

FIG. 3. The geometry of individual scatterers considered in
our study. The regions I and II represent perfect leads stretch-
ing out to infinity, and the region III represents the scatterer.
The local Cartesian coordinates in the left (right) lead are x &, y &

(x 2, y2). The zeros of the x
&

and x 2 coordinates are at the boun-
daries I-III and III-II, respectively. The zeros of the y& and y2
coordinates are on the axes of the wire in regions I and II, re-
spectively. The width of the wire m is the same in all regions.
(a) The trivial case of a scatterer: a piece of the straight wire of
length L. (b) The left-turned bend of bending radius R o
(=inner radius) and of bending angle 0 acting as a scatterer. (c)
The right-turned bend of the same parameters as the left-turned
bend. The bends possess the mirror-plane symmetry according
to the axis of g =0 (dash-dotted line).
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factors. Next, the continuity of the wave function and
of its normal derivative are required. In the matching of
the wave function in the left-turned bend, the transverse
coordinates yl, yz, and r have opposite orientation at the

I

interfaces I-III and III-II, namely, y 1
= —r +R o+ w /2 at

I-III and y2= —r +Ra+ w/2 at III-II. By mode match-
ing, we obtain a set of linear equations for the subma-
trices t, r and the amplitudes c'+', c'

f —r+Ro+, p 5 „+ g f —r+Ro+ —,—p r
m =1 m =1 2'

g(r, vI+') exp iv—'t+' —c&+'+ g g(r, v& ') exp —ivI '—
c&

1=1 1=1
(2.14a)

g f r+Ro—+—,p
=1 2

(2R0+ w r)+—ip 5
2w

+ g f —r+Ro+ —,—p
1

2
(2Ro+ w —r) ip r-

2w

oo OO

1=1
(2.14b)

g f r+Ro+ ——
,p t „= g g(rv', I) exp iv'( '—cI+'+ g g(rv( ')exp iv~( '—cI

m=1 1=1 1=1
(2.14c)

g f —r+Ro+, p
m =1 2' (2RO+w r)+—ip t „

2w

oo QO

1=1 2 " r 1=1
(2.14d)

t „(B)=tL„(—B),
r „(B)=r „( B) . —

(2.15a)

(2.15b)

Equations (2.15a) and (2.15b) are not obtained from the
multichannel reciprocity theorem for the scattering ma-
trix. Rather, they are related to Eqs. (2.14a)—(2.14d) by
the mirror-plane symmetry of the bend according to the
axis shown in Fig. 3(b). The reciprocity theorem, which
requires the transposition of the submatrix t, represents
an independent relation that holds in any system regard-
less of its geometrical symmetry. We will use the recipro-
city theorem in Sec. III together with the geometrical
symmetry relations to show the symmetry properties of
the S matrix for various systems.

Equations (2.14a) and (2.14b) match the wave function
and its normal derivative, respectively, at the interface I-
III. Similarly, Eqs. (2.14c) and (2.14d) match the wave
function and its normal derivative at the interface II-III.
To solve Eqs. (2.14a)—(2.14d) numerically, we use a
discrete fine mesh instead of the continuous variable r
and calculate the submatrices t and r in detail. Since
the determination of t and r requires substantial com-
putational effort, it is desirable to obtain submatrices t
and r from t and r by means of the symmetry rela-
tions. Writing the matching equations for the subma-
trices t and r and inverting the magnetic Geld,
B~ B, in Eqs. (2.14—a) —(2.14d) yield the relations

The last element of which we must find the S matrix is
the right-turned bend, cf. Fig. 3(c),

tR -R
[s ] R —Rr t

(2.16)

t'„(B)=( —1) +"t'„(B),
r „(B)=(—1) +"r „(B) .

(2.17a)

(2.17b)

The submatrices t, r are obtained from relations simi-
lar to Eqs. (2.15a) and (2.15b).

A single-channel model was used in Ref. 23 for the S-
shaped and U-shaped broken-strip double bend with right
angles. In the single-channel approximation, there is no
di6'erence between the S matrices [s ] and [s ] in the ab-
sence of magnetic fields [see Eqs. (2.15) and (2.17)]. How-
ever, there is a difference between right-turned and left-
turned bends in general. This difference appears when
one considers two or more channels.

The treatment of the bend region is the same as for the
left-turned bend. The difference comes in the gauge
phase factors and in the matching equations. Further-
more, the transverse coordinates yl, y2, and r are in the
same direction at the interfaces I-III and III-II, respec-
tively (yi =r —Ro —w/2 at I-III and y2=r —Ro —w/2
at III-II). Writing the matching equations for the subma-
trices t, r and using the symmetry properties of func-
tions f (y, p&) in Eqs. (2.14a) —(2.14d) yield the relations
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III. RESULTS AND DISCUSSION 1.0"

Transport in the lowest three subbands (l ~ l ~ 3) is in-
vestigated. The effective mass of an electron (in CraAs)
m *=0.067m, (m, is the free-electron mass) and the
width of quantum wires w =75 nm according to previous
experimental works ' are assumed The unit of energy is
then E, = 1 .0 meV and the unit of the magnetic field is
Bo-—0. 12 T. A bending radius R o

=0.5w or R o
=0.25w,

and bending angle 6=m /2 are considered. A magnetic
field of IB ~ 26Bc is used.

The method appears to be numerically very stable with
fast convergency. The channel expansion is done usually
up to eight channels and the results are obtained mainly
within five-digit accuracy. Equation (2.6) can become un-

stable for I —r, r2 close to the singular matrix, i.e., for
the strong backscattering. The strong backscattering is
only around the conductance dips, which are limited to
the narrow regions of the effectively negative potential, as
we have shown earlier. Even in the vicinity of the con-
ductance dips, the unitarity is preserved very well, at
least to three digits.

An example of the transverse eigenfunctions in the
bent quantum wire is shown below. The seven lowest
modes g ( r, vI

—') in the left-turned and right-turned bends
for R 0

=0.25w Ep = 10.OE
&

and B = 10.OBO are plotted
in Fig. 4. The propagating modes, in this case l = 1, 2,
and 3, are real and they split according to the motion in
the positive (+) or the negative (

—
) direction of angle y

[cf. Fig. 4(a)]. As for the evanescent modes, here l=4, 5,
6, and 7, only the modes corresponding to the penetra-
tion of an electron in the positive direction of angle y are
shown in Figs. 4(b) and 4(c). The evanescent modes cor-
responding to the penetration in the negative direction of
angle cp are the complex conjugate of the plotted func-
tions.

0.5
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0—

-0.5

0.5

0—

(cI-0, 5 -I

0

I

1.0

I

0, 5

( r-R, ) /w

FIG-. 4. The shape of the transverse eigenfunctions g ( r, v,—')

in the left-turned and right-turned bends for R o
=0.25 w,

EF = 1OE
&

and B = 1OBO . (a) The propagating modes l = 1, 2,
and 3, corresponding to the motion of an electron in the positive
direction of angle y (dash-dotted curves) and in the negative
direction of angle g (solid curves) . (b) The real part of the
evanescent modes l =4, 5, 6, and 7. (c) The imaginary part of
the evanescent modes l =4, 5, 6, and 7, corresponding to the
penetration of an electron in the positive direction of angle cp.

The evanescent modes corresponding to the penetration in the
negative direction of angle g can be obtained by complex conju-
gation of the function g.

A. Matrix of transmission probabilities

The transmission probabilities T, from the channel n

in region I into the channel m in region II are
I

t „.The
dependence of the matrix of the transmission probabili-
ties on the magnetic field for the case of three open chan-
nels in the asymptotic regions is investigated. In order to
see the symmetry properties clearly, the diagonal ele-
ments T„„,the elements T „below the diagonal, m ) n

("conversion of the channel up"), and the elements T
above the diagonal, m & n ("conversion of the channel
down"), of the 3 X 3 matrix T are plotted separately.

The transmission matrix for an electron with
EF' = 1 5 ~ 8E ] in the left-turned bend with
R o

=0.5w, e=~/2 in magnetic fields is shown in Fig. 5 .
(The plots for the right-turned bend can be easily ob-
tained by the reversal of the magnetic field. ) There is no
symmetry according to the reversal of the magnetic field
for any of the elements T, . The only symmetry relation
appearing in this case is T „(B) = T„(B). In the left-
turned bend, the interchannel scattering is extremely
strong in the region of positive magnetic fields
0 ~ B ~ 20Bo . The conversion between quantum channels
in the bent wire can be controlled by the magnetic field.

As seen from the plot and from the geometrical
configuration, the mixing of channels is stronger when
the electron is pushed by the Lorentz force to the inner
wall with the larger curvature 1/R o . The interchannel
scattering is weaker when the electron is guided by the
Lorentz force along the outer wall with the smaller cur-

m= n m& n re& n

l.0
F—

~ 0, 5

0 ~ 0
-30 -I 5 0 15 30 -30 -I 5 0

MAGNETIC FIELD (Bc) MAGNETIC FIELD

I I

l5 30 -30 -I5 0 15

(B,) MAGNETIC FIELD IB, )

I

30

FIG. 5. The T matrix of the left-turned bend. The interchan-
nel transmission probabilities T, are plotted as a function of
the magnetic field (in units of Bo) for EF = 1S.SE& Ro =0.5w,
and 0=~/2. Indication of plots: the diagonal elements T „
(m = n) are in the left-side plot, the elements T, below the di-
agonal (m ) n ) are in the central plot, and the elements T,
above the diagonal (m & n) are in the right-side plot. Line con-
vention: T», T», T», solid curves; T», T», T», dashed curves;
T33 T3$ T23 dash-dotted curves.
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distance about L )w, the increase of the conductance at
the beginning of each plateau is not monotonic, but the
conductance is modulated by shallow oscillations that
disappear quickly with the increasing electron energies.
These oscillations resemble resonances reported in the
quantum wire with the inserted potential barrier or
with the constricted part of stepwise variation.

The reAection that occurs in the vicinity of the end of
each conductance plateau in the single circular bend is
caused by the quasibound state. The quasibound state in
the n th conductance plateau is formed by the wave func-
tion from the (n +1)th subband in the bend. The energy
thresholds for propagation in the bend are slightly lower
(see Table 1 in Ref. 33) than in the straight wire. Though
the wave function from the (n + 1)th subband can exist in
the bend, it cannot propagate in the straight wire.
EfFectively, the inAuence of the bend is similar to the
quantum well with a rather complicated potential profile
dependent on the angular momentum [see the Appendix,
Eq. (A3)].

We want to present the results for the reAection caused
by the quasibound states for the S-shaped and the U-
shaped systems in the absence and also in the presence of
magnetic fields. First, we turn our attention to the vicini-
ty of the end of the lowest conductance plateau in the ab-
sence of magnetic fields. The conductance as a function
of the Fermi energy for various distances L between the
bends is plotted in Fig. 8. When the distance L is short,
L +2w, only one quasibound state develops. For L =0,
the energy of the quasibound state is about 3.99E, . The
binding energy as a difference from the threshold energy
of the second conductance plateau is then approximately
0.01E&. For L =0 and L =0.25w, the dip in the conduc-
tance of the S-shaped system is broader than the dip in
the conductance of the U-shaped system. However, for
L =0.50w and L =2.00w, the S-shaped system shows a
narrower dip than the U-shaped systems. For L =1.00w,
the dips in both systems are of about the same width, al-
though they differ in the energy by =0.004E&. When L
becomes longer than about 2w, another quasibound state
with extremely small binding energy appears. Further in-
creases of L gradually bring both quasibound states
closer in energy. The nonmonotonic dependence of the
binding energies of the quasibound states on the parame-
ter L is noteworthy. ' For the limit L —+ ~, we expect
the degeneration in energy of both quasibound states. It
follows from the symmetry considerations that the lower
quasibound state must be of even symmetry and the
higher one must be of odd symmetry. The odd-type
quasibound state cannot be bound for L ~ 2w (approxi-
mately), since for such short L its energy lies above the
threshold energy for propagation in the second subband
of the straight wire. The energy positions of the conduc-
tance dips are related to the binding energies of the quasi-
bound states. The widths of the dips are related to the
coupling of the quasibound state with the propagating
modes in the straight leads. Both the energies and the
widths of the dips show nonmonotonic dependence on
the distance L. The conductance pattern is apparently
different for the S-shaped and the U-shaped systems.

Next, the behavior of the conductance in the vicinity of
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FIG. 8. The detailed structure of the antiresonances in the
vicinity of the end of the lowest conductance plateau in the ab-
sence of magnetic fields. (a) The S-shaped system. (b) The U-
shaped system. The zero-field conductance is plotted as a func-
tion of the Fermi energy for bends of R0=0.5m and e=~/2
and for various distances L between bends.

the end of the lowest conductance plateau in the presence
of magnetic fields is examined. The plot of the conduc-
tance for BWO is in Fig. 9. The development of one
quasibound state for L ~ 2w and of two quasibound states
for L ~2w is easy to recognize. Magnetic fields usually
narrow the conductance dips, although this is not always
true, as can be seen from the conductance of the S-shaped
system for L =2.00w. In the U-shaped system, the dips
become very shallow in several cases and may even disap-
pear for L =0.25w. The dependence of binding energies
on the distance L is changed to the almost monotonic one
seen for S-shaped and U-shaped systems in B =+5Bo.
The sampling of the energy in Figs. 8 and 9 is done with
the step 0.0001E&.

The further increases of magnetic fields narrow the
width of conductance dips and shift their energy posi-
tions smoothly toward higher Fermi energies. The dips
represent the coupling between extended states propaga-
ting in opposite directions in straight-wire regions (sub-
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FIG. 9. The detailed structure of the antiresonances in the
vicinity of the end of the lowest conductance plateau in the
presence of magnetic fields. (a) The S-shaped system. (b) The
U-shaped system. The conductance for B =5BO is plotted as a
function of the Fermi energy for bends of R o

=0.5w and
0=~/2 and for various distances I.between bends.

band n) via localized orbits in bent-wire regions (subband
n +1). The conductance dips or antiresonances corre-
spond to the singularities (poles) of the S matrix in which
the coupling reaches its maximum and the backscattering
is the strongest. The singularities of the S matrix may be
related to the conductance peaks or resonances if one
considers a system with finite leads connected to widened
parts instead of the system with infinite leads. In the sys-
tem with finite leads, the bound state below the threshold
energy of the lowest conductance plateau will also create
the resonance.

IV. CONCLUSION

We have presented the exact quantum-mechanical for-
mulation and the numerical solution of the multichannel
ballistic magnetotransport in the two-dimensional quan-
tum wires with double circular bends. The parameters of
the investigated system can be expressed by the following
length scales: the Fermi wavelength A,F, the magnetic

length l~, the width of the wire m, the bending radius Ro,
and the distance between bends L.

The transmission matrix has been evaluated for three
propagating channels for various distances L between
bends in the S-shaped and U-shaped systems. The inter-
channel scattering shows a rather complicated depen-
dence on the magnetic field with many oscillations of
variable period and amplitude, especially for longer L.
The strong interchannel scattering is caused by the
abrupt change of the effective potential for each subband
at the interfaces between straight and bent wires. On
these interfaces, either the longitudinal or the angular
momentum is not integral of motion, as it is in the
straight or bent wire, respectively. The elements of the T
matrix in the two-terminal two-dimensional samples are
restricted by the symmetry relation T „(B)= T„(B)for
the systems with the mirror-plane symmetry (each of ter-
minals is in the diff'erent half-plane) or
T „( B)=T„—(B) for the systems with the rotational
symmetry (rotation of angle 7r). The conductance may
remain quantized in wide region of plateaus even in the
presence of the interchannel scattering. The interchan-
nel scattering seems to weaken in strong magnetic fields
when the system may reach the adiabatic transport re-
gime. However, in very strong magnetic fields, the
electron-electron interactions become increasingly impor-
tant and must be considered in detail.

The backscattering has been found at the beginning
and the end of each conductance plateau. The coupling
of the wave function from the higher subband in the
bends to the wave function in the straight leads forms sin-
gle or double conductance dips. The binding energies of
related quasibound states are nonmonotonic functions of
the distance between bends. The explanation of this
dependence needs further investigation. The moderate
magnetic field can also widen the conductance dips. Nev-
ertheless, the dips become narrow and may gradually
vanish in strong magnetic fields. This may be of particu-
lar interest in the application of quantum wires with
bends.

Our method of calculation has been extended for the
multiple-bend quantum wires with the periodic structure.
We have found the formation of minibands and energy
gaps in the conductance of finite periodic structures with
repeated left-turned and right-turned bends. The inter-
channel scattering in periodic structures in magnetic
fields seems to be of eminent interest since the problem it-
self represents "skipping orbits" of electrons between
periodically repeated circular surfaces.
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APPENDIX

d
d2 42 2 F

v(+ )

+ r .h (r, v() ') =— 0,
2w

(Al)

with the boundary condition h (r, v() ')=0 for r =Ro,
R p +w. Since the bend is an open system, the eigenvalues

v&
+—' are not only integers, but they are real or complex

numbers for propagating or evanescent channels, respec-
tively. In the asymptotic limit Rp))w the eigenvalues
are approximately

2

~(+)— Ro
2 w 2

2
Ro + — ~ (eF —l )+—

2 4

1/2

(A2)

which corresponds to the replacement of all possible

Topics related to the properties of the solution to Eq.
(2.13) are discussed here. We introduce a new function
h(r, v() ')=g(r, v') —))&r. We eliminate the first deriva-
tive in Eq. (2.13) and obtain the eigenvalue equation

paths of an electron in the bend by the path along the
central radius r, of the bend, r, =Rp+w/2. In the gen-
eral case of Ro=w, Eq. (A2) is used as an ansatz in the
numerical solution. Equation (Al) is more suitable for
the numerical solution and it also has clear physical
meaning as it represents the one-dimensional Schrodinger
equation with an effective potential

V,ff(r) =
v(+)

+ r
2w

1

4r
(A3)

In comparison with the potential in the straight wire,
there are intervals of eigenvalues for which the effective
potential is negative in the bend. This indicates the possi-
bility of a bound or quasibound state. For example, in
zero magnetic field, V,z is always negative for an angular
momentum ~(L, ~

+Pi/2. In all channels, l =1,2, . . . , ~,
there is a narrow band of energies in which an electron
wave moves with the absolute value of angular momen-
tum lower than A/2. For the electron with angular
momentum ~(L, ~

())i/2, the minimum of the effective po-
tential is at the inner wall (r =Ra). For the electron mov-
ing with angular momentum ~L, ~

)A'/2, the minimum is
at the outer wall (r =Ro+w).

The linear differential operator of the second order in
Eqs. (2.13) and (Al) can be brought to the shape of the
Sturm-Liouville (SL) operator. The SL analysis of the
orthogonality of the eigenfunctions gives

0 r w

%'e have chosen the normalization to the unit angular Aux of electrons in each quantum channel,
~I(v( —+', v'„—')~ =5(v( —', v'„—'). The canonical angular momentum L, = —i)riBI()q& of an electron in channel l is simply
A'v(& —'. The operator of mechanical angular momentum, however, is X,=

iver)/r)y+eBr

/—2c, where the dependence
on radius r is a consequence of the magnetic Aux penetration through the bent wire. The angular electron Aux J can
be expressed through the operator of mechanical angular momentum X„

R0+w

&0 r By 2c r By 2c
(A5)

By substitution of the mode expansion for the wave function, Eq. (2.12), into Eq. (A5) and by using the orthogonality
relation (A4), we obtain the angular electron fiux in the bend,

N

J ~ y {[& + ] c(+)I( (+) (+))+[&(—)]* (
—I( ( —

) (
—))]

/=1
(A6)

where the sum is over all electrons at the Fermi level, i.e., propagating channels. Taking
~I(v()+), (& 'v)

~

= ~I(v() ), v() ')
~

=1, we get the equal distribution of the angular fiux of electrons into each propagating
channel, as was wanted. This way of normalization saves us from the use of explicit angular velocity factors in the S
matrix. The sign of the normalization constant I determines the orientation of the current in each channel. Since we
associate the amplitudes c&+' with the motion in the positive direction of angle qo and the amplitudes c&'

' with the
motion in the negative direction of angle y, we take I(v(&+', v(&+') = +1 and I(v() ', v() ') = —1 for propagating channels.
The evanescent channels do not contribute directly to the net angular Aux of electrons. However, they may penetrate
with exponential decay (in the absence of magnetic fields) or with oscillatory exponential decay (in the presence of mag-
netic fields) through the barriers with the effective potential V, (r),(rand thus cause a tunneling current. Furthermore,
the evanescent channels may form a bound state or quasibound state in the vicinity of the scattering region with the
negative effective potential. The phase of the normalization constant I is determined from the symmetry
g (r, [v()—']*,B)= [g (r, v() ),B)]*for the evanescent channel—s.
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