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High-resolution energy analysis of field-assisted photoemission:
A spectroscopic image of hot-electron transport in semiconductors
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Hot-electron transport in indium phosphide is studied by means of energy-resolved field-assisted pho-
toemission of an Ag/InP Schottky diode. The work function of the thin silver top layer is lowered by
cesium and oxygen coadsorption. A quasimonoenergetic electron distribution is created close to the bot-
tom of the conduction band in the bulk of the weakly doped p-type InP crystal by near-band-gap light
excitation. The energy-distribution curves of the photoemitted electrons are measured for difl'erent

values of the bias applied to the Ag/InP contact. It is demonstrated that this set of photoemission spec-
tra constitutes a direct measurement of the evolution of the initial distribution during transport in the
high electric field of the band-bending region. From this spectroscopic image of the complex multivalley
transport, the relevant energy and momentum relaxation processes are clearly identified. Simple models
based on the energy balance between the gain in the electric field and the losses by phonon emission ac-
count remarkably well for the experimental results. From the comparison between theory and experi-
ment, the characteristic phonon-scattering times are deduced throughout the first conduction band.

I. INTRODUCTION

Field-assisted (FA) photoemission experiments were
performed already in the early 1960s to study hot-
electron transport in semiconductors. ' Since the
discovery of negative electron affinity (NEA) in 1965, the
lowering of the vacuum level by Cs and 02 coadsorption
has opened a wide field of applications for FA photoemis-
sion techniques as probes of high-field hot-electron trans-
port in semiconductors.

FA photoemission of cesiated metal-semiconductor
structures was performed by Itoh et al. in 1967 on an
Al/p-type-Si Schottky diode. These authors measured
the dependence of the photoemission quantum yield and
of the energy-distribution curves (EDC's) versus reverse
bias applied to the junction under near-band-gap light ex-
citation. More recently, Shariary, Schwank, and Allen
have measured the EDC's of electrons emitted into vacu-
um from a cesiated shallow silicon p-n junction reversely
polarized. Varying the thickness of the n-type layer and
the bias applied to the diode, they measured characteris-
tic electron energy losses. They deduced electron escape
depths and mean free paths associated with ionization
and optical-phonon emission. But, because the measured
EDC's were featureless, a complete understanding of the
transport properties could not be achieved. In the 1970s,
FA photoemission experiments on cesiated Ag/InP
Schottky diodes were performed. On these model FA
photocathodes, NEA was achieved at equilibrium (with
zero applied bias). With the use of Monte Carlo methods
the EDC's of the photoemitted electrons were calculated.
From these numerical results, totaI quantum yield mea-
surements were analyzed, and the crucial role played by
intervalley transfer in high-field transport properties was
demonstrated.

When compared to standard current-versus-bias mea-
surements, whose interpretation is intricate because many

different mechanisms are involved and the electron
current is related only to the anisotropic part of the elec-
tron distribution, the energy-resolved photoemission
techniques provide direct information. Nevertheless, be-
cause of the lack of energy resolution over a large energy
range, previous experiments did not allow making full
profit of the FA photoemission capabilities.

Very-high-resolution energy analysis of near-band-gap
photoemission from NEA semiconductors has proven to
be a valuable tool to investigate band structure and hot-
electron transport. ' This technique, when applied to a
FA photoemitter, provides a precise and direct spectro-
scopic image of electron transport under high electric
field, inside the semiconductor crystal. First results were
brieAy presented in Ref. 11. The present paper gives a
detailed description of the relevant experimental and
theoretical aspects. Our measurements are performed on
an Ag/InP Schottky diode. When an increasing reverse
bias is applied to the junction, several contributions of
significant physical meaning appear in the photoemission
spectra. Their behaviors during transport in the high
electric field of the band-bending (BB) region evidence
different transport regimes: quasiballistic transport in the
central (I 6) valley of the first conduction band, very
efFicient intervalley transfer from the central valley to the
side valleys, quasistationary transport in the side valleys,
and also quasistationary transport in the vicinity of a rel-
ative maximum of the second conduction band. This
direct image of the evolution of the electron distribution
in the crystal allows the description of high-field trans-
port phenomena by simple and physical models in which
we analyze the energy balance between the gain in the
electric field and the 1oss by phonon emission. From this
analysis, which accounts remarkably well for the experi-
mental results, we deduce estimates of phonon emission
times in an energy range which spans the whole energy
width of the first conduction band. We also obtain infor-
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mation on the semiconductor band structure such as the
energy positions of the subsidiary minima I.& and X6 of
the first conduction band and X7, of the second conduc-
tion band, which agree with previous near-band-gap pho-
toemission measurements that we have performed. '

II. PRINCIPLES

Cesium and oxygen coadsorption on the clean surface
of a semiconductor lowers the vacuum level to about 1

eV above the Fermi level (an energy of the order of the
work function of the deposited cesium oxide). For p-type
semiconductors with a large band-gap energy, a situation
of so-called NEA is created where the vacuum level lies
at an energy lower than that of the bottom of the conduc-
tion band in the bulk solid. Then, all the electrons pro-
moted from the valence band into the conduction band of
the bulk crystal by absorption of near-band-gap light can
be emitted into vacuum, resulting in a very high photo-
emission quantum yield. A typical case is the commer-
cial GaAs photomultiplier tube which is very efficient in
the visible and near-infrared region; in this application,
highly doped materials, in the 10' -cm range, are used
in order to avoid energy relaxation in the very thin BB
region (about 100 A wide, i.e., smaller than a typical elec-
tron mean free path). '

The photoelectric response of a NEA photoemitter is
only limited, at low energy, by the band-gap energy of the
material. When semiconductors with band gaps smaller
than about 1 eV are used, a NEA situation can no longer
be achieved, resulting in a much lower efficiency at
threshold. To overcome this basic limitation, an idea is
to use a Schottky diode consisting of a p-type semicon-
ductor of moderate doping level (about 10' cm )

covered by a thin metal layer. Such a thin layer is
quasitransparent to low-energy electrons and also to in-
frared and visible light, which allows a reAection-mode
operation. By applying a reverse bias to the metal-
semiconductor structure (i.e., biasing the metal positively
with respect to the semiconductor), the vacuum level is
lowered with respect to the energy levels in the bulk
semiconductor, so that a situation analogous to NEA is
created. The low doping level insures good electrical
properties. The potentialities of such a device as an in-
frared detector were demonstrated first on a model sys-
tem consisting of a p ( —10' cm ) InP crystal covered
by a thin silver layer (of the order of 100 A). The work
function of the silver layer is lowered by Cs and 02 depo-
sition (the Ag-0-Cs system has some analogies with the
standard S-l photocathode of low work function). More
complicated structures have then been used to obtain
photoemission at larger wavelength. ' '

Concerning fundamental physics, FA photocathodes
are very attractive systems to investigate electron-
transport properties. In our experiment, absorption of
light of near-band-gap energy creates a very narrow elec-
tron energy distribution close to the bottom of the con-
duction band in the bulk semiconductor (because the
optical-absorption length is larger than the BB region
width). This provides well-defined initial conditions for
subsequent transport. These electrons are injected into

the BB region for which the amplitude and width are
varied by adjusting the electrical bias applied to the
metal-semiconductor junction and accelerated by the
electric field towards the surface. There, they gain kinet-
ic energy from the field but at the same time undergo en-
ergy relaxation mainly through emission of optical pho-
nons. Finally, they reach the metal-semiconductor inter-
face and cross the metal layer to be emitted into vacuum
where their EDC is measured.

The interpretation of the experimental results is sup-
ported by the following picture: In a parabolic BB, the
energy s, (z) of the bottom of the conduction band versus
position, referred to the bottom of the conduction band
in the bulk, is
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FIG. 1. Band diagram, in real space, of a semiconductor
(covered by a thin metal layer) showing the valence-band max-
imum (VB), the conduction-band minimum (CB), and the X6
secondary conduction minimum. The band energies are drawn
in the BB region (in eV& units) up to an arbitrary distance from
the bulk semiconductor (in uo units, where mo is the BB width
at zero external bias) to illustrate that a change in the bias po-
tential is equivalent to a displacement of the surface. The metal
Fermi level and the vacuum level are, respectively, labeled EF
and E„„.They are pinned to the surface band position. The in-
set shows the equivalent electrical circuit.

e, (z) = —eV&(z/wo)

where e is the electron charge, wo and eV& are, respec-
tively, the BB width and amplitude at zero external bias
( Vb is taken negative as bands are bent downwards in the
space-charge region of a p-type semiconductor); and z is
the abscissa measured along the normal to the surface
taking the origin at the bulk/BB interface. When a bias
V is applied to the Ag/InP Schottky junction, the BB
width becomes

w =wo[( V+ V&)/V&]'

( Vis taken negative for a reverse polarization of the junc-
tion). Because an increase of the reverse bias increases
the BB width without changing the BB parabolic shape,
one can alternately identify the e6'ect of a reverse bias
with a displacement of the surface towards the vacuum
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side, the origin being taken inside of the semiconductor,
at the bulk/BB interface. This is illustrated in Fig. 1.
Therefore, the set of EDC's measured at emission for
different values of the bias voltage gives an insight into
the evolution of the initial EDC with distance in the BB
region.

In the experiment presented here, we have used an InP
monocrystal of p-doping level 1.2X10' cm, oriented
along the [100] direction, with a 100-A-thick Ag top lay-
er activated according to the standard procedure. For
this doping level, the BB region has a width mo =2900 A
at zero external bias and we have used biases up to 2.3 V,
yielding BB widths up to about 6000 A. The photo-
cathode is cooled down to 120 K through liquid nitrogen
circulation and irradiated by a 1.46-eV-laser-diode light,
an energy just exceeding that of the InP band gap
EG =1.405 eV (at 120 K). ' Therefore, the most energet-
ic electrons are promoted into the conduction band of the
bulk semiconductor, with a small kinetic energy
E,„=0.045 eV. But, due to energy relaxation in the bulk
semiconductor, the steady-state distribution injected in
the BB region is even narrower.

III. EXPERIMENTAL SETUP
AND PROCEDURE
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CHAMBER
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FIG. 2. Experimental setup: 1, ion pumps; 2, titanium subli-

mator; 3, glove box, 4, isolation valve; 5, sample-transfer system;
6 and 7, z, 0 and x,y, z, 0 manipulators of the sample holders; 8,
Knudsen effusion cell; 9, leak valve for oxygen introduction; 10,
window for sample irradiation; 11, electron spectrometer; and
12, Faraday-cup output.

The experiments presented here are performed in an
ultrahigh-vacuum setup drawn in Fig. 2, composed of
three coupled chambers: an introduction lock with a
glove box under neutral atmosphere, a preparation
chamber where sample heat cleaning, metallization, and
surface treatment are carried out, and an energy-analysis

chamber where the EDC's of the photoemitted electrons
are recorded at 120 K as a function of the bias voltage
applied to the Schottky contact.

A. Sample preparation

It is well known that the quality of NEA photo-
cathodes is crucially dependent on the surface chemistry.
Then, the definition of a sample-preparation procedure is
of extreme importance but remains largely empirical, the
only good final criterion being the photoemissive sensi-
tivity. ' Concerning FA Schottky photocathodes, the re-
quirements on the surface and interface are even more
stringent. Indeed, good electrical properties of the
metal-semiconductor contact as well as good photoemis-
sive properties have to be obtained. It is therefore man-
datory to start from a clean semiconductor surface and to
perform the whole experimental process under very low-
pressure conditions.

When working with InP, a difficulty is to obtain an
oxygen-free surface because oxygen cannot be thermally
desorbed without deeply altering the surface composi-
tion. In the procedure we use, the InP crystal is chemi-
cally etched in a 0.3% bromine-methanol solution, de-
canted with isopropanol, and introduced, through a glove
box under neutral atmosphere, into the introduction lock.
After a short pumping time, the pressure in the lock is
lowered down to about 10 Torr. The sample is then
transferred into the preparation chamber where the pres-
sure is routinely kept in the low 10 "-Torr range. This
introduction procedure, which takes about half a day, is a
way to protect the sample against surface contamination
by oxygen.

In this second chamber, the crystal is heat cleaned at
620 K, a temperature which preserves the InP surface
stoichiometry. A 100-A-thick Ag layer is deposited on
the clean (100) surface of the InP substrate at a rate of
about 1 A s '. The low-power ( = 50-W) Knudsen
effusion cell that we have designed operates at this eva-
poration rate while the pressure remains lower than
2 X 10 ' Torr. Sample contamination during the
Schottky-junction elaboration is therefore avoided. The
sample temperature during deposition is 300 K. In these
conditions, we can assume that the three-dimensional
growth of silver on InP has already reached coalescence
for a thickness layer of 100 A. ' ' Electrical continuity
of the metal layer is achieved anyway (which is already
the case with a 50-A-thick layer ), and no significant ac-
cess resistance is observed as checked by electrical char-
acterization and photoemission measurements. We have
shown that such a thin metal layer is quasitransparent to
low-energy electrons in the sense that it does not affect
the shape of the electron EDC's. '

The metal-surface work function is lowered by coad-
sorption, at room temperature, of cesium (about one
monolayer evaporated from a commercial dispenser) and
oxygen (introduced into the vacuum chamber through a
leak valve). The activation procedure is controlled by op-
timizing the total photoemission current under He-Ne
laser-light excitation at energy 1.96 eV. The typical pho-
toemission quantum yield obtained in these conditions is
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of about 0.1% at zero external bias and of about 0.4%
when a reverse bias V= —2. 3 V is applied to the Ag/InP
junction. The spectral response of the photocathode (the
photoemission quantum yield as a function of the excita-
tion energy) shows that the sample has been activated to
"NEA," that is to say, at zero external bias, the vacuum
level lies below the bottom of the conduction band in the
bulk semiconductor.

The sample is then transferred from the preparation
chamber to the analysis chamber where the high-
resolution energy analysis of the photoemitted electrons
is performed as a function of the bias voltage applied to
the Ag/InP Schottky diode. The pressure in the analysis
chamber is maintained below 10 " Torr. These ultra-
high-vacuum conditions prevent surface contamination
and therefore ensure stability of the photocathode for
several weeks.

B. Energy analysis

The photoelectrons are energy-selected by a high-
performance electron spectrometer developed by
Drouhin et al. and described in details in Refs. 9 and 19.
Here, we briefly give some important characteristics of
this analyzer and recaB its main performances. The pho-
tocathode is facing a 90 cylindrical electrostatic
deflector, the rotator, which allows sample illumination
normal to the surface. After deflection in the rotator, the
electron beam enters a decelerating electron optics which
focuses the beam at the entrance of another 90' electro-
static cylindrical deflector where the electrons are
energy-selected. The spectrometer operates in the
constant-energy mode: The potentials of the spectrome-
ter electrodes remain constant while the cathode poten-
tial is scanned (the constant bias of the Ag/InP diode is
maintained by applying the scanning potential to the
front contact on the silver layer, and a polarization po-
tential between the Ag layer and the back contact of the
sample). The sample is located at about 5 mm of the
anode hole of 4 mm diameter. Therefore, we have ela-
borated 8X8 mm Schottky diodes to avoid disturbing
effects of the back contact potential on the EDC of the
photoemitted electrons. In proper working conditions,
the spectrometer provides a transmission of a few 10
constant with electron energy, and a peak output current
up to S nA, for a 20-meV energy resolution. This resolu-
tion is achieved for a selector path energy of 0.5 eV (i.e.,
the kinetic energy of the electrons in the selector).

C. Absolute energy calibration
and BBamplitude determination

The EDC's presented in this paper give a direct spec-
troscopic image of electron transport in the semiconduc-
tor conduction band, through the BB region high electric
field. In order to perform a quantitative analysis of the
energy-loss mechanisms (phonon-scattering processes) in-
volved during transport, we have to know, with an accu-
racy better than a typical phonon energy (i.e., =40
meV), for each value of the bias voltage, the following:
(i) the kinetic energy of the electrons in the conduction

band of the semiconductor at the interface, i.e., just be-
fore emission; and (ii) the BB amplitude at emission,
which provides the injection energy and also the distance
traveled by the electrons from the injection point.

1. Energy calibration

As shown in Fig. 3, when the BB amplitude is small, a
peak is observed on the high-energy side of the spectra
with a position depending only on the excitation energy
(independent of the diode bias voltage). This signal origi-
nates from electrons excited in the silver layer. Its high-
energy edge corresponds to electrons photoemitted
without any energy loss from the Fermi level. Then it
provides an absolute reference on the energy scale deter-
mining the energy 6++h v.
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FIG. 3. EDC derivatives recorded at 120 K, with hv=1. 96
eV excitation energy, for three different values of the bias ap-
plied to the Ag/InP junction. The electron energy is referred to
I"6, (the bottom of the conduction band) at the Ag/InP inter-
face. These curves clearly show a bias-dependent feature corre-
sponding to electrons emitted from the InP crystal and a bias-
independent photoemission signal originating from the Ag lay-
er. The dotted curve is a ten-time magnification of the Ag-
photoemission signal evidencing the sharp high-energy thresh-
old which defines the absolute energy reference EF+h v.

2. BB amplitude determination

As defined in Sec. II, the BB amplitude is e (V+ V&),
where eVb, the BB amplitude at zero bias, is the Ag/InP
barrier height reduced by the energy difference between
the Fermi level and the top of the valence band in the
bulk semiconductor.

(a) Measurement of the Schottky barrier-height We.
measured the effective Schottky-barrier height Pb using
the photoelectric method, the so-called Fowler plot. '

This experiment consists of measuring the internal photo-
current I„h which crosses the Schottky junction as a
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FIG. 4. Fowler plot for Ag/InP Schottky-barrier determina-
tion.

function of sub-band-gap light excitation energy. If we
call EG the semiconductor band-gap energy, it can be
shown that, for 0 & h v eP& « E—

G egi, . —

I'q~ =C(hv —ebb), (2)

where C is a constant.
Equation (2) can be easily derived, assuming conserva-

tion of the wave vector parallel to the interface in the
internal photoemission process. Practically, this result
seems to be very general and the Fowler plot is widely
used as a precise technique to determine metal-
semiconductor barrier heights.

Plotting the square root of the internal photocurrent
versus hv, we indeed observe a linear variation (Fig. 4).
The extrapolation of the straight line to I'h =0 yields
eP~ =0.75 V. The value of the BB amplitude at equilib-
rium eVb is then simply obtained by correcting the mea-
sured value of eP~ which is underestimated because of
the effect of the electron "image potential" (=25 mV)
(Ref. 22) and subtracting the energy difference between
the Fermi level and the top of the valence band in the
bulk of the semiconductor crystal (=55 meV). This
yields eVb =0.72 eV, at 120 K.

(b) Voltage calibration. The sample is attached to a
tantalum sheet by two metal clamps. The clamps are
electrically isolated from the tantalum sheet. They en-
sure the front electrical contact on the evaporated silver
layer while the tantalum sheet ensures the electrical back
contact. The Schottky diode is polarized by applying a
bias voltage between the clamps and the tantalum sheet.
The current-voltage characteristics of the sample, repro-
duced in Fig. 5, are recorded at 120 K in the dark [curve
(a)] and under light excitation [curve (b)]. The shape of
these characteristics is not what would be expected from
an ideal Schottky photodiode.

In fact, in the experiment reported here, the use of an
Ohmic back contact was not easily compatible with our
cleaning procedure and experimental configuration.
Therefore, the back contact was taken through the simple
mechanical contact between the tantalum sheet and the

FIG. 5. I ( U) curves recorded at 120 K in the dark [curve (a)]
and under light excitation at energy 1.46 eV [curve (b)]. The
equivalent electrical circuit of the sample is drawn in the inset.
The points represented by the symbol + are calculated after the
calibration procedure described in detail in Appendix A.

back of the clamped InP substrate of low doping level
and was consequently a rectifying contact. In such con-
ditions it is then clear that the bias U applied between the
silver layer and the tantalum sheet is not equal to V, the
potential actually dropped at the Ag/InP interface.

Our sample is indeed not a pure Schottky photodiode
but can be modeled by the equivalent electrical circuit
drawn in Fig. 5 (inset). This circuit is composed of a
diode 2)' (the rectifying back contact), of a photodiode 2)
(the Ag/InP structure), and of a resistance R parallel to

The stray resistance R is probably induced by defects
formed at the edge of the sample or at the Ag/InP inter-
face, possibly during the chemical etching and heat clean-
ing of the InP substrate and/or during the growth of the
silver layer and of the cesium oxide. This resistance also
introduces into the electrical characteristics of our sam-
ple deviations from the characteristics of a simple
Schottky photodiode.

When performing a photoemission experiment,
works as a photodiode. Therefore, important induced
photovoltage effects, revealed because of the rectifying
back contact, have to be taken into account for proper
determination of the voltage actually dropped at the
Ag/InP contact. " Such an effect was also recently con-
sidered in photoemission experiments using synchrotron
radiation.

The large size of the Ag layer required for accurate en-
ergy analysis (see Sec. III 8) is responsible for a non-
negligible additional diode dark current at notable bias,
which may significantly affect the electrical characteris-
tics of the sample.

In these conditions, we performed a careful analysis of
the current-voltage characteristics of our modeled struc-
ture, in the dark and under illumination. The current-
voltage characteristics of the equivalent circuit calculated
after this analysis are plotted in Fig. 5 (symbol +). They
closely fit the experimental results. This voltage-
calibration treatment, detailed in Appendix A, allows the
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IV. EXPERIMENTAL RESULTS

EDC's of FA photoemission are shown in Fig. 6. Elec-
tron energy is referred to the bottom of the conduction
band at the Ag/InP interface, labeled I 6, . Along the or-
dinate axis, the curves are shifted by e( V+ Vb). At low
BB amplitude, the small photoemission signal essentially
originates from the Ag layer and was used for energy
calibration. Applying a sizeable reverse bias allows elec-
tron emission from the semiconductor, which strongly
improves the photoemission quantum yield (up to 0.4%
at the highest reverse bias, i.e., the largest BB amplitude,
that we consider in Fig. 6). A further increase of the re-

L6 X6 X7 100 A Ag/Inp
I=120K
hv = 1.46 eV

determination of the true electrical bias V applied to the
Ag/InP diode with an accuracy better than the energy
resolution. From now on, all the values of the bias V
Ii.e., of the BB amplitude e ( V+ Vb )] are obtained using
this procedure.

verse bias produces spectacular modifications of the elec-
tron energy distribution. On these EDC's or on their
derivatives (Figs. 7 —9) we distinguish several particular
features, as follows, which have a physical meaning with
respect to transport properties of InP.

(i) The high ener-gy edge of the spectra (symbol in Fig.
6) . For low values of the BB amplitude, this threshold,
plotted versus e ( V+ Vb ), is located on a straight line of
slope 1. When e(V+ Vb) exceeds 1.70 eV, its position
tends to saturate at an energy of about 2.15 eV.

(ii) The maximum of the main photoemission peak
(symbol + in Fig. 6). It corresponds to electrons initially
thermalized at the bottom of the conduction band, in the
bulk semiconductor, and subsequently heated in the BB
region electric field during transport towards the surface.
The energy position of this peak varies linearly versus
e(V+ Vb) with a slope almost equal to unity when
e ( V + Vb ) varies from 0.92 up to 1.22 eV. Below
e( V+ V„)=0.92 eV, this peak cannot be observed as it
should lie under the vacuum level. When
e ( V+ Vb ) ) l. 22 eV, the main peak becomes broader and
its energy position still varies linearly, but with a slope as
small as 0.1.

(iii) The structures observed in the derivatives of the
EDC's (marked by arrows in Figs. 7—9). They only ap-
pear for notable values of the bias voltage, and their posi-
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ENERGY ABOVE I6 (eV)
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FIG. 6. EDC's at different bias potentials. The electron ener-

gy is referred to I 6, (the bottom of the CB) at the Ag/InP inter-
face. The positions of the relevant conduction-band minima at
the interface are indicated on the upper horizontal axis. The
curves are normalized so that their area is proportional to the
total emitted current. On the vertical scale (right), they are
shifted by the BB amplitude, e( V+ VI, ). The symbols U and X
refer, respectively, to the EDC's high-energy edge and to the
main-peak maximum (indicated by a vertical bar). The low-

energy contribution ( $ ), due to electrons partially relaxed near
the Ag/InP interface, is not considered in the discussion. The
equation of the dotted straight line is c=E„+e(V+ V&). The
high-energy edges of the three lowest EDC's (4) correspond to
electrons excited from the Ag Fermi level.

L6 X6 X7
I I i I

1
ENERGY ABOVE 16 (eV)

FIG. 7. Derivatives of some EDC's recorded under bias con-
ditions such that extra structures are revealed. These structures
correspond to electrons emitted from side valleys. The electron
energy is referred to I 6, (the bottom of the CB) at the Ag/InP
interface. The positions of the relevant conduction-band mini-
ma at the interface are indicated on the horizontal axis. On the
vertical scale (right), they are shifted by the BB amplitude,
e( V+ V&). The appearance of features, indicated by arrows,
evidences electron transport in the side valleys.



47 HIGH-RESOLUTION ENERGY ANALYSIS OF FIELD-. . . 3609

't

A

A

tions vary linearly versus the BB amplitude with a slope
of the order of 0.1.

Remark that, at the low-energy cutoff; which corre-
sponds to the vacuum level, an intense peak (marked by
an arrow in Fig. 6) appears for e ( V+ V& ) = l eV and, for
higher values, is almost independent of bias. This part of
the EDC's is the high-energy tail of the distribution of
electrons partially relaxed in the BB region (for instance,
those reAected at the surface or at the interface) and
which accumulate at the bottom of the conduction band
near the Ag/InP interface. No information on transport
properties of InP can be directly deduced from this part
of the photoemission signal. Therefore, we shall not con-
sider this contribution in the following analysis.

V. ANALYSIS

0.7 0.8 0.9 1.0
ENERGY ABOVE 16 (eV)

FIG. 8. Enlargement of EDC's derivatives recorded at high-
reverse voltages. They show a weak but reproducible bias-
dependent shoulder corresponding to electrons photoemitted
from the L6 conduction side valleys. The position of the high-
energy edge of this structure is plotted in the structure diagram
of Fig. 10 (symbol o ).

In order to interpret the experimental data, we draw
the FA-photoemission structure diagram in Fig. 10, i.e.,
we plot the energy location of characteristic points of the
features appearing in the spectra or in their derivatives as
a function of the BB amplitude. This diagram is analo-
gous to the usual photoemission structure dia-

9, 12, 24, 25gram, ' ' ' the photon energy being replaced here by
the BB amplitude. In the following, we consider that
electrons only lose energy by phonon emission which is
by far, in our experimental conditions (low temperature,
low doping level, low carrier density, and low kinetic en-
ergy), the dominant scattering mechanism. '
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1.6

A
1 4 Z
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ENERGY ABOVE I 6 {eV)

FIG. 9. Enlargement of EDC's derivatives recorded at not-
able reverse voltages. They show the splitting in two contribu-
tions, marked by arrows, of the bias-dependent peak. The con-
tribution at lower energy is attributed to electrons transferred
into the X6 conduction side valleys; the characteristic point of
this feature which is used for analysis is the maximum of the
corresponding'EDC peak (i.e., the relevant zero of the deriva-
tive); the position of this point is plotted vs BB amplitude in the
FA structure diagram (Fig. 10, symbol X). The contribution at
higher energy corresponds to electrons which first still undergo
ballistic transport and then are transferred into the X7, side val-
leys of the second conduction band. The position of this peak in
the derivative is plotted in Fig. 10 (symbol ~ ).

e ( V + Vb ) (eV)

FIG. 10. Field-assisted structure diagram, i.e., plot of the en-

ergy position of particular points of the EDC's (or of their
derivatives) vs e ( V + Vz ). The symbols and X represent, re-
spectively, the EDC's high-energy end and the main-peak max-
imum. The solid lines are the fits discussed in the text. The
symbols 0 and correspond to features only observed on the
EDC's derivatives and, respectively, attributed to the L6 and X7
valleys; the dotted lines show that the model given for the trans-
port in the X6 valleys also accounts for the contributions of the
other subsidiary minima.
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A. The high-energy edge of the EDC's:
Transport close to a conduction-band maximum

At the interface, the kinetic energy of the electrons
which do not undergo any energy loss during transport
from excitation to emission is given by c, =c„
+e( V+ V& ). As mentioned in Sec. IV, paragraph (i), we
observe ballistic electrons up to e ( V+ V& ) = l.70 eV (Fig.
10, symbol ). Beyond that point, the most energetic
electrons that can be observed gain less energy than the
increase of the BB amplitude and their energy tends to
saturate.

We simply interpret this behavior in the following
manner. The electron energy gain is maximum in the
direction parallel to the electric field, i.e. , in the [100]
direction normal to the surface. In this direction, the
electrons should attain a band maximum where their
group velocity becomes zero. Near this point, the energy
losses (by phonon emission) per unit length become so im-
portant that the electrons cannot actually reach this max-
imum. In a one-dimensional model, assuming that elec-
trons have a steady-state energy at each point of the BB
region, we can write the energy balance

d E/dt = ( e)vGE (z—) —A'co/r =0, (3)

where vG is the electron group velocity, Ace the typical
energy loss in the collision time r, and E(z) the modulus
of the electric field E at the distance z from the injection
point. In a parabolic approximation of the band disper-
sion near a band maximum at energy so (wave vector ko)
and along the direction normal to the surface, the kinetic
energy can then be written as a function of the wave vec-
tor k:

E(k)=ED —fi (ko —k) /2m* . (4)

m * is the effective-mass component normal to the surface
in the vicinity of the band maximum. As z generally
varies slowly with c., we neglect its variation in the
relevant energy range. Then, combining Eqs. (3) and (4),
we get at emission (z = w ):

+
2

1 2
e ( V+ Vb) (eV)

FIG. 11. Plot of the product ce( V+ V& ), where 8 is the ener-

gy position of the EDC's high-energy threshold, vs e( V+ V&).
This evidences the linear saturation regime which occurs close
to a relative maximum of the conduction band as predicted by
Eq. (5). The parabola corresponds to ballistic electrons.

occurring at E=e( V+ Vb ) = 1.3 eV, an energy about 100
meV higher than the minimum X7 of the second conduc-
tion band in the [100] direction (see Sec. VC of the
present paper and Ref. 12). This energy loss can there-
fore be interpreted as phonon emission related to the
transfer from the first to the second conduction band.

Finally, from the extrapolation of the straight line giv-
ing Ee ( V+ Vz ) versus e ( V+ V& ) to e ( V+ V& ) =0, we
obtain

8 =Eo
—

( m */2 ) [fico /( e)E ( wo )r ] [ V—
t, /( V+ Vq ) ] . (5)

According to this model, the plot of the experimental
values of Ee( V+ V&) as a function of e( V+ Vt, ) should
be a straight line. As shown in Fig. 11, from
e ( V+ V& ) =2 eV to e ( V+ V& ) = 3 eV, we indeed observe
a linear variation of slope co=2.56 eV. This energy corre-
sponds, in fact, to an extremum of the second conduction
band in the [100] direction, located at about 2.60 eV
above the minimum of the conduction band, as given by a
band-structure calculation in a pseudopotential model,
while the maximum of the ftrst conduction band lies 0.50
eV lower, at 2.10 eV. Evidence that electrons are
transferred into the second conduction band is supported
by the observation of a high-energy feature in the EDC's
derivatives, which we identify with electrons emitted
from the second conduction-band minimum X7 (Figs. 7
and 9). Moreover, before the saturation regime, one can
observe (Fig. 12), on the variation of the high-energy
threshold of the spectra, a small energy loss ( =40 meV)

1.6

1.4

0
g4 12

0.8

O.S 1.2
e ( V + Vb) (eV)

1.4 1.6

FIG. 12. Plot of the energy position of the EDC's high-
energy end vs e( V+ Vz } in the range where ballistic transport
is observed. The 40-meV energy loss occurring at about 1.2 eV
indicates phonon emission associated with intervalley transfer.
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B. The maximum of the main peak at low bias:
Qnasiballistic transport in the 1 valley

Quasimonoenergetic electrons are injected, at the
bulk/BB interface, in the BB region, and accelerated in
the electric field. At the same time, they suffer energy
losses mainly by emission of polar optical phonons of en-

ergy A'co, (in weakly doped III-V semiconductor com-
pounds, polar optical scattering is the most efficient col-
lision process at low kinetic energy in the central I valley
of the conduction band). In a simple parabolic band
model, the corresponding collision time w, p

varies with c,

(for 8 ~A'co, ) according to

1/r, =(1/ro )(A'co, /E)'~ sinh '[(E/A'co, ) —1]' (6)

where ~0 is a characteristic time constant.
It is shown in Appendix B that this formula can be

generalized to a more realistic (nonparabolic)
conduction-band structure described in the framework of
the k.p Kane perturbation model in the form

1/r, =( I/r*)(P/A'UG ) I sinh '[(AvGk/2fico, „)1]'~—
—2c6(1 —c6/2)

x(1 2fico, /fiUGk)—'~'I, (7)

where ~* is a characteristic time constant and vG the
electron group velocity. The quantity P is a real momen-
tum matrix element between valence and conduction
states and c6 a coefficient describing the hybridization of
the conduction band in the Kane model.

For a qualitative insight, the important point is that as
soon as the electron kinetic energy is somewhat larger
than A~, , the efficiency of this relaxation process is near-
ly constant versus energy. We can then deduce that the
electron kinetic energy remains small as long as the ener-

gy gain from the electric field in the electron mean free
path A, remains smaller than the characteristic energy
loss, i.e., eEA, (A~,„.Beyond that point, the transport
becomes quasiballistic. Experimentally, we observe a
ballistic transport mode for

0.92 eV ~ e ( V+ V6 ) ~ l. 22 eV,

where the energy position of the peak, plotted versus
e ( V+ V„),follows a line of slope almost 1 (Fig. 10). Ex-
trapolating this line to zero kinetic energy shows that
quasiballistic transport should start approximately from

(m*/2)[Ace/( e—)E(wo)r] eV6=1.4 eVz .

From this value, taking A'co=40 meV, a typical phonon
energy, and m *=0.2m o (Ref. 26) ( mo is the free-
electron mass), we deduce r=5 fs. It is not surprising
that we do not observe ballistic electrons with such a
short phonon emission time. Indeed, as we will see in
Sec. VB, in the region of the Brillouin zone where a
ballistic-transport regime is observed, the collision time is
about ten times larger than w. The variation of c versus
e( V+ Vb) given by Eq. (5) is plotted in Fig. 10 using the
values of co and w that we have obtained.

d E/dt =(1/fi)(d E/dk)( e)E . — (8)

From our assumption, in the energy range where the
quasiballistic regime is observed, the kinetic energy be-
fore emission of a phonon is given by

s =e ( V+ V6 ) —e ( V+ V6 )o . (9)

In a parabolic description of the conduction band of
effective mass m 6, Eqs. (8) and (9) give

dt=wo(m6/2eV&)' [1/4u (u + I)]'~ du, (10)

where u is a reduced variable defined as
u =E/e ( V+ V6 )o. The summation over u yields

' 1/2

r, = wo [ln(&u +&u + 1)]„',
2eVb 1

where the values of c corresponding to the boundaries of
integration u, and u 2, respectively,

c.
&

= 1.02 eV+ Scoop 100fKoop/6

and F2=1.02 eV+Aco, p, are chosen in the energy range
where quasiballistic transport is actually observed. We
find ~, =70 fs.

In order to obtain a more realistic description of the
quasiballistic transport throughout the whole BB region
in the central I valley, we have performed a numerical
resolution of the differential transport equation:

d E/dt =eUGE(z) —Ace,„/r,„. (12)

In this calculation, we-assume a one-dimensional trans-
port regime along the direction of the electric field. This
assumption is justified because polar-optical-phonon
emission favors forward scattering: The probability of an
electron being scattered by a polar optical phonon is pro-
portional to 1/q (where q is the modulus of the phonon
wave vector), i.e., the smaller q is, the more probable
the collision process. We use a nonparabolic description
of the conduction band, deduced in the framework of the
Kane band model (see Appendix B and Refs. 12 and 29),
and Eq. (7) for the expression of r, We obtain the .varia-
tion of e versus e( V+ Vb), which is plotted in Fig. 10.
The characteristic time constant ~* is the only adjustable
parameter of the model. The agreement with the experi-
mental data is very good for ~*= 120 fs.

e( V+ V6)=e(V+ V6)o=0. 15 eV .
0

This yields A, =200 A, a value which corresponds to a col-
lision time of the order of 50 fs for an electron of energy
somewhat larger than A'cu, .

Now, we remark that, in the quasiballistic regime, the
electron kinetic energy increases linearly with the BB am-
plitude with a slope 0.94. This indicates that these elec-
trons lose 6% of the energy they gain in the field. There-
fore, the "mean electron" gains —", Ace, before emitting a
phonon. One can then consider that the time necessary
for an electron to gain this energy is a good estimate of
the polar-optical-phonon emission time. In order to cal-
culate this time, we start from the one-dimensional trans-
port equation



3612 J. PERETTI, H.-J. DROUHIN, AND D. PAGET

hvG =e~;,M E,—1 (13)
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where M is the effective-mass tensor of the valley.
The corresponding energy gain can be calculated for

the mean electron, first after averaging over the electron
velocities in a specified valley:

bE= —,'(er;„)(M 'E)E, (14)

and then after averaging over the different equivalent val-
leys:

b, E = ,' (e r;„—)E /m, .

The conduction equivalent mass m, has the usual
definition m, '=

—,'(2/m, +1/m&), where m, (mt) is the
transverse (longitudinal) effective mass in the side valley.
This result holds as well for L, or X valleys. For scatter-
ing between equivalent valleys, the mean collision time
for phonon emission varies with kinetic energy according
to the relation

ENERGY ABOVE I 6 (eV) r,,=r, (A'cu )' /(s —A'cu )' (16)

FIG. 13. Scattering rates in the conduction band, calculated
from the experimental data for polar-optical-phonon emission
[r,„;~, qualitative estimation; ———,qualitative estimation
after Eq. (11)],for 1 6-X6 transfer (rr «), for intervalley scatter-
ing into the L6-equivalent side valleys (~;, '), and for scattering
at the highest energy in the X7, valleys close to a relative rnax-
imum of the second conduction band (~ '). E=r, (2eVt, /m, wo)e(V+ VI, )+fico;„. (17)

~, is again a characteristic time constant and Ace;, =40
meV is the intervalley phonon energy. We substitute ~;,
in Eq. (15) by the expression given by Eq. (16) and apply
the condition of quasistationarity: 4c.=%co;,. We obtain
the mean electron energy

In Fig. 13 we have plotted the collision rate 7
p

as a
function of the electron kinetic energy according to Eq.
(7), taking the above value of r*. As can be seen, r, is
actually almost constant over a wide energy range and
equal to about 60 fs as soon as c, is slightly larger than
Ace, . This result is consistent with the simpler models
used above and confirms the corresponding estimates of

50 and 70 fs.

C. The maximum of the main peak at large bias:
Qnasistationary transport in the side valleys

At large bias, the electrons of the main peak have
gained enough energy in the strong electric field during
their quasiballistic transport in the I 6 valley to be
transferred into side valleys by phonon emission. Be-
cause of the existence of several equivalent side valleys of
large effective mass, intervalley scattering between
equivalent valleys is a very efficient energy and momen-
turn relaxation mechanism, so that we observe a very
sharp change in the transport regime. To get a physical
insight into this complex multivalley high-field transport,
we base our analysis on the following two assumptions:
at each point of the BB the transport is almost stationary
and the drift velocity is small compared to the electron
velocities. We consider parabolic side valleys in the ener-
gy range where the quasistationary regime is observed.
Then, in the time ~;, between two collisions, the group ve-
locity of an electron changes by

Equation (17) predicts a linear variation of c, versus
e( V+ Vb), which is experimentally observed (see Fig.
10). The corresponding straight line is expected to extra-
polate for e ( V+ Vb ) =0 at the energy of the side valleys
involved in the transport process, augmented by Ace;, .
According to this procedure, we find that the valleys are
located at 0.87 eV above I 6, . Several studies of the InP
band structure can be found in the literature but give am-
biguous energy positions of the conduction side valleys.
In order to measure their positions, we have performed
photoemission experiments on highly p-doped InP crys-
tals (a few 10' cm ) in NEA conditions. ' Assuming
the usual I 6„L,6,X6 ordering, we found I 6, -1.6, I 6, -X6,
and I 6,-X7, spacings equal, respectively, to 0.67, 0.90,
and 1.18 eV. We then conclude that the transfer that we
observe, when following the variation of the main peak
position with BB amplitude, occurs from the I 6 valley to
the X6 side valleys. From the slope of e versus e ( V+ V& )

and taking the values m, =0.19mo, mI =1.9mo deduced
from Ref. 26, we estimate ~& =100 fs. The corresponding
collision rate variation is plotted in Fig. 13 according to
Eq. (16).

Now, the transfer can only occur when the electron en-
ergy exceeds the X6 energy by the relevant phonon ener-
gy Aco~z, which is the case from e(V+ Vb)=1. 12 eV. As
seen in Fig. 10, an increase of e ( V + Vb ) from 1.12 to
1.24 eV is required to complete the transfer (when the
slope of the peak variation versus bias has dropped from
1 to 0.1). Converting these voltages into BB widths al-
lows us to determine a I 6-X6 transfer mean-free-path

O

equal to 200 A, which corresponds to a transfer time
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~ of the order of 20 fs for an electron of saturated
group velocity (i.e., in a domain of the Brillouin zone
where the conduction-band dispersion is almost linear:
uG =P/Pi=10 ms ' in InP). The fact that this collision
time is about three times shorter than 1pp explains the
high efficiency of the I -X transfer process that we ob-
serve (see Fig. 13 for comparison).

From our determination of intervalley scattering times
~i- z, which is consistent with the one measured very re-
cently in GaAs, and ~;„weestimate the intervalley cou-
pling constants Dr& and Dzz (Ref. 27) of the order of
1 X 10 eV cm ', while the values of these quantities re-
ported in the literature are controversial as they range
over more than one order of magnitude, typically from
1X10 up to 2X10 eVcm

In the present FA experiment, the identification of the
I 6-X6 transfer is supported by the observation of features
in the EDC's derivatives (Fig. 7) that we identify with
electrons emitted from the L6 and X7, side valleys. The
structures corresponding to the L6 valleys are small but
reproducible; they are evidenced in Fig. 8. The struc-
tures corresponding to the X7, valleys are observed in
Fig. 9 where the peak of transferred electrons is clearly
split. As shown in Fig. 10, the variation of the position
of these structures as a function of the BB amplitude is in
both cases a straight line. Then, the above analysis can
also be applied to the L6 and X7, side valleys. Extrapo-
lating the lines to zero BB amplitude, their respective en-
ergy positions are found equal to 0.64 and 1.15 eV in very
good agreement with the values of Ref. 12. Of course, as
the slopes of the lines are also of the order of 0.1, the
intervalley-scattering times that can be deduced from the
model are of the same order of magnitude as those calcu-
lated for the X6 side valleys.

VI. CONCLUSION

Field-assisted photoemission is a very attractive tech-
nique to investigate hot-electron transport in semicon-
ductors. Its decisive advantage is to provide a direct pic-
ture of the electron energy distribution during the
motion. Because particular points of the EDC, which
have a well-defined physical meaning, can be followed as
a function of the electrical bias, a precise quantitative in-
terpretation is possible even using very tractable theoreti-
cal tools. Such a situation is in fact much simpler than in
usual current-versus-voltage measurements which give a
direct access only to the drift velocity, i.e., to the aniso-
tropic part of the EDC; in particular, if multivalley trans-
port is considered, the drift velocity can be very small al-
though the kinetic energy can be important. So in the
case of the Ag/InP model system, we are able to disen-
tangle the contributions of the different energy relaxation
mechanisms and to estimate relevant relaxation times in a
wide energy range; our results clearly evidence the mul-
tivalley transport process, which involves the central and
side minima of the first conduction band, and also at high
bias the second conduction band. Intervalley scattering
plays consequently a crucial role and determines impor-
tant photoemission properties. Moreover, similarly to
"standard" NEA photoemission, field-assisted photo-

emission provides a spectroscopic determination of the
locations of the different conduction-band minima. This
approach would be of particular interest for small band-
gap semiconductors which cannot be activated to NEA.
Finally, the present work develops an original technique
which could also find valuable applications in the study
of heterostructures, quantum wells, or superlattices.
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APPENDIX A: VOLTAGE CALIBRATION

The current (I)-voltage ( U) characteristics of our sam-
ple, plotted in Fig. 5, have been recorded at 120 K: curve
(a) in the dark, curve (b) under about 3-mW laser-diode
excitation at 850 nm. As explained in Sec. IIIC2(b) of
the main text, these curves have not the typical shape of
Schottky-diode characteristics because the sample is in
fact equivalent to the electrical circuit drawn in Fig. 5
(inset). The back electrical contact is rectifying and has
to be regarded as a Schottky diode X)'. Defects are re-
sponsible for a parasitic resistance (R) parallel to the
Ag/InP Schottky photodiode Xl.

It is then clear that the current which Aows through
the circuit defines independently the voltage drops at 2)
(and R) and at 2)'. Therefore, the bias U that we apply to
the whole circuit, between the Ag layer and the back con-
tact, is not only dropped at the Ag/InP junction. Note
also that, when we perform FA photoemission, the sam-
ple is illuminated through the Ag layer. The light ab-
sorbed inside the semiconductor close to the Ag/InP in-
terface (the typical absorption length is of the order of a
few pm) induces an internal photocurrent I h through
the junction. In these conditions, when the bias U is such
that the total current I which crosses the whole structure
tends to zero, the bias of the Ag/InP junction is positive
and tends to a direct eQectiue open circuit uoltage V-,*,
which accounts for the diode characteristics with a
current Aowing through the load resistance A. The BB
amplitude near the Ag/InP interface is then of course re-
duced by eV,*,. This photovoltage effect, revealed be-
cause of the rectifying back contact, is very important in
our experimental conditions (several hundreds of mV).

In the following, we will show that the analysis of the
experimental I ( U) curves leads to a rather good graphi-
cal estimate of the relevant parameters of the equivalent
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I = Io [exp(e—V'/n'kT) 1], —

U=V —V'.
(A2)

(A3)

As will be checked later, Io and Io are several orders of
magnitude smaller than the value of I at the specific
points of the characteristics used to perform this analysis.
Therefore, in the following, we will neglect them with
respect to I.

circuit. In Fig. 14 we indicate the particular points or
"regions" in the I(U) curves that we have specifically
chosen to perform this analysis. Then, successive numer-
ical treatments of the experimental data, based on the
calculation presented below, allow deduction of correc-
tive terms, some depending on the dark current of 2),
others depending on the internal photocurrent. Itera-
tions of the whole procedure, taking into account the
corrections, quickly converge and improve the estimate
of the parameter values. Finally, the numerical resolu-
tion of the basic current-voltage equations of the modeled
system are performed by calculating, for a given value of
the bias V applied to the Ag/Inp junction, the value of
the bias U applied between the front and the back con-
tacts. This yields the dependence of U versus V from
which we obtain the variation of the BB amplitude versus
U.

and 2)' are nonperfect diodes. Their respective
ideality factors (saturation currents) are called n (Io) and
n' (ID). When X/ is reuersely polarized, the I(U) curves
exhibit a bias-dependent dark current Id which soon be-
comes important (because of the large size of the Ag/InP
junction) when U increases. If we call V and V' the volt-
age drops, respectively, at Xl (and R) and at 2)', the
current-voltage equations are

I =ID[exp(e V/nkT) —1]+I h+Id + V/R, (Al)

Note that, combining Eqs. (A2) and (A3), we obtain

V = U +(n'kT/e)ln( 1 I—/Io) . (A4)

Then, in order to carry out the voltage calibration, one
has only to determine n' and Io. Nevertheless, we have
to verify the consistency of our calibration procedure by
fitting the experimental I( U) curves over the whole volt-
age range, and this requires the determination of all the
parameters of the equivalent circuit.

1. Estimation of n'

Let us first consider the I( U) curve recorded under il
lumination [curve (b) in Fig. 14]. As already mentioned,
as long as the current Aowing through the device is a
small fraction of I h (typically I ~ 50 pA in the present
experiment), V is not very different from V,*„and,conse-
quently, from Eq. (A3), we have V'= V,*,—U. Therefore,
according to Eq. (A2), the variation of I, reco—rded un-
der light excitation, versus —U in the "small current"
range, is essentially the corresponding part of the 2)'
current-voltage characteristics shifted along the voltage
axis by V,*,. This leads to

ln( —I) = ln(IO )
—e U /n 'k T + e V,*,/n 'k T . (A5)

The plot of ln( I) versu—s U, drawn in Fig. 15, is
indeed a straight line. From its slope we deduce the
value n'=4. From its extrapolation to U =0, the value
of Io can be deduced if V,*, is known. In Sec. 5 of the
present appendix, we will show that V,', can be graphical-
ly estimated with a good precision as equal to 0.265 V,
which yields Io=1.8X10 mA. For that purpose we
will first estimate R, I„h,and n.
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FIG. 14. Experimental I(U) characteristics of the sample
recorded in situ, curve (a) in the dark and curve (b) under il-

lumination. The principle of the graphic estimate of the param-
eters of the electrical circuit equivalent to the sample is illus-

trated. The particular points considered in Appendix A are in-

dicated.

FIG. 15. Plot of the variation of ln( —I) vs V,*,—U from the
experimental I( U) characteristics of the sample recorded under
illumination. As predicted by Eq. (A5), in the low-U range, this
curve is a straight line of slope e/n'kT which gives n'=4. The
value of V,*„usedto deduce Io from the extrapolation of the
line to V,*,—U=O, is graphically determined as discussed in
Sec. 5 of Appendix A.



HIGH-RESOLUTION ENERGY ANALYSIS OF FIELD-. . . 3615

2. Estimation of R

Let us consider now the I( U) curve recorded in the
dark (I„&=0, V,*,=0). When U & 0, V & 0, and I is dom-
inated by the current across R (at least in the region
where I is much larger than Io and Id ). Then, the slope
Y =(dI/dU) of the I( U) curve must strongly depend on
R. We note a = (dId /d U), and differentiate equations
(A 1), (A2), and (A3) with respect to U:

Y= I(e/nkT)[I+Io I& ——V/R]+a+1/R ](dV/dU),

Vw =R (Ia Id w
—),

V„' =R (I Id —) —U

(A 1 1)

(A12)

3. Estimation of I~b

We will now show how to measure Iph that we first
consider as a constant in the low-voltage range,—1~ U~O V. At point A, Id takes the value I„Aand
the biases applied to 2) (as well as to R) and to 2)' are, re-
spectively, V~ and V~:

Y= [e (I Io ) /—n 'k T) ( d V'/d U),

1=(dV/dU) —(dV'/dU) .

When I is much larger than Io,

e (I +Io Id —V/R—)/nkT

(A6)

(A7)

(AS)

Iphc Ic Idc Vc ~R

Vc = Vz —(n'kT/e)ln(I& /Iz),
(A13)

(A14)

We now consider the point C, of the characteristics
recorded under illumination, of coordinates ( UC, Ic )

chosen so that Uc= Uz (see Fig. 14). At this point Id
(I z) takes the value Idc (I „c)and V ( V') the value Vc
( Vc ). Neglecting Io and Io with respect to I~„c,we can
write from Eqs. (Al) and (A2),

is much smaller than eIo/nkT and therefore can be
neglected. We also neglect Io with respect to I. Then,
combining Eqs. (A6), (A7), and (AS), we get

and then

Vc =R (I~ Id„)—(n'k—T/e)ln(I~ /IC) . (A15)

R =R'[1+a/(1/R' —a)], (A9)

where R ' = (1/Y+ n 'kT/eI).
In the low-voltage range (typically —1 & U &0 V), the

value of V is low enough that Id and a are much smaller
than, respectively, I and Y ( = 1/R'). Then, in this range
we have

1+a/(1/R' —a)=1 . (A10)

In order to estimate the value of R from Eqs. (A9) and
(A10), we choose, on the I(U) curve recorded in the
dark, a particular point A of coordinates ( U„=—0.7 V,
I„=—0.056 mA) and measure the slope
Y~ =0.24 X 10 Q ' (Fig. 14). Then we deduce
R =3450 Q.

This determination of R can be pinpointed precisely if
the variation of Id versus V (and therefore a) is known.
As n ' has been measured, this will be possible provided Io
is determined. Indeed, using Eq. (A2), for each value of I
we can obtain, from the value of V' and, therefore, from
Eq. (A3), the corresponding value of V. Then, using Eq.
(Al) and the above value of R, we deduce from the I(U)
curve recorded in the dark the variation of Id versus V.

Consequently, after determining Io from the procedure
described in the next Secs. 3—6 of this appendix, we re-
turn to the determination of R at a point A' located at
larger bias on the I ( U) curve recorded in the dark (for in-
stance, the point of coordinates U~. = —1.06 V andI„=—0. 156 mA, as drawn in Fig. 14). We measure Y„
and a„(Y&=0.31X10 Q ' and a&.=0.05
X10 Q ') and we calculate a corrected value of R.
Finally, we adjust the R value until its determination at
points A and A' coincide. So we obtain R =3SOO 0 and
verify that this estimation remains correct at any point of
the characteristics.

Finally we obtain

Iz&c =(Iz Iz ) —(Id—z Id& )+(n—'kT/eR)ln(I& /IC ) .

(A 16)

In this last calculation, we have only neglected Io and
Io. The result is therefore correct over almost the whole
voltage (or current) range, in fact as soon as I~ is not too
small when compared with IC (which is the case of the
points that we have chosen where U~ = Uc= —0.7 V,
I~ = —0.056 mA, and IC =0.362 mA). Note that, in Eq.
(A15), Idc Id „can b—e neglected: U„=Uc is low
enough that Idc and Id~ are only very small fractions of
IC; moreover, after Eqs. (Al 1) and (A15),

V„—Vc =(n'kT/e)ln(I„ /Ic )

is small, so that Idc and Id~ are of the same order. Then
we obtain Iphc Ic I~ =0.330 mA.

4. Estimation of n

As we said before, we first neglect the weak variation
of Iph over the voltage range chosen for the analysis.
Then, I~&(0) being the value of I z when V =0, we as-
sume that I b=I„&(0)=Ibz. We choose on the I(U)
curve recorded under light excitation a particular point D
of coordinates ( UD, Io ) so that 0 & IL, & I & (Fig. 14). — —
At this point, the value VD of the bias is positive (remark
that, consequently, IdD =0). Then, we are interested in a
part of the characteristics where the current variation is
dominated by the exponential term in Eq. (Al). There-
fore, the slope of the I ( U) curve at point D,
YD =(dI/dU)D, should strongly depend on the value of
n. Neglecting Io and Io we differentiate Eqs. (Al), (A2),
and (A3) and we get
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YD = [(elnkT)(ID I—
h
—VDIR)+1/R ]

X [ 1+( n 'k T /eID ) YD ] (A17)

UH = UD+n'kT/e
—(nkT/e) [1/[1 I„h—(0)IID

We consider now the point B of the I( U) curve recorded
in the dark of coordinates ( U&, I& ) such that Iii =ID (as
drawn in Fig. 14 for simplicity, the points B and D may
be chosen so that B coincides with A}. Then, we can
write

—
( VD

—nkT/e)/RID]] . (A21)

We can define the open-circuit voltage V„asthe po-
larization of X) when the current that would cross the
junction in the dark will be opposite of the internal pho-
tocurrent I h(0):

VD = UD UB+RID(1 Idio—/Iri ) . (A18) I „(0)= —ID[exp(eV„/nkT) —1] . (A22)
Combining Eqs. (A17) and (A18), and neglecting Idio /I~h
with respect to unity, we obtain

n In ' = [ ( Uii
—UD ) /RID ][ 1 RI h

—I( U~ —UD ) ]

X(1+pD/Yn)/(1 —1/pDR —1/YDR), (A19)

where pD =eID/n'kT As n/. n' should be of the order of
unity, a reliable determination of n after Eq. (A19) is
obtained when the factors in this expression of n In '

are all of the same order, which occurs for—0.35& UD ( —0.25 V (i.e., when I=I h/2). In this
domain, Eq. (A19) yields nkT/e =0.027 V.

Neglecting Io, the current-voltage Eq. (Al) at point D
may be written

ID/I„h(0)= —exp[(e VD
—eV„)lnkT]

+1+VD/RI „(0), (A23)

and we get

V„=VD
—(nkT/e)in[1 ID/I „(0)+—VD/RI „(0)].

(A24)

5. Estimation of V„and V,*,

We show now that V„and V,*, can be graphically
determined. We consider the points E and H where the
U axis intercepts the tangents to the I ( U) curves, respec-
tively, at point A and at point D (Fig. 14). Their coordi-
nates are ( Uz, 0) and ( UH, O). Starting from Eqs.
(A6) —(A8) and (A17), we calculate Uz and UH, again as-
suming that I h is constant when 0 ~ V ~ V,*,:

Uz = Uz RI„[1 Ra—z /(1+R—az )]+n'kTle,
(A20)

In fact, we are more specifically interested in calculating
the effective open-circuit voltage V„,which takes into
account the load resistance R. Simply writing the
current-voltage Eq. (A 1) at the point of coordinates
( V,*„O)of the I ( U) curve recorded under light excitation,
we obtain

V,*,= V„—(nkT/e)in[1/[1+ V,*,/RI„„(0)]]. (A25)

Using Eq. (A18) (where we replace point B by point A),
we calculate VD and we get

V,",= UH —Uz +RID [Ra
„

I( 1+R a„)Id /ID ]—
—(nkT/e)(in[1+( UD

—Uz RI~& —Vo, )/—[RI„h(0)+V,*, ]]+RID I[RI h(0) RId+ UD —U—z nkT/e]) .—

(A26)

V,*,= UH —U~=0. 265 V . (A27}

It is easy to check that at the points 3 and D that we
have chosen, UH —UE is much larger than all of the oth-
er terms in the expression of V,*,. Then, by simply
measuring the distance between the points E and H (see
Fig. 14), we can deduce a good estimate of V,*,:

7. Determination of Vversus U

At this point of the calibration procedure, we have
made good estimations of the relevant parameters of our
modeled system. We now calculate from the experimen-
tal I( U) curves the approximate current-voltage charac-
teristics of each component of the equivalent circuit and
deduce the variation of Id and Iph versus V.

Note that the dependence of I h versus V is given by

6. Estimation of IO and Io I „=I&[1—exp( —~w)/(1+uE)], (A28)

The above value of V,*, can be used to estimate Io from
Eq. (A5) and Io from Eqs. (A22) and (A25). We find
Io =1.8X10 mA and Io=1.4X10 mA.

where I&, a constant proportional to the light power,
would be the internal photocurrent if all the light absorp-
tion by the semiconductor only occurred inside of the BB
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in[1/(1 I „/I—&)]=~ w+1 n(1+~8) . (A29)

We plot in[1/(1 I h/—I&)] versus w, using the experi-
mental variation of I„hversus V. As predicted by Eq.
(A29), we indeed obtain a straight line of slope ~=0.7
pm ' which confirms that, in the voltage range that we
use to perform FA-photoemission experiments, at least
65% of the light is absorbed in the bulk of the semicon-
ductor crystal. From the extrapolation of the line to
w =0 (i.e., to V= —Vii) we obtain 1+md=2. 4, i.e.,
8=2. 1 pm.

Now, for a given value of V, we calculate, with Eq.
(Al), the corresponding value of I. From Eq. (A2), we
deduce the value of V' and Eq. (A3) determines U. By
varying V, we build a voltage-calibration curve which as-
sociates to each measured value of U the corresponding
value of V, i.e., the BB amplitude. The characteristics
calculated after this calibration procedure (symbol + in
Fig. 5) fit very well the experimental I ( U) curves.

Accounting for the variation of Id and Iph versus V, we
have calculated corrected values of the equivalent circuit
parameters which are not very significantly changed, as
can be seen in the case of R (Sec. 2 of this appendix). Us-
ing this set of parameters, we obtain the very good fit of
the experimental I ( U) curves shown in Fig. 5. It must be
also noted that, when we consider I~h =I~h(0) and Id =0,
the shape of the characteristics that we calculate is quite
affected because, when —3 & U &0 V, Id actually varies
from —0.6 to 0 mA and I h from —0.38 to —0.33 mA,
but the error made on V [i.e., on e ( V+ Vs )] over this en-
tire voltage range is at most 12 mV (i.e., half of our ex-
perimental resolution) because at large current the volt-
age drop at the back contact remains nearly constant.

APPENDIX B: POLAR-OPTICAL-PHONON
COLLISION TIME

Among the different scattering mechanisms, the col-
lisions with polar optical phonons are largely the most

region, u is the optical-absorption coefficient, 8 is the
electron diffusion length,

w = wo [( V + Vii ) / Vii ]
'

is the BB width when the bias Vis applied to the junction
[wo and V~ are calculated and measured (see Secs. II and
III C2 (ci) of the main text)]. Then, we have

efficient relaxation processes for electrons of low kinetic
energy (i.e., in the vicinity of the I 6 minimum of the
conduction band) in p-type III-V semiconductor com-
pounds of moderate doping level. As we are interested in
transport mechanisms occurring at quite low lattice tem-
perature (about 120 K), we only consider here phonon
emission which is much more probable than phonon ab-
sorption in this temperature range. We calculate the
scattering rate for polar-optical-phonon emission follow-
ing the treatment of Conwell but in the framework of a
conduction-band description, ' ' deduced from the Kane
model, which accounts for nonparabolicity. This treat-
ment is also related to Zawadski's approach.

In high-mobility materials, electron-phonon interac-
tion may be treated by perturbation theory. Then, the
probability per unit time m;f of a transition by emission of
a phonon of energy R~ and wave vector q between states
of kinetic energy and wave vector c., k and c.'=c, —Acu,

k'=k+q is given by (in this appendix vectors are desig-
nated by boldface characters, their moduli by plain char-
acters)

(B1)

where 0 f is the matrix element of the interaction poten-
tial between the initial and final states and the 6 function
accounts for energy conservation.

Then the scattering rate corresponding to phonon
emission can be written

fi q =o e=o y=o (2')3
X6(s' —a+A'co)q sin9dOdg dq,

(B2)

where U is the crystal volume and q the modulus of the
phonon wave vector. Here the summation is performed
over the spherical coordinates, q, 0,$ with the k direction
taken as the z axis.

Usually the scattering rate 1/7
p

relevant to polar-
optical-phonon emission is calculated for carriers with
wave functions of s symmetry in a parabolic conduction
band of effective mass m6. In this case, the matrix ele-
ment ~H,'f ~

of the perturbing potential depends on q only
through its modulus ~H f~ =D/q, where D is a con-
stant. Then, the integration over 0 can be first carried
out and yields

(B3)
m6I(k+q)= J 5(s' —s+iiico)sin8dH= for k[1 —(1—A'coo /s)' ](q (k[1+(1 ficoo /s)' ], —

0=0 A kq
Op Op

I(k+q) =0 out of this q range . (B4)

Considering the polar-optical-phonon energy Ace as
independent of q, the summation over q leads to the ex-
pression of the emission rate for electrons of kinetic ener-

gy c~kco, :

where ~o is a characteristic time constant.
Let us now assume that the variation of the electron

wave-vector modulus Ak =k' —k is small when com-
pared to k. Then we can write

1/~, =(1/ro)(A'co, /s)' sinh '[(s/irico, ) —1]' c.
' —c.=V„c.hk (B6)

(B5) where Ak=q. From this expression we obtain for an iso-
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tropic conduction band

E' —8+ fico= fivGq [cos9+ q /2k]+ fico . (87)
1 1 P y'ii 3 q &coop

Av~ ~o q 2k Av~q

a6 =1—c6 and b6 =0 .

In the framework of this approximation, following the
treatment of Fawcett, Boardmann, and Swain, the ma-
trix element of the perturbing potential can be simply
written

H „~ =(D/q )[a6+c6cosO']

where 0' is the angle between k and k'.
Using Eqs. (88), we obtain

~H f~ =(D/q )[1—2c6(1—c6)(1—cos8')

(89)

—(2c 6 /3 )3( 1 —cos 8') /2] . (810)

For small kinetic energies, i.e., small values of k, c6 is
much smaller than a6 ', i.e., a6=1 and c6=0). Then, the
terms proportional to c6 in Eq. (810) yield significant
contributions in the expression of the scattering rate
when Ak is much smaller than k, i.e., k =O'. In this case
we can use in Eq. (810) the relation

1 —cosO'=2cos 0 . (811)

According to Eq. (87), from energy conservation we ob-
tain

It is therefore clear that, contrary to Eq. (85), the expres-
sion of I/r, that will be obtained using Eq. (87) after in-

tegration over 0 and q will not depend explicitly on c but
on the electron group velocity UG and k.

When taking into account the conduction-band non-
parabolicity, it is also necessary to consider conduction
wave functions which are not of s symmetry which intro-
duces an angular dependence in the matrix element ~H,'& ~.

We will use the definition of the wave-function
coefficients a6, b6, and c6 of the conduction states given
by Kane in a k.p perturbation model of the band struc-
ture. These coefficients describe the band hybridiza-
tion. As shown in Ref. 29, when the spin-orbit coupling
energy b, is smaller than the band-gap energy Eo (which
is the case for InP), it is a very good approximation to
write

Acoo
X 1 q+ 'P

2k fivgq
dq (816)

q, =k[1+(1—A'co, /s)'~ ] .

These expressions are obtained after the summation over
I9:

2kI(lt+q) =f 5 A'uGq cos8+ +fico .sine de
0=0

1

AUGq

The last two terms in Eq. (810) are, respectively, pro-
portional to P, (l) P, (c so8'—) and to P2(1)—Pz(cos&'),
PI and P2 being the first and second Legendre polynomi-
als. Then, in the case where hybridization is not con-
sidered, I /ri and I/r2 also describe the relaxation of the
anisotropic part of the distribution, while 1/~o is the
scattering rate which diA'ers from the expression of Eq.
(85) by the fact that the variable which appears explicitly
is AU~ k instead of c.

As mentioned before, the terms which depend on c 6 in
the expression of I /r, [Eq. (813)] are of significant order
of magnitude when the kinetic energy is not too small.
Then, assuming that this is the case when (fico, /fivGk ) is
small with respect to unity, among these contributions we
only retain, after integration over q, those proportional to
(1—2A'co /A'uGk )', which ensure that the final formula
remains a good approximation of 1/~, close to the zone
center. In the framework of this assumption, 1/zl and
1/~z are given by

1/ri =—', (I/r2)

The quantity P is the real momentum matrix element be-
tween valence and conduction states defined by Kane,
the boundaries of the integration over q are

qo=k [1—(1 fico, /—E)'~ ]

1 —cos8' =2[(q /2k) + (iiico,p/A'vGq ) ] (812)
= (1/r* )(PlfiuG )(1 2fico, Ifiuak )'— (818)

Then the scattering rate is given by

I /r, = 1/ro —2c 6 ( 1 —c 6 )( 1/r, ) —(2c 6 13 )( 1/ri ), (813)

where

and, Anally, we obtain

I /r, p=(1/r*)(P/A'uG )

X jsinh '[(A'uGk/2iiico, „)—I]'~
—2c 6 ( 1 —c 6 /2)(1 —2A'co, p/fiuG k)'

1 1 P 'i lddq

T 2
1 1 P 'i& 1 q +

Avg ~0 q 2k A'voq

(814)

(815)

(819)

In order to solve numerically the transport equation in
Sec. VB of the main text, we have used approximate ex-
pressions of the kinetic energy c and wave-function
coefficients a6, b6, and c6 of the conduction band given in
Ref. 29:
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e = —6'*,s/2+ 6 i,
a6 =(1—c6)= —,'(1+@;a/26'),

where B,*tt=EG+5/3 and

6', =[(6;a/2) +(kP) ]'

(820)
Using Eqs. (820), it is readily shown that Eq. (87) still
holds when 6k=k. It is also clear that the terms de-
pending on c6 are of significant order of magnitude only
when Avok is several times larger than Ace,p

Then the
expression of the polar-optical-phonon emission rate
given by Eq. (819) is valid all over the central I valley,
including the low-energy range.
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