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A theoretical model has been developed to investigate the effect of nonequilibrium phonons or hot
phonons on the energy-loss rate of hot carriers in semiconductors in the extreme quantum limit at low
temperatures. The acoustic-phonon scattering via the deformation potential and piezoelectric scattering
are assumed to be the dominant scattering mechanisms at low temperatures. The model includes band
nonparabolicity, energy nonequipartition of phonons, Landau-level broadening, and classical free-carrier
screening. The energy-loss rates of hot electrons with nonequilibrium phonons as well as the thermal
phonon distribution have been calculated using the above-mentioned model for n-type InSb. These
theoretical results have also been compared with experimental results for n-type InSb at B=3 T and
T; =4.2 K. The energy-loss rate with the thermal phonon distribution is found to be much higher than
the experimental result. The energy-loss rate of hot electrons calculated with use of the nonequilibrium
phonon distribution with phonon boundary scattering is reduced compared with the values of the
energy-loss rate obtained with use of the equilibrium phonon distribution. The incorporation of none-
quilibrium phonons brings the theoretical results into agreement with the experimental data, giving a
reasonable value for the phonon lifetime. However, the phonon lifetime required to fit the experimental
data is found to be much higher than the values obtained from phonon boundary scattering. This
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discrepancy may be attributed to the acoustic-phonon mismatch factor.

I. INTRODUCTION

Hot-electron transport in semiconductors has attracted
many authors! for investigations in view of the applica-
tions in solid-state devices. The application of a quantiz-
ing magnetic field to a semiconductor makes hot-electron
transport more interesting because of the quantum nature
of the electron gas. Yao, Inagaki, and Maekawa? made
an experimental investigation on energy relaxation time
in n-type InSb in the extreme quantum limit at B=3 T
and T, =4.2 K. A theoretical analysis of the energy-loss
rate in n-type InSb would be interesting for understand-
ing the basic energy-loss mechanisms controlling hot car-
rier kinetics in this technologically important material.
In the presence of a strong electric field, the electrons
gain energy from the electric field which exceeds the
thermal energy of the electrons. Thus the carrier system
becomes disturbed from equilibrium and may be charac-
terized by a temperature different from the lattice tem-
perature. The energy gain is mainly dissipated via pho-
non emission and nonequilibrium phonon distribution is
obtained as a result of energy transfer to the lattice when
the electron system is far from equilibrium. The
modification of phonon distribution will depend on the
rates at which carriers supply energy to the phonons
compared with the rate at which phonons lose the excess
energy to the thermal bath. The modified phonon distri-
bution will be different from the Bose-Einstein (BE) dis-
tribution and it will affect the transport properties of hot
electrons significantly. The effect due to the modified
phonon distribution is also called the hot-phonon effect.
In this paper, a theoretical model has been developed to
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calculate the energy-loss rate of hot electrons in narrow
gap semiconductors in the extreme quantum limit assum-
ing an electric-field-dependent perturbed phonon distri-
bution, i.e., a nonequilibrium phonon distribution due to
the presence of the high electric field.

The model is used to study the effect of a nonequilibri-
um phonon distribution on the energy-loss rate in n-type
InSb at low temperatures. Acoustic-phonon scattering
via the deformation potential and piezoelectric coupling
are considered as the dominant scattering mechanisms
for the present calculation. The model also includes fur-
ther complexities such as band nonparabolicity, Landau-
level broadening due to electron-impurity interactions,
and nonequipartition of phonons. The effect of classical
free carrier screening has also been included in the
analysis. It has been shown* that the free carrier screen-
ing in the presence of a quantizing magnetic field is not
given by the classical Debye screening length. The effect
of a quantizing magnetic field is to modify the classical
free carrier screening into a magnetic-field-dependent an-
isotropic screening parameter. However, it is found that
the modified quantum screening due to magnetic quanti-
zation does not affect the hot-electron energy-loss rate
significantly.® Hence, the classical screening has been in-
cluded in the model. Since the lattice temperature is not
well defined in the presence of a nonequilibrium phonon
distribution, the temperature 7, mentioned in the model
is the ambient temperature.

The model has been used to calculate the theoretical
energy-loss rate of hot electrons with nonequilibrium
phonons as well as the thermal equilibrium phonon distri-
bution in n-type InSb. These results have also been com-
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pared with the experimental energy-loss rates obtained by
Yao, Inagaki, and Maekawa® at B=3 T and T, =4.2 K.
The calculation based on the present model has been ap-
plied in the low-temperature region because of the availa-
bility of the experimental results at low temperatures.’
The effect of longitudinal-optical (LO) phonons has not
been included in the analysis due to low temperatures.
However, the model can also be applied in the high-
temperature region including the LO-phonon scattering
in a straightforward manner in Eq. (3). The present
analysis of the energy-loss rate of hot electrons in the ex-
treme quantum limit has been performed due to the sim-
plicity of the results because of the absence of oscillatory
effects. The oscillatory effect may arise because of inter-
Landau-subband scattering.

The theoretical results with the thermal equilibrium
phonons are found to be much higher than the experi-
mental energy-loss rate. We consider that this discrepan-
cy is due to the perturbed phonon distribution or none-
quilibrium phonon distribution. When we take into con-
sideration the hot-phonon effect or nonequilibrium pho-
non effect with the phonon scattering lifetime for acous-
tic phonons given by the boundary phonon scattering,®
the theoretical values of the energy-loss rate are reduced
compared with the thermal phonon values.

At very low temperatures, the phonon mean free path
becomes comparable to the sample dimensions and the
phonons are scattered from the boundaries of the sample
in a time Ty =L /u, where L is the shortest dimension of
the sample and u is the acoustic sound velocity. The
quantity 7, is also called the phonon lifetime. There are
other phonon scattering processes contributing to pho-
non relaxation processes, such as phonon-phonon scatter-
ing in addition to phonon boundary scattering. A
relaxation-time approximation for the phonon scattering
is assumed in the present model.”~? It is found that the
incorporation of nonequilibrium acoustic phonons brings
the theoretical results on the energy-loss rate into agree-
ment with the experimental data, giving a reasonable
value for the phonon lifetime. However, the phonon life-
time obtained from the boundary scattering is found to be
less than the value required to fit the experimental data.
The difference in the phonon lifetime to fit the experi-
mental results and the value obtained from the phonon
boundary condition may be attributed to the acoustic-
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phonon mismatch factor.” The acoustic-phonon
mismatch factor in the boundary scattering originates
from the boundary losses.”® It is primarily determined
from the reflections and transmissions of elastic waves at
the boundary between the crystal and the surrounding
medium.

We present the theoretical formulation in Sec. II and
the results and conclusions in Sec. III.

II. THEORETICAL FORMULATION

We consider a nonparabolic, spherically symmetric
conduction-band semiconductor. We assume a strong
quantizing magnetic field B in the z direction so that this
field quantizes the energy levels and causes the electrons
to occupy the lowest Landau-level subband. This is the
extreme quantum limit condition. We also assume a
heating electric field applied in the z direction, i.e., the
direction of B. The energy dispersion relation for these
electrons in the conduction band can be written as'®

E, E #k?
E=—"8 4804 2 M
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where E is the electron energy, E, the band-gap energy, 7
Planck’s constant divided by 2, k, the z component of
the electron wave vector, m* the band-edge effective
mass, and
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the nonparabolicity factor which tends to unity for the
parabolic band semiconductor. In Eq. (2) o, =eB/m*, e
being the electronic charge, m, the free-electron mass,
and |g| the spin-split g factor.

The electrons in the conduction band gain energy con-
tinuously from the applied electric field. But this energy
gain is balanced by the energy loss of the electrons due to
scattering with the lattice in the steady state. We assume
that the electron gas behaves as a nondegenerate electron
gas which obeys the displaced Maxwellian distribution
with electron temperature 7T, in the presence of a heating
electric field. Thus the energy-loss rate per electron due
to the scattering with the lattice can be written as!!

(m*ao)l/Zw m*a u2 - - a’q 12 2 ﬁZ 2 m* u2 2

- 1/2 eXp |~ - f Q1d41f —=C;|fi(@)exp | — o % - nE g

w(2wky T, )1, 2kgT, 0 0o g, 2 8m*apky T, 2kpT, gq
X[(Ng +1)exp(—v,)—Ngexp(v,)], (3)

where kj is the Boltzmann constant,  is the sound veloc-
ity, I =(#/eB)'/? is the Landau radius, ¢, and g, are the
longitudinal and transverse components of the phonon
wave vector g, respectively, v, =#iw,/2ky T,, C;| f:(g)|* is
the coupling constant due to electron-phonon interaction
which depends on the free carrier screening, and

fio,=ruq=huq,(1+q2/9%)"/? is the acoustic-phonon

energy. The term qzz/q} in the expression of #iw, is very
small and its effect on the energy-loss rate calculation is
negligible, so it is neglected. Hence, fiw,=%ug, =#u /I°
[because g, ~1/1]. In Eq. (3), Np represents the phonon
occupation number in the respective cases of thermal and
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nonequilibrium phonon distributions.

The coupling constant for the acoustic-phonon scatter-
ing via deformation potential with classical screening is
given by!?

1 Cacd
[1+¢2/q*1* "’

where C,,=E?%#/2pu,, g, is the inverse Debye screening
length, E, is the deformation-potential constant, p is the
mass density, and u . is the acoustic sound velocity.
Similarly, the coupling constant for the piezoelectric
scattering with classical screening can be expressed as

Clfi(gl 4)

C
C.lf 2= P2 5
i1 fi(q)] a(1+a2/a' ] (5

where
—22,2,2 2.2
C,=Meei,/2pu,€ie;

ey is the piezoelectric modulus, u, is the piezoelectric
sound velocity, and €, is the dielectric constant of the
material.

Now, we use Egs. (4) and (5) in Eq. (3) and make the

following substitutions:
#u?
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Then the energy-loss rates per electron for acoustic
scattering via the deformation potential and piezoelectric
coupling are given by

P,.=[(Ng+1exp(—v,)—Ngexp(v,) |W,,
® dv
Xfo faclvlexp(—v)= ©6)

and

P,,=[(Ng+1l)exp(—v,)—Ngexp(v,)]W

pz
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Xfo fpz(v)exp(—v)T N (7)
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_ (m*ay)'*Eiw, exp _ m*agul ®
ac 8‘rr(kBTe)1/213puac 2kBTe >
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X[1+(Bv+a,)/uy] 2. (11)
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In obtaining Egs. (6) and (7) from Eq. (3), the integrals
over u are simplified by assuming the functions
(14Bv /ug)[1+(Bv+a,)/uy] ™2 and (1+Bv /uy)/?(1
+(Bv+a,)/ug]”? to be slowly varying functions of u,
and taken outside the integral by putting
u=uy/2=11%g% ~1. This approximation can be justified
for the extreme quantum limit condition.” The functions
factv) and f,(v) in Egs. (9) and (10) are also slowly vary-
ing functions of v, so they can be taken outside the in-
tegral by taking the maximum value of v as unity. The
energy-loss rates P,. and P, show a divergence at v =0
or g, =0. This divergence may be overcome if we consid-
er the effect of Landau-level broadening due to electron-
impurity interactions. This corresponds to taking the
lower limit of the integral as E, /4kgT,, where E, is the
cutoff parameter and it measures the Landau-level
broadening. The cutoff parameter E, is obtained from
the measurements of the damping constant of
Shubnikov—-de Haas oscillations of magnetoresistance
and it depends on the magnetic flux density B as B2/3.13
Thus the general expression of the energy-loss rate can be
expressed in the following manner:

P=q[(Ng +1)exp(—v,)—Ngexp(v,)] . (12)

The corresponding energy-loss rates due to acoustic-
phonon scattering via the deformation potential and
piezoelectric coupling can be written as

P, .=a,[(Ng+1exp(—v,)—Nrexp(v,)] (13)
and
P, =ay,[(Ng +1)exp(—v,)—Ngexp(v,)], (14)
where
B Te
Qe = Wacfacln exp(—C)
c
and
o, =W, fpIn “exp(—C)
(4

Here C is Euler’s constant and f,.(v) and f,(v) are cal-
culated at v =1 and Egs. (13) and (14) are the expressions
of the energy-loss rates both for the thermal and the
nonequilibrium phonon distributions. To get the expres-
sions of the energy-loss rates for the nonequilibrium pho-
non as well as for thermal phonon distribution, we must
obtain the phonon occupation number Ny in the respec-
tive cases.

A. Nonequilibrium phonons

First we consider the case of a nonequilibrium phonon
distribution In this case the phonon occupation number
can be obtained in the following manner.

For a nonequilibrium phonon distribution the energy-
loss rate per electron can be written as
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where ng is the carrier density, V is the crystal volume,
g2,=1/1%, and #%ql,/2m*a,=4kyT,. The term
(ONg /3t), in Eq. (15) represents the rate of generation of
phonons due to hot electrons in the steady state, and it
can be written as®

aNR __NR _NO
ot = ) (16)

e Tp

where Np and N, are the nonequilibrium and thermal
phonon occupation numbers, respectively. The right-
hand side of Eq. (16) represents the rate of loss of pho-
nons with phonon lifetime 7,.

Hence, from (15) to (16), we obtain

Np—N, _ 2V 2m2n,l?
T

P
» wo(m*ao)l/z(kBTe)1/2

(17)

Combining Egs. (12) and (17) we get

aar,exp(—v,)+N,

Np= , 18
R aart,[exp(v,)—exp(—v,)]+1 18
where
2V 270, l?
a:

oy m*aykyT, )2

Equation (18) represents the phonon occupation number
for nonequilibrium phonon distribution where 7, is the
phonon relaxation time given by the phonon boundary
scattering. Substituting a=a,, and a=a,, in Eq. (18),
where a,. and a,, are constants dependent on material
parameters given in Egs. (13) and (14), we obtain the pho-
non occupation numbers for the acoustic-phonon scatter-
ing via the deformation-potential and piezoelectric cou-
pling, respectively. Now, we substitute the correspond-
ing phonon occupation numbers in Egs. (13) and (14) to
get the energy-loss rates for acoustic-phonon and
piezoelectric scattering.

B. Thermal phonons

When we consider the case of thermal phonons, the
phonon occupation number Ny is obtained from the BE
statistics, i.e., Ng=[exp(#iwy/kzT;)—1]"'.  For
thermal phonon distribution, the phonon occupation
number is obtained from Eq. (17) in the limiting value of
7,—0. So, the energy-loss rates due to acoustic-phonon
scattering via the deformation potential and piezoelectric
scattering with thermal phonons are obtained by putting

_1]"

Ngx=N,=

in Egs. (13) and (14).
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II1. RESULTS

The numerical results on the energy-loss rate of hot
electrons are obtained for n-type InSb at B =3 T and
T;=4.2 K. The material parameters for n-type InSb
(Refs. 14 and 15) are given below:

m*=0.014m,, E,=0.24 eV, p=5.8X10°kgm™?,

lgl=47, u,,=3.74X10*ms™!, E;=7.2¢V,

e14=0.06 cm™?, u,=2.8X10°ms™', €=15.68,
ny=1.07X10* cm™*, E,=0.1 meV .

The cutoff energy E, required for the present calcula-
tion is not known accurately. However, it must be com-
parable to the thermal energy and is taken to be 0.1 meV
at B=3 T and T; =4.2 K in agreement with other mea-
surements.!®!7 The energy-loss rate [Eqgs. (13) and (14)]
depends on E_. logarithmically. So the calculated loss
rates are insensitive to the uncertainty in the value of E.

The theoretical results for energy-loss rate with the
nonequilibrium phonon distribution are presented along
with the theoretical results for thermal phonons. These
results are also compared with the experimental results
and shown in Fig. 1. The theoretical results in Fig. 1 as-
sume the combined effects of acoustic-phonon scattering
via the deformation potential and piezoelectric coupling
and the boundary phonon scattering for phonon relaxa-
tion in the case of the nonequilibrium phonon distribu-
tion. It is found from Fig. 1 that the theoretical results
for thermal phonons are much larger than the experimen-
tal loss rates. However, the inclusion of nonequilibrium
phonons lowers the theoretical value and brings it closer
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FIG. 1. Variation of the energy-loss rates in n-type InSb at
B=3T and T; =4.2 K as a function of electron temperature.
Curves 4 and B represent the theoretical results with thermal
and nonequilibrium phonon distributions, respectively, while
curve E represents the experimental results.
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to the experimental results. The phonon lifetime is ob-
tained assuming L to be the shortest dimension of the
sample, which is 0.052 cm. The average phonon lifetime
required to fit the experimental data is found to be 1614
ns, which is quite large compared to the phonon lifetime
obtained from the phonon boundary scattering. This
discrepancy in the phonon lifetime may be attributed to
the acoustic-phonon mismatch factor’ in semiconductors
and the uncertainty in the material parameters. In addi-
tion there may be other phonon relaxation processes.®
Furthermore, we have also investigated the effect of in-
dividual scattering mechanisms on the energy-loss rate of
hot electrons with thermal and nonequilibrium phonon
distributions. The energy-loss rates due to acoustic-
phonon scattering via the deformation potential and
piezoelectric coupling assuming the phonon boundary
scattering with the shortest dimension of the sample are
presented in Fig. 2 for the thermal phonons and none-
quilibrium phonons, respectively. These theoretical re-
sults are also compared with the experimental results in
Fig. 2. It is observed that the energy-loss rates due to
piezoelectric scattering show better agreement with the
experimental results in comparison with the acoustic-
phonon scattering via the deformation potential. The
phonon lifetime in the case of piezoelectric phonon
scattering obtained from the boundary scattering is 184.7
ns, which is slightly higher than the phonon lifetime for
acoustic-phonon scattering via the deformation potential.
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FIG. 2. Variation of the energy-loss rates in n-type InSb at
B=3T and T; =4.2 K as a function of electron temperature.
Curves A4 and B represent the energy-loss rates due to acoustic-
phonon scattering via the deformation potential with thermal
and nonequilibrium phonon distributions, respectively, while
curves A’ and B’ represent the same due to piezoelectric
scattering. Curve E represents the experimental loss rates.

The present work also suggests that measurements of
the energy-loss rate in semiconductors may be useful in
investigating phonon relaxation processes in semiconduc-
tors in addition to electron-phonon interactions in semi-
conductors.
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