
PHYSICAL REVIEW B VOLUME 47, NUMBER 7 1S FEBRUARY 1993-I

Ab initio calculation of phonon dispersions in II-VI semiconductors
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The vibrational properties of ZnSe, ZnTe, CdSe, and CdTe are determined by density-functional per-
turbation theory. To this end we have generalized this method so as to explicitly account for the non-
linear core correction to the exchange and correlation energy of systems treated with pseudopotentials.
Furthermore, we have implemented a method to enhance the transferability of pseudopotentials of
group-II atoms with shallow d electrons frozen in the core. The accuracy obtained in this way is similar
to that previously achieved for elemental and III-V semiconductors.

Much attention is presently being paid to II-VI semi-
conductors and their alloys, especially because of their
applicability to designing heterostructures which look
very promising for optoelectronic applications in noncon-
ventional frequency ranges. ' Understanding the vibra-
tional properties of these systems is important per se and
for characterization purposes: this requires in turn an ac-
curate knowledge of the bulk phonon dispersions of pure
materials.

Density-functional theory (DFT) within the local-
density approximation (LDA) has been shown to be able
to describe very accurately the structural and lattice-
dynamical properties of covalently bonded materials us-
ing pseudopotentials and plane-wave basis sets. In the
framework of density-functional perturbation theory
(DFPT), ' it has been possible to calculate phonon fre-
quencies, dielectric constants, piezoelectric constants,
effective charges, and other properties of elemental and
III-V semiconductors with an accuracy of a few per-
cent. '

The extension of these methods to II-VI semiconduc-
tors is not straightforward, the most serious problem be-
ing the presence of cation d electrons with energies of the
order of 10 eV below the cation s electrons. The d elec-
trons form a Aat band whose energy is higher than the
anion s band, and therefore they should be considered as
valence electrons rather than frozen in the core: all-
electron calculations have indeed shown important con-
tributions to bond formation by these electrons. The in-
clusion of localized d electrons in the valence shell is a
major problem within the usual plane-wave (PW) formal-
ism, because their wave functions cannot be expanded in
a PW basis set of any reasonable size.

Two main reasons prevent shallow d electrons in II-VI
materials from being straightforwardly frozen in the core:
(i) Their spatial extension is large enough to determine a
sizeable overlap with valence s electrons, thus making the

linearization of the exchange-correlation (XC) energy
with respect to the valence (s) and core (d) contribution
questionable. (ii) Their small binding energy makes their
wave functions dependent on the chemical environment,
thus invalidating the frozen-core approximation which
seems to underlie the pseudopotential method. A remedy
for the first problem has been suggested a few years ago
by Louie, Froyen, and Cohen, and it is currently known
under the name of the nonlinear core correction (NLCC).
The idea is to evaluate the XC energy using the total—
rather than Ualence —charge density: this is achieved by
adding the frozen-core charge to the self-consistent
valence charge. As for the second problem, it is worth
mentioning that the frozen-core ansatz is not strictly
needed for the pseudopotential approximation to be val-
id. As a matter of fact, the NLCC has been recently ap-
plied to II-VI semiconductors " with encouraging re-
sults.

A nontrivial feature of the NLCC must be pointed out.
When adopting a pseudopotential approach, one divides
the total energy of the system as a core energy, a valence
energy, and a core-valence interaction energy: the latter
term is precisely the one whose accuracy is improved
within the NLCC. As for the core energy, one wants this
term to be a constant independent of the geometry, hav-
ing the meaning of the core energy of isolated ions: such
a requirement is particularly important when evaluating
forces (as it is done here) or stresses (as in Ref. 10). It is
straightforward to realize that the core energy of a con-
densed system fulfills such a requirement only if the core
charges do not overlap: this in fact occurs for the binary
systems studied here, when the core charge of cations
only are retained in the calculation, while ordinary
norm-conserving pseud opotentials are used for the
anions. This is nonetheless enough to correctly account
for d-electron eftects.

In this work we generalize DFPT to the case where
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atoms are treated by the NLCC: when atoms are dis-
placed, the valence charge density responds in this case
to both displacements of the pseudopotential and of the
core charge. As an application, we calculate the phonon
spectra of ZnTe, ZnSe, CdTe, and CdSe in the zinc-
blende phase. In order to achieve an accuracy similar to
that previously obtained for elemental and III-V com-
pounds, it proved useful to generate the NLCC pseudo-
potentials according to a scheme which partially ac-
counts for the relaxation of d electrons by using more
than one atomic reference configuration.

The basic quantities in lattice dynamics are the har-
monic force constants, i.e., the second derivatives of the
crystal energy with respect to the displacement of atoms
from their equilibrium positions: these derivatives are
simply related to the linear response of the valence
charge to the perturbation. We show here how the
scheme proposed in Ref. 4 to calculate the dynamical
matrix at arbitrary wave vectors is generalized to the
framework of the NLCC. We simplify the notations us-
ing local pseudopotentials, even if the calculations are ac-
tually performed using nonlocal pseudopotentials; the
generalization of the following expressions to the nonlo-
cal case is, however, straightforward. The starting point

is an extension of the Hellmann-Feynman theorem' to
the case where the XC energy depends explicitly—
through the core charge —on the atomic positions u, .
For the sake of simplicitly, let us limit ourselves to the
LDA from now on; in this case Hellmann-Feynman
theorem reads

aE... aE,.„ i}V, (r)+ p, (r) dr
Oils 8Us BU

i}p,(r)+ J pxc(p(r)) dr,
BU

w ere E;,„ is the ionic electrostatic energy, V, is the
bare ionic pseudopotential of the crystal, p„p„and p
are the valence, core, and total charge densities respec-
tively, and pxc(p(r)) is the functional derivative of the
XC energy with respect to the density which —within
NLCC-LDA —is an ordinary function of the total (core
plus valence) charge at point r. The first two terms give
the usual expression for the force acting on the atom s,
while the third one is the NLCC contribution. Further
differentiation of Eq. (1) with respect to atomic positions
leads to the desired harmonic force constants:

TABLE I. Comparison between theoretical predictions and experiments for the lattice constant (ap),
bulk modulus (Bp), dielectric constant (e ), eA'ective charge Z*, and zone-center transverse-optic fre-
quency (coTo). "BHS" indicates calculations made with the pseudopotentials of Ref. 14 without any
NLCC; "NLCC~" indicates calculations including the NLCC and single-configuration pseudopoten-
tials; "NLCC2" is the same as "NLCC&," but with multiconfiguration pseudopotentials (see text).
LAPW indicates all-electron data from Ref. 6. Theoretical data are obtained with a 16-Ry kinetic-
energy cutofF'.

ZnSe BHS
NLCC
Expt.

ap
(a.u. )

10.04
10.70
10.72'

Bp
(Kbar)

798
650
625'

5.9
6.3
6.3

Zg

1.78
2.01
2.03'

coTo

(cm ')

238
219

Zn Te BHS
NLCC
LAPW
Expt.

10.46
11.47
11.44
11.50'

713
520
521
509'

7.7
7.7

73

1.54
1.95

2.00'

228
188

177

CdSe BHS
NLCC)
NLCC2
Expt.

10.16
11.43
11.48
11.50'

935
636
571
550'

5.4
6.2
6.2
6.2b

1.69
2.14
2.20
2.30'

229
197
187

CdTe

'Reference 6.
Reference 19.

'Reference 21.
"Reference 22.
'Reference 16.
'Reference 17.

BHS
NLCCl
NLCC2
LAPW
Expt.

11.12
12.14
12.19
12.23
12.24'

666
499
453
440
445'

6.7
7.0
7.2

1.67
2.08
2.17

2.35'

182
161
152

141'
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~ Etot

Us~us'

a'E,.„, B Vp, (r)+ fp, (r) dr
BUsBUs BUSBQS~

f op, (r) av „,(r)
Us' ~u

Bp, (r) Bp, (r)+ pxc p I dr
BUS BU

a p, (r)+ fVxc(p(r» ~ ~

where we have defined

BVb„,(r)
BU

8 V~, (r) Bp, (r)+Axe(p(
Us BU

(3)

VI(r)= — erf(Q o, r) +(a& +b&r )e (4)

where Z, is the valence charge of the atom. The parame-
ters a„o.I, a&, and bI are then determined by minimizing
the squared differences between valence orbital energies

and pxc(p) is the derivative of the XC potential with
respect to the electron density.

From Eq. (2) it is evident that —even including the
NLCC —only the linear variation of the valence charge
density induced by an atomic displacement is required in
order to evaluate the harmonic force constants
Whenever the core charge p, is neglected, the force con-
stants reduce to those of Ref. 4, while its contribution to
Eq. (2) is twofold: (i) the explicit appearance of the last
two terms which are absent in the original expression;
and (ii) the modification of the bare perturbation inducing
the valence density variation, as in Eq. (3). These two
modifications can be easily implemented in the DFPT ap-
proach of Ref. 4.

Norm-conserving pseudopotentials have been generat-
ed using a scheme originally proposed by von Barth and
Car. ' In this scheme, the semilocal potentials are as-
sumed to depend on a few parameters. The usual choice
is

and radial wave functions (beyond some core radius r, )

resulting from a self-consistent all-electron calculation
and a pseudopotential one, made using Eq. (4). If the
NLCC is considered, the core charge is also fitted to an
analytical expression of the form:

2

p, (r)=(a„+b„r )e

and used consistently in the generation of the pseudopo-
tential. The pseudopotentials so generated have been
tested by calculating a few structural, dynamical, and
dielectric properties of the four compounds studied in
this work. The data reported in Table I show that the in-
clusion of the NLCC determines a dramatic improvement
in the agreement between theory on one side and all-
electron calculations and experiment on the other side,
with respect to calculations made using pseudopotentials
available in the literature' which do not include any
effects from the NLCC. This improvement, however, is
not sufhcient to bring the quality of the calculation to the
level of accuracy achieved by pseudopotential DFT-LDA
calculations for elemental and III-V semiconductors.
This is particularly so for Cd compounds for which the
electronic structure of the outermost d sheH depends
more sensitively on the valence configuration, and pseu-
dopotentials generated from a single configuration are ex-
pected to be less transferable. In order to improve the
transferability of Cd pseudopotentials —while maintain-
ing the d electrons frozen in the core—we have modified
the von Barth —Car scheme described above: instead of
minimizing the squared differences relative to a single
configuration, we minimize the weighted sum of the
squared differences relative to several configurations. Of
course, the very fact that pseudopotentials generated for
one configuration are not accurately transferable to other
configurations implies that the quality of the results could
depend somewhat on the choice of the configurations and
weights. The intrinsic arbitrariness of these pseudopo-
tentials is therefore wider than usual, and their value can
only be assessed by comparing theoretical predictions
with experiments. The electronic configurations used for
pseudopotential generation in this work are: s p d' for
Se and Te; s'p d for Zn; and s (I), s'p ' (0.2), and
s'p d (0.5) for Cd. In the latter case, the numbers in

TABLE II. Pseudopotentials generated and used in this work. For a definition of the symbols, see
Eqs. (4) and (5).

CC

Se

Te

0.6808
0.0741
0.0460
0.4595
0.0423
0.0165

0.9458

0.7491

0.8734

0.7510

0.9270
5.6826

—2.1774
0.8439
8.8803

—3.2504
1.3679

10.3230
—6.7581

1.1954
14.0290

—S.8013

0.4563
1.1907

—0.2317
1.1656

13.543
—3.8335

1.0738
3.9141

—2.0456
0.9454
8.5579

—2.6530

0.5314
—0.0582

0.3442
0.6806
0.2229
1.9983
0.9796

—0.0030
0.1652
1.0107

—0.6370
3.0227



47 AB IMTIO CALCULATION OF PHONON DISPERSIONS IN. . . 3591

ZnSe

250 ~
200 "-

100
50

ZnTe
200 "-

E 150-
100
50

CdSe
200
150

U 100
50

CdTe
200-

O—100
3 50

K X L X W L

FIG. 1. Calculated phonon dispersions of ZnSe, ZnTe, CdSe,
and CdTe. Triangles indicate experimental data from Refs. 22
(ZnSe), 16 (Zn Te), and 17 (CdTe).

parentheses are the weights of each configuration used, as
explained above. The parameters of the resulting pseudo-
potentials are reported in Table II, together with the core
charge parameters.

The theoretical NLCC-LDA phonon-dispersion rela-
tions of ZnSe, ZnTe, CdSe, and CdTe along several sym-
metry lines are shown in Fig. 1; these are compared to
the neutron-difFraction data, wherever available. The
agreement between the present calculations and the ex-
perimental data is of almost the same quality as previous-
ly obtained for elemental and group III-V semiconduc-
tors: this gives us confidence in the reliability of the ap-
proximations used, in particular when low-symmetry

crystal distortions are involved; the same level of accura-
cy (or order of 10 cm ') is expected from our predictions
where the neutron data do not exist.

Our first-principles calculations, which are essentially
parameter free, agree with experiments in a similar
manner as previous semiempirical models depending on
many adjustable parameters. ' ' ' Some difFerences still
exist, for instance concerning the TO branch of CdTe
which is predicted to be Oat in the present calculation,
whereas it bends upwards according to the shell model of
Ref. 17. In a recent paper' it has been suggested that the
LO branch of ZnSe along some symmetry line should be
rather Aat, with a zone-edge frequency very close to the
LO(I ) frequency. Our calculations do not seem to sup-
port such a suggestion.

The case of CdSe deserves a special comment. In its
most common form, it crystallizes in the wurtzite struc-
ture, whose parameters are almost ideally tetrahedral.
The LO(I ) frequency measured' on the wurtzite phase is
209—211 cm ', in good agreement with our theoretical
zinc-blende-phase value of 222 cm '. Very recently,
however, an experimental value of 201 cm ' for the
zinc-blende phase has been inferred from Raman-
scattering measurements on superlattices.

In this paper, we have shown how phonon dispersions
of II-VI semiconductors can be obtained from first princi-
ples with essentially the same accuracy as in III-V and
elemental semiconductors, and with virtually no further
numerical eft'ort. Neutron data are less informative for
ZnSe and CdSe, where recent experiments of a diFerent
kind exist: our calculations show larger disagreements in
this case, which we attribute to the rather indirect deriva-
tion of these data from superlattice or thin-layer mea-
surements. A definite assessment of this issue, however,
should require further experimental and theoretical in-
vestigations.
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