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Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy
in polar semiconductors
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A recently developed quantum kinetic description for the electrons in a two-band polar semiconductor
coupled to LO phonons and excited by a femtosecond laser pulse is extended to include excitonic effects.
Our numerical treatment yields a description of the relaxation of the electron-hole pairs which is valid
on a time scale where the semiclassical Boltzmann description is no longer applicable. Oscillations with
the period of the LO lattice oscillation are superimposed on the resulting polarization decay under exci-
tation close to the band edge. The polarization oscillations are quantum beats between the direct inter-
band transitions and their LO-phonon sidebands. The non-Markovian quantum kinetics is shown to
yield, in contrast to the corresponding nonretarded kinetics for weak, nonresonant, stationary excitation,
an Urbach absorption tail which is approximately exponential over several orders of absorption as
universally observed in polar semiconductors.

I. INTRODUCTION

Both in transport theory' for semiconductor micro-
structures with their high electric fields and in theory of
semiconductor ultrashort-pulse spectroscopy, one
needs a kinetic theory beyond the traditional Boltzmann
kinetics with energy conservation for each of its succes-
sive, completed collisions. Quantum kinetic equations of
rather similar structure have been derived with reduced
density matrices' ' and with nonequilibrium Green's
functions. ' ' Common to all these quantum kinetic
equations is that the energy conservation no longer holds
strictly, but that the system has on short times scales a
memory of its earlier states. In optics, Zimmermann
presented early investigations of retarded reduced
density-matrix equations for electron-phonon interaction,
while our studies of the Urbach tail absorption led one of
the authors to introduce phenomenologically similar re-
tardations for the interband polarization in connection
with the theory of the nonresonant optical Stark effect.
In three preceding publications, " the authors et al.
gave a derivation and .a numerical analysis of the quan-
tum kinetic equations for a two-band model with a
coherent laser pulse and interactions of the carriers with
LO phonons using nonequilibrium Green's-function
theory. Similar equations have been derived by Kuznet-
sov. The memory kernels of these equations are deter-
mined by retarded and advanced Green's functions. It is
important that these Green's functions are also deter-
mined by the considered scattering processes. Only a
consistent treatment of these functions results in numeri-
cally stable kinetic equations (i.e., the time-dependent
electron and hole densities never exceed the interval be-
tween 0 and l). Particularly, one has to take into account
that the damping of the retarded and advanced functions
are determined by the strength of the phonon scattering.
This important fact has not been recognized, e.g. , in the
treatment of Zimmermann. The obtained numerical

solutions are very similar to solutions of Hartmann and
Scha.fer' obtained by direct but rather involved numeri-
cal evaluations of the two-point particle-propagator equa-
tions, showing that generalized Kadanoff-Baym ansatz
employed by us to relate two-point propagators to their
equal-time limits is good for small and intermediate pola-
ron coupling constants, as expected. They also found
that the quantum kinetic theory yields an exponential Ur-
bach absorption tail in the low-intensity limit.

II. INTERBAND QUANTUM KINETIC
EQUATIONS WITH EXCITONIC EFFECTS

Because excitonic effects inhuence to a large extent the
band-edge optical spectra of semiconductors, ' we will
extend our quantum kinetic equations ' by taking the
Coulomb interaction in the Hartree-Pock approximations
into account. A similar combination of quasiclassical ki-
netic equations for LO-phonon scattering with Coulomb
Hartree-Fock terms has been given by Kuhn and Rossi. '

Naturally, the Hartree-Pock terms give only a simple
mean-Geld approximation of the carrier interactions but
omit any Coulomb scattering. We leave the considerably
more involved numerical treatment of the quantum kinet-
ics of Coulomb scattering to subsequent investigations.

In the following, we use the notations for the densities
of electrons and holes (e, h) in the conduction and valence
bands (c, v):

f„„(t)=f„,(t) and f„„(t)=l f„t,(t), —

and for the interband polarization,

fk„(t)= (at,„(t)at„(t)) =Pk(t),

Pk(t)=p„(t)e' '.
In the rotating-wave approximation, the quantum kinetic
equation for the polarization is
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with the detuning 5k =eI„+ekh —cu, where cu is the carrier frequency of the coherent laser pulse with an amplitude
Eo(t). The term QVqPk q

describes the action of the attractive e-i/ Coulomb potential V =4qre /q V on the pair
function P formulated in k space. The corresponding e-h pair Hartree-Fock self-energy is given by

Xk(t)= —g Vqf/, , (t) with i =e, h .
q, l

For simplicity, the vector notations for the momenta are not given explicitly.
The corresponding quantum kinetic equation for the densities is

(4)
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The scattering terms in Eqs. (3) and (S) are given by
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The interaction matrix element of the Frohlich coupling
between the electrons and the longitudinal optical (LO)
phonons with frequency coo can be written as

COO Vq
gq=

taneously with that of the e-h pairs. Here, we take the
phonons simply as a thermal bath with n =(e —1)

Phono

It has been pointed out in Ref. 9 that the imaginary part
of the retarded e-h self-energies which determine y, and
yz has to be calculated in a self-consistent way with the
considered scattering process. We achieve a simple but
qualitatively correct self-consistency by choosing

eo and e are the dielectric constants in the static and
high-frequency limit, respectively. It is convenient to ex-
press the interaction matrix element in terms of the di-
mensionless polaron constant a

4rtfi(%coo) i
g =a

(2m„) /2q2 V

with

e2 m,
cz—

2A'coo

1/2

(10)

where m„ is the reduced e-h mass. The kinetics of the
LO phonons should in principle be investigated simul-

—cxflcOO

As shown in Ref. 9, the above formulation contains
phonon-assisted sidebands, as can be seen, e.g. , by an
iterative solution of the polarization equation. The non-
diagonal retarded and advanced Green's function 6,",'
which also contribute to the sidebands have been neglect-
ed in the above quantum kinetic equations. Their contri-
butions will enhance even further the phonon quantum
beats derived below.

For comparison, we will also give the same collision
terms in the nonretarded completed-collision approxima-
tion, where we take only the resonant terms (with
I =1', +)'/, )
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In order to check the conjecture of Ref. 8 that a consistent description of the Urbach tail needs a quantum kinetic
description, we will also specialize our theory to the case of a stationary, weak laser field with E(t)=(Eo/2)e '"', for
which we can neglect all population effects, i.e. f„;=0. For the constant polarization Pk we get from the quantum ki-
netic equations (3) and (6) by evaluating the time integrals

dEp
i5kPk=i + gV Pk

2

—gg Pk(n + —,'+ —,')
I +i (co coo ek,——
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Starting from the equation in the completed collision approximation, we find in this case
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dEp P+l ( &0+eke ek —
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, +
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From the linear polarization we get the absorption spec-
trum a(co)=lmXkPk/Eo.

III. NUMERICAL RESULTS AND DISCUSSION

A. LO-phonon quantum beats

Quantum beats are the clearest manifestation of optical
coherence in the induced polarization, and can, e.g. , be
measured in self-defracting four-wave mixing experi-
ments. ' Quantum beats arise when there are transitions
from one initial state to two different final states. Quan-
tum beats in exciton systems have, e.g., been observed be-
tween the light- and heavy-hole excitons in quantum
wells, ' between free and bound exciton states, ' between
exciton states split in a magnetic field, ' and between ex-
citons from the lower and upper polariton branch. '

Here we propose that a very basic process, namely the
coupling of the electrons and holes to the LO phonons,
also gives rise to quantum beats. Actually, polarization
oscillations with the period of a longitudinal-optical-
phonon mode have been observed in transient refIectivity
measurements. The excitation of these modes in the ex-
periment was not predominantly due to the intrinsic
stimulated Raman-like process which is considered here,
but due to a nonlinear process caused by the electron-
hole charge separation in the field of surface charges.

The quantum beats due to LO phonons in our model can
be seen as the beating between direct and LO-phonon-
assisted transitions. The same coupling naturally gives
rise also to the relaxation of the excited pairs and to the
polarization decay, so that this partially coherent process
is a typical example for quantum kinetics. Calculations
for free carriers coupled to LO phonons ' proved that
the polarization of these band-to-band transitions
showed, under realistic conditions, practically no oscilla-
tory behavior. We will demonstrate that the situation
changes if excitonic eAects which increase the pair coher-
ence are taken into account.

We will present numerical results for bulk GaAs and
for the slightly more polar InP. The following material
parameters are used. GaAs: m, =0.067m p,
plh =0.46tllp cp= 13~ 1 E' = 1 1 ~ 1 Act7p= 36 meV,
a=0.064; InP: I,=0.08fflp II, =0.6mp E'p=12. 6,
e =9.6, Amp=42 meV, +=0.12.

For the pulses, we assume a Gaussian amplitude varia-
—t2 jrtion Eo(t)=Eoe ' with r=50 fs so that the spectral

width of the excited energy range is larger than the LO-
phonon energy. The field strength will be given in terms
of the Rabi frequency %cod =dEp. The temperature of
the phonons has been assumed to be T =300 K.

The numerical calculations are greatly simplified by
the fact' that the memory kernels which consist of ex-
ponential functions factorize so that the coupled set of re-
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