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Hubbard model at infinite dimensions: Thermodynamic and transport properties
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We present results on the thermodynamic quantities, resistivity, and optical conductivity for the
Hubbard model on a simple hypercubic lattice in infinite dimensions. Our results for the paramag-
netic phase display the features expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of heavy-fermion systems,
The calculations were performed using an approximate solution to the single-impurity Anderson
model, which is the key quantity entering the solution of the Hubbard model in this limit. To es-
tablish the quality of this approximation we compare its results, together with those obtained from.
two other widely used methods, to essentially exact quantum Monte Carlo results.

I. INTRODUCTION

The limit of infinite spatial dimensions has turned
out to be a natural starting point for obtaining sensi-
ble approximate, and even essentially exacts's solu-
tions of models of highly correlated electronic systems.
In this limit the dynamics of the system become essen-
tially local3 which considerably simplifies the task of cal-
culating quantities of interest '

In the present paper we want to extend our previous
study of the Hubbard Hamiltonian

H = ) t;~ (a, c~ +H. c.)
—p) n;

(~i) ~ 'CO

+U) n, , in, i (1)

in the limit of infinite spatial dimensions d = oo. The
notation in (1) is the standard one and the limit d +

oo has to be taken such that t* =— d(tiz)i, = const.
Based on observations made by Brandt and Mielsch,
several groups5 7 independently demonstrated that the
one-particle Green's function, or equivalently the proper
one-particle self-energy of the model (1), in this limit is
obtained from the equation

1
d~ Ap(~) z —4J —e —Z(z)

Here, the Green's function g(z) is the solution of a single-
impurity Anderson model with an efFective hybridization
given by

= ~(z) (2)G,,(z) =

1
6(z) = + Z(z) —z —p,

G,, (z)
(3)

and Ap(e) denotes the free one-particle density of states
(DOS). Note that for a given site i Eq. (3) defines an ef-
fective potential due to the presence of the lattice. Equa-
tions (2) and (3) thus constitute the "natural" mean-field
theory for the Hubbard model (1) .

This mean-field theory is of course independent of the

lattice structure. For reasons of convenience, however,
we shall concentrate on a simple hypercubic lattice with
X sites and transfer along the d-coordinate axes only,
i.e., tg = —2P i tm P„ i cos(mA:„). The latter as-
sumption obviously oversimplifies the situation when one
wants to consider transfer beyond nearest neighbors, but
it has the advantage that the free single-particle DOS

(4)

acquires the simple Gaussian form

Ap(e) = exp( —e2)/v~ (5)

when t* = Pt* = 1. The latter convention will set
the energy scale used for the remainder of this paper. For
nearest-neighbor transfer and q = (vr, a, . . .) one has per-
fect nesting. However, any t2 g 0 destroys this property
and thus allows us to continuously bias quantities which
depend on the perfect nesting like magnetic instabilities.

The situation with nearest-neighbor transfer only was
explored in Refs. 5 and 6 using a quantum Monte Carlo
(QMC) method to solve the impurity Anderson model.
We could thus obtain essentially exact results for the
model (1) and discuss magnetic and single-particle prop-
erties for a variety of model parameters and tempera-
tures. The results at half filling n, = 1 can most con-
veniently be presented in the phase diagram in Fig. 1:
For small values of U and high temperatures one finds
a paramagnetic metal with correlation-enhanced Fermi-
liquid parameters. By increasing U for a fixed temper-
ature a crossover through a semimetalliclike (shaded re-
gion) into a Mott-Hubbard-like phase with exponentially
reduced DOS at p takes place. Note that one never finds
a true gap in the DOS for this "phase. " Nevertheless,
transport and thermodynamic properties will essentially
behave like an insulator. By lowering the temperature
for fixed U, one encounters an antiferromagnetic transi-
tion which is connected with a gap in the one-particle
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FIG. 1. Phase diagram of the infinite-dimensional Hub-
bard model at half filling. The shaded region is a rough esti-
rnate of the crossover region where the physics of the system
resembles that of semimetal with thermally induced DOS at
p. Beyond this region it essentially behaves like an insulator.

DOS due to the cell doubling associated with the antifer-
romagnetic state. As mentioned earlier, this phase can
be shifted to lower temperatures or even be completely
suppressed by magnetically frustrating the system by a
finite t2. In this case the dotted line in the antiferromag-
netic region in Fig. 1 becomes important. It visualizes
the behavior of the metal-insulator (MI) crossover for a
fixed U when the temperature is lowered and shows an
interesting and unexpected reentrance behavior. As we
will discuss later, this is connected to a competition be-
tween the "Mott-Hubbard" phase and the Kondo effect
also present in this model .

This Kondo effect is apparent as the temperature ap-
proaches some small-energy scale. There are two ways
we may define such an energy scale. First, we can ob-
tain an "effective impurity" Kondo scale T~ from the
self-consistently embedded impurity by calculating the
screened local moment on the site i, Ty(T)... and then
extracting Tz by fitting this result to the universal nu-
merical renormalization-group results of Krishnamurthy,
Wilkens, and Wilson. We find that T~ defined in this
way is strongly temperature dependent, increasing with
decreasing T {Ref. 6). This temperature dependence of
T~ can easily be understood —and is, in fact, expected—
from the obvious temperature dependence of the effective
medium defined by {3). It also explains the observed
rather fast disappearance of the Abrikosov-Suhl reso-
nance (ASR) in the one-particle DOS, associated with
this Kondo screening, with increasing temperature and
its total absence in the semimetallic region of the phase
diagram. Second, we may also identify a scale To as where
the ASR in the density of states reaches half its maximum
value. This latter energy scale appears to be more phys-
ically meaningful since it shows up in physical quantities
like specific heat and resistivity.

Away from half filling the Mott-Hubbard phase is
immediately replaced by a Fermi liquid with strongly
enhanced Fermi-liquid parameters. More precisely, we

found a narrow resonance at p, for low temperatures
which leads to the observed enhanced quasiparticle mass.
This resonance could again be traced to a Kondo screen-
ing of the local moments with a dynamically generated
low-temperature energy seal"- To connected to it. The
magnetic transition is also found to be suppressed upon
doping. Finally, for greater than 20% doping, correlation
effects become less important and the system basically
behaves like one would expect from standard perturba-
tion theory.

The remainder of this paper is split into three parts.
First, we will compare different approximation schemes
to the QMC results. The main reason is that QMC is
rather time intensive and becomes problematic for large
values of U and inverse temperature P. Also, by virtue
of the method, the QMC process gives all dynamical
quantities as a function of Matsubara rather than real
frequency and one has to use, e.g. , maximum entropy
methods to analytically continue these results to real fre-
quencies. Although this is straightforward for densities
of states, it proves problematic for quantities like the one-
particle self-energy. On the other hand, several physical
quantities need this real-frequency dependence as input.
As we will show, a good approximation scheme for this
purpose is given by a self-consistent perturbation the-
ory developed for the single-impurity Anderson model
(NCA) io ii. In the second part of the paper we use this
approximation to calculate free energy, specific heat, re-
sistivity, and optical conductivity for the model (1) for
the paramagnetic phase. Finally, a discussion will close
the paper.

II. COMPARISON OF DIFFERENT METHODS

One major problem in using the QMC approach to cal-
culate physical quantities is the rather large amount of
computer time one has to invest to obtain results for one
particular set of parameters. Especially for thermody-
namic properties, where one has to adjust the chemical
potential to maintain a fixed filling, it is diKcult to cal-
culate a temperature series. It is thus clearly desirable
to have some different methods to solve the Hamiltonian
(1) or, equivalently, the single-impurity Anderson model.

The most straightforward idea is to use standard per-
turbation theory in U. This is known to work rather well
for the symmetric single-impurity Anderson modeli2'i3,
and one thus may expect it to be a reasonable approx-
imation at half filling and for small values of U. Away
from the symmetric point it is known that at least the
lowest order does not reproduce the correct occupation
number7. Nevertheless, it is a simple method and it is
surely worthwhile to outline its region of applicability.
It also has the advantage that it automatically fulfills
Fermi-liquid sum rules. A rather complete discussion up
to second order in U has been reported by Menge and
Muller-Hartmann . Since it has been pointed out by
Georges and Kotliar7 that these results are not qualita-
tively much different from the lowest second-order result
with Hartree self-consistency, we shall use the latter
approach here.
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The most successful approximate methods for dealing
with highly correlated electron systems have been devel-
oped for the single-impurity Anderson model by choos-
ing the mixing term as perturbation 7. Unfortunately,
the price one has to pay for leaving the Coulomb interac-
tion intact is that the standard methods of perturbation
theory fail. This problem can be nicely circumvented for
the impurity problem, leading to well-defined and con-
trolled approximation schemes like the so-called NCA
(Refs. 10, ll, and 17). This approximation is known to
work well when the physics of the system is dominated
by spin fiuctuations s but fails when charge excitations
become important. In this respect it may be viewed as an
approach complementary to standard perturbation the-
ory. In addition, the NCA tends to violate Fermi-liquid
properties for temperatures much lower than the small-
est energy scale in the problem s. However, the NCA is
nevertheless quite reliable over a large interval of param-
eters including temperature . Since the solution of the
model (1) for d = oo essentially reduces to the solution of
a single-impurity Anderson model it is natural to adopt
the NCA for this problem.

Another natural attempt is to extend the perturba-
tion theory with respect to mixing directly onto con-
centrated systems. In this case, however, the missing
features of standard perturbation theory complicate the
problem considerablyzo and a controlled approximation
(like in the impurity case) presently does not exist. With
the use of some ad hoc assumptions it is nevertheless
possible to set up an approximation for this problem,
too. These theories are originally designed for the peri-
odic Anderson model and are known in the literature as
XNCA (Ref. 21) and LNCA (Refs. 22 and 23). Recently,
one of the authors has shown that any such theory for the
periodic Anderson model can be readily employed for the
Hubbard model (1), tooz4 zs. In order to obtain an idea
about the quality of these approximations we include the
LNCA in our comparison.

The single-particle density of states for the Hubbard
model (1) at half filling n = 1 for several values of U at
an inverse temperature P = 7.2 is shown in Fig. 2 for the
diferent kind of approaches discussed before. Let us first
outline the general features of the DOS as they appear
from the QMC results: In all cases one finds two promi-
nent peaks at roughly +U/2 which have to be identified
with charge excitations on and off the local levels. In
addition there is a pronounced resonance at p, for small
values of U due to coherent movement of the particles
in the system. This feature is suppressed when U is in-
creased and eventually a pseudogap opens at p, .

In comparing the difFerent approximations to the QMC
results the first thing to note is that the overall agreement
between QMC and NCA, apart from small difFerences at
p, , is very good. For U = 6 we did not succeed in analyt-
ically continuing the QMC results. The only quantity we
were able to obtain here is the position of the edges of the
pseudogap. These were found to be in good agreement
with those predicted by the NCA. We want to point out
that for this value of U, as generally for values U well
inside the "insulator" phase in Fig. 1 and PU )) 1, the
NCA does not provide stable results but tends to produce
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PIG. 2. DOS for the Hubbard model at half Glling and
P = 7.2 for some values of U. The full line represents the
QMC result, the dashed line the NCA, the dashed-dotted line
the LNCA, and the results obtained from perturbation theory
are given by the dotted-dashed-dotted line. No QMC results
are available for U = 5.

spurious oscillations at the gap edges. However, general
structures like the width of the pseudogap are reproduced
with good accuracy. Nevertheless, these instabilities pro-
hibit a thorough investigation of this surely very interest-
ing part of the phase diagram at half filling. We want to
emphasize that this problem is not intrinsic to the %CA,
but rather must be attributed to numerical instabilities
of the computer code used to solve the NCA equations.
The reason is that structures in the NCA equations be-
come very sharp in this region and eventually cannot be
resolved on a discrete energy mesh. When this occurs we
approximate these structures as poles, which gives rise
to the mentioned numerical instabilities. Note that this
problem does not occur outside the insulator phase and
ofF-half filling. A rather interesting point is that "poles"
in the NCA begin to develop exactly when the DOS at
p, becomes exponentially small. This errrpirical observa-
tion was also confirme by QMC for some characteristic
points in the phase diagram and eventually used to find
an estimate of the right-hand border of the crossover re-
gion in Fig. 1.

Apparently, at half filling perturbation theory in U
generally reproduces qualitatively both the high- and the
low-energy features of the DOS. The LNCA, on the other
hand, looks like a too large value of U had been used.
This may be attributed to the approximations involved
which put a strong emphasis on local correlations and
are thus likely to overestimate residual local interactions.
It also clearly overestimates the charge excitation bands
and shows little of the finer structure near the gap edges,
but at least it reproduces the general features of the DOS
qualitatively correctly and accounts for the existence of
the pseudogap.

In Fig. 3 we present some typical results off half filling,
namely for p = 1 (n~ = 0.94) and p, = 0.5 (n, = 0.8) at
two difFerent temperatures P = 3.6 and P = 14.4. The
value of the Coulomb repulsion is U = 4. Again, QMC
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FIG. 3. DOS for two typical fillings n, ( 1 and different
temperatures at a U = 4. (a) and (b) show p, = 1 (n, = 0.94)
for P = 3.6 and 14.4, respectively, while (c) and (d) collect
results for p = 0.5 (n, —0.8) at the same temperatures. The
line patterns are the same as in Fig. 2.

and NCA are in good agreement concerning the high-
and the low-energy features except for Fig. 3(d), where
&NcA(p) comes out much too large, i.e. , the NCA fails to
account properly for the low-energy physics. This is the
principal failure directly related to the approximations
involved in the NCA (Ref. 19).

Interestingly, the LNCA gives a much weaker ternper-
ature dependence of the DOS at p, indicating that this
approximation underestimates the characteristic low-
energy scale To. This is in accordance with the observa-
tion made earlier, namely that the I NCA tends to over-
estimate the role of the local correlations. Apart from
this failure the general form of the spectra agrees at least
qualitatively with the exact result. To obtain reasonable
results from perturbation theory, we found it necessary
to fix the occupancy to the QMC value by adjusting the
chemical potential. This given, the perturbation theory
apparently becomes better with increasing hole concen-
tration. It nevertheless produces features which are too
broad and rather poor imitations of the charge excitation
peaks.

A first conclusion one may draw from these consider-
ations is that the NCA reproduces most of the general
features of the single-particle DOS with good accuracy.
However, Fig. 3(d) clearly shows that for some choice
of parameter values the most important region at p, is
approximated very poorly. In order to achieve a bet-
ter classification of the portion of the parameter space
where the NCA constitutes a reliable approximation to
the problem, let us substantiate the difFerences between
QMC and NCA by looking at the quasiparticle weight
defined by

ImZ(i~o)
4)O

where ceo ——~T is the lowest Matsubara frequency
Figure 4 displays this function for p = 1 and U = 4 as

obtained from QMC (circles) and NCA (squares). Note
that for these parameter values we expect To 1/8
(Ref. 6), i.e. , ( (T —+ 0) = 8. The agreement between
QMC and NCA is satisfactory, especially for tempera-
tures T & To/2. For temperatures T & To/2 the values
obtained by the NCA become too large although the or-
der of magnitude is still good. Things become worse
as soon as T (( To, where the NCA produces again an
upturn instead of a saturation. Both the slightly too
large values as well as the failure for T & To/5 must
be attributed to the well-known pathology of the NCA
(Ref. 19). In our case, the most important aspect of this
pathology is its tendency to give a slightly too small ab-
solute value for the self-energy near p, (Ref. 10). While
for the Anderson impurity model this behavior is not im-
portant for temperatures T + 0.1T~ (Ref. 10), the self-
consistency process involved here naturally accumulates
this deficiency, leading to the observed small discrepan-
cies between QMC and NCA in the spectra and ( (T).
Eventually the NCA breaks down completely for temper-
atures small compared to To. However, from our compar-
ison one can conclude that the results produced by the
NCA are reliable for T/To & 1/5.

For small U and/or far away from half filling the latter
restriction makes the NCA obviously rather useless, be-
cause the low-temperature energy scale is usually of the
order O(l) here [see, for example, Fig. 3(d) with p, = 1.5
and P = 14.4]. However, in the interesting region of large
U and close to half filling the low-temperature scale To
is much smaller. In these cases the NCA provides a fast
and consistent way to obtain information that is hard
to access by other methods. For example, let us discuss
the one-particle self-energies and the reentrance behavior
found in the phase diagram at half filling (see Fig. 1).

The imaginary part of the one-particle self-energy is a
quantity interesting in its own right since it provides valu-
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FIG. 4. Quasiparticle weight [see Eq. (6) j for p = 1, U = 4
as a function of temperature for QMC (circles) and NCA
(squares). Note that the NCA starts to saturate to a slightly
larger value but sho~s a renewed upturn for the lowest tem-
perature, This must be attributed to a true failure of the
approximations involved.
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able information about the low-temperature behavior of
the system. For a normal Fermi liquid when T' —+ 0, one
expects —ImZ(a+ ib') to exhibit a parabolic minimum at
p with a curvature and temperature dependence that is
characteristic of the effective mass of the quasiparticles in
the system. A way to obtain this latter information has
already been discussed with the definition of the quasi-
particle weight equation (8). Figure 5 gives an impression
of how the self-energy behaves for some parameter values,
namely at half filling (n, = 1) for two values of U = 2, 4
for a fixed temperature P = 7.2 in Fig. 5(a) and off half
filling (n, 0.94) for a fixed U = 4 and two characteristic
temperatures P = 3.6, 28.8 in Fig. 5(b). While for U = 2
[solid curve in Fig. 5(a)] and off-half filling [Fig. 5(b)]
~1m'~ obviously develops a nice parabolic minimum at
p, , the behavior for U = 4 at half filling [dashed curve in
Fig. 5(a)] is completely difFerent. Here a sharp peak at p,

appears separated by a (pseudo)gap from the continuum
of particle-hole excitations. From general arguments
it follows that —ImZ(p+ i6) —1/A(p) in this case. It
is clear that one will never obtain a Fermi liquid with
this type of self-energy27. Physically, this peak corre-
sponds to an effective resonant scattering provided by
the medium surrounding a given particle, thus localizing
it by forming a bound state. It is nevertheless surprising
to find such a structure when general phase-space argu-
ments rather suggest that particle-hole scattering near p,

has to vanish . Thus an important question is whether
this structure is stable or may be replaced by the usual
minimum for T —+ 0. This leads us directly to the reen-
trance behavior seen in Fig. 1.

To study this interesting behavior more closely we fix
the Coulomb parameter at U = 3.5 and scan the tem-
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FIG. 6. DOS for the Hubbard model at half filling and
U = 3.5 for different temperatures obtained with the NCA.
The temperatures were chosen so that one cuts through the
leftmost part of the insulating region in Fig. 1. Note the
opening of the pseudogap when one lowers the temperature,
which eventually is split by the ASR when one crosses the MI
line again.

perature from above the MI crossover region (T = 0.32)
down to T = 0.002. Obviously, such a low tempera-
ture cannot be reached with QMC for this value of U.
The results are shown in Fig. 6. One nicely sees the
opening of the pseudogap as the temperature is lowered.
Eventually, this pseudogap is destroyed by a very narrow
resonance at p which also signals the onset of Fermi-
liquid behavior. From the value of A(p) we extrapo-
late to a low-temperature scale To & 1/400. Thus, the
Fermi liquid that eventually emerges has extremely large
Fermi-liquid parameters. Another question is why such
an Abrikosov-Suhl resonance can be built up from an in-
sulator at all? Here we must keep in mind that we merely
observe a pseudogap, i.e. , the DOS around p is never ex-
actly zero and consequently will lead to a small but fi-
nite low-temperature scale To. Whether the Fermi-liquid
phase will win depends entirely on the balance between
the energy gain due to the delocalization of the parti-
cles in the narrow band at p and the loss in correlation
energy for the same reasons. It definitely seems more
favorable for 3 & U & 4 but we cannot decide from the
data available whether the transition line will finally in-
tercept the abscissa at a U ( oo or not. We must stress
at this point that this whole scenario is valid if and only
if we have sufficient magnetic frustration to suppress or
destroy the antiferromagnetic transition appearing in the
phase diagram.

—2.0 —1.0 0.0 'I .0
III. THERMODYNAMIC AND TRANSPORT

PROPERTIES

FIG. 5. Imaginary part of the self-energy for half filling
and U = 2, 4 at a fixed temperature P = 7.2 (a) and n, = 0.94
and P = 3.6, 28.8 for fixed U = 4 (b). The arrow at p in
—ImZ(w+ih) for half filling and V = 4 in (a) indicates a very
narrow peak with a height of the order O(10 ).

The peculiar features of the single-particle DOS and
self-energy discussed in the preceding section motivate a
closer inspection of thermodynamic and transport prop-
erties of the Hubbard model (1) in the paramagnetic
phase. Except for the one-dimensional model, a thor-
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ough study of these quantities in the thermodynamic
limit was not possible yet. Previous results from QMC
simulations are usually restricted to relatively small
values of U or comparatively high temperatures. Since
they are carried out on a finite lattice with a discrete en-
ergy spectrum, they probably will also miss the Kondo
effect if it persists in three dimensions. The simplifica-
tions arising in d = oo, however, make it possible to
give closed expressions for several quantities, including
the free energy, internal energy, and optical conductiv-
ity, which involve only the one-particle propagators in a
simple way. We are thus in principle in a position to
calculate these quantities exactly or, since we shall use
the NCA to solve Eqs. (2) and (3), obtain at least a very
good approximation for them.

Although the derivation of the expressions for those
quantities is straightforward we will just state the final
results and leave the mathematics to the Appendixes. To
start with, the thermodynamic potential A(T) is given
by4

Here, 0;~& is the local free-energy contribution from the
effective Anderson impurity problem. Although, in prin-
ciple, the knowledge of A(T) provides everything one
needs, it is helpful to have an independent expression
for the internal energy E(T), too. The main reason is
that thermodynamic quantities are usually obtained by
differentiating A(T), which is a rather unpleasant task
from a numerical point of view. In particular, the spe-
cific heat is a second derivative of 0, but it is a first of
E(T). An expression for E(T) is given by

E(T) =
~ ) d~ f(~) (tk + ~) Ai, (~) + 2pN,

(8)

NCA is currently not able to provide stable enough re-
sults in the interesting region just above the MI crossover
line. We therefore have to concentrate on a value just be-
low the critical one and we found it to be a convenient
choice to use U = 3. As it turns out, the behavior found
here is already close to what one may expect in the "in-
sulating" region.

Before we turn to the actual thermodynamic proper-
ties, we first want to give with Fig. 7 an impression of
the variation of the one-particle spectra with tempera-
ture. It is clear that the dip in the DOS at p for higher
temperatures is a poor replacement for the actual ex-
ponentially small DOS at larger values of U. However,
together with the Abrikosov-Suhl resonance at low tem-
peratures it gives a fairly good picture of the general tem-
perature dependence of the DOS even for U ) U, . From
it we may anticipate the behavior of the various thermo-
dynamic and transport properties: Starting from high
temperatures, one will encounter a temperature regime
(e.g. , t' ) T )) To) where the DOS mainly consists of
two separated bands. For the entropy, for example, this
means that it will be rather flat with a value reflect-
ing the degeneracy of the states in the lower band, i.e. ,
S = ln2. At the same time the specific heat will de-
crease and become very small. If there were a true gap
we would actually expect Cv exp( —PAs»). The re-
sistivity, on the other hand, will be large and increases
with decreasing temperature, while the optical conduc-
tivity is governed by the charge excitations of energy U
and shows no Drude peak.

Figure 8 displays the diferent thermodynamic quanti-
ties for the parameters under consideration as a function
of temperature. In addition, we include for comparison
some values of the internal energy E(T) as obtained from
QMC (circles). Again, QMC and NCA are found to be
in good agreement. It is noteworthy that the internal en-
ergy becomes rather fiat at T = 1/5. At the same time
the entropy has a saddle point with a value of S = ln 2,

The last quantity we want to study in this paper is
the conductivity. We restrict ourselves to the q = 0
component, because without coupling to elastic degrees
of freedom we do not expect the model (I) to exhibit
any incommensurate charge-density instability, i.e. , the
q = 0 component will be the most important one. In
this particular case, the limit d ~ oo provides us with an
extreme simplification, namely one can easily show (see
e.g. , Ref. 28 and the Appendixes) that the expression for
0(ur, T) reduces to C3

p=3.6
P=7.2
P=28.8
P=57.6

o(~) = ~ de Ap (e)A(e, ~') A(e, cu' + ~)

Note that for u ~ 0 this is very similar to the result
of Schweitzer and Czycholl3, except that our result is
written as energy integrals and thus avoids their explicit
sum on lattice sites that is impossible to evaluate in d —+

OO.

I et us begin with a discussion of the properties of the
model (1) at half filling. Due to numerical difficulties the

C3
C3

—4.0 —2.0 0.0

FIG. 7. Temperature dependence of the DOS for U = 3.
Although there clearly is no gap in the spectrum, the overall
temperature dependence is similar to the one expected for
larger values of U: The dip in the DOS at p for high T is
replaced by a resonance at low T.
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FIG. 8. Thermodynamic quantities for the Hubbard
model at half filling with U = 3. Note the good agreement
between QMC (circles) and the NCA results (squares) for the
internal energy.

and the specific heat becomes small, as expected. The
unphysical variation of S(T) and C{T) found in this in-
terval must be attributed to numerical inaccuracy. In
fact, by increasing the precision of the results we observed
that, e.g. , the nonmonotonic variation in S{T)is reduced
considerably while the value seems to approach S = ln 2
with good accuracy. Also, the internal energy appears to
be much more insensitive to numerical inaccuracies than
the free energy.

When the temperature is further lowered, we see a de-
crease of S(T) again, accompanied by a strong increase
of C(T), which eventually shows a maximum. This peak
in C(T) is a further fingerprint of the Kondo effect in
this model. Unfortunately, a further decrease in temper-
ature is not possible, since the NCA pathology becomes
important for T & 0.01. From our experience this points
towards a proper low-temperature energy scale of about
To = 1/20, which is also consistent with the position
of the peak in C(T) at T —To/3. At present one can
only infer from the knowledge of the properties of heavy-
fermion materials that C(T) T/To for temperatures
below the maximum.

From these results one may easily extrapolate to the
behavior of the system for U ) 3. In fact, we mainly
expect the extent of the flat region in E(T) and S(T) to
become larger, namely it should last roughly until a pos-
sible crossover into the Kondo regime begins. Then one
will find a very steep decrease of both quantities again.
For values of U smaller than U = 3, on the other hand,
the fIat region will shrink and the slope of the decrease
for lower temperatures will become smaller.

The resistivity for these parameter values as a func-
tion of temperature is shown in Fig. 9. Consistent with
the DOS and the thermodynamics we first observe a
semimetallic increase at high temperatures which goes
through a maximum and then decreases for low temper-
atures. Since we expect the system to behave like a Fermi
liquid at low temperatures, the resistivity should follow

p(T) = pp + a(T/To)2, where pp = 0, Tp 1/20, and
a = O(1). The calculated data generally follow this law

'o C&

C&

0.0 1.0
10s T

0.0'I 0.02 0.05 0. I

T
0.2 0.5

FIG. 9. Resistivity for the half-filled Hubbard model with

U = 3 in units of vre at' /(2h) 100 pAcm. The inset

shows the low-temperature data plotted vs T together with a
fit p(T) = po+ a(T/To), where a = O(1) and To —0.05. The
appearance of an artificial intercept po ( 0 is directly related
to the pathology of the NCA (see text). Interestingly, such a
behavior is absent in the results off half filling (see Fig. 14).

when we also allow for a small intercept pII —5 x 10
(see inset in Fig. 9). It is obvious that this negative in-
tercept is a pure artifact and related to the pathology of
the NCA: As discussed earlier, the approximations in the
NCA tend to give a too small value of Im[g c (ai+ib)]
near p, . Since the self-energy is given by the difference be-
tween this quantity and the efFective hybridization equa-
tion (3), one will eventually encounter a temperature
where causality is violated and the results by the NCA
become meaningless. For the present parameter values
this happens for T & 1/100. It is clear that this break-
down will manifest itself strongest right at the minimum
of ImZ(w —ib), which happens to be always exactly at
p, at half filling due to the particle-hole symmetry. Since
the low-temperature resistivity, on the other hand, is ap-
proximately just given by ImZ( —i6) (Ref. 31), this viola-
tion of causality produced by the NCA leads directly to
the observed unphysical value of po.

The picture for half filling is completed by the optical
conductivity in Fig. 10. As expected, the case U = 3 al-
ready gives an idea how the insulator will look: For high
temperatures one finds a weak vestige of the Drude peak
for u —+ 0 which at first is suppressed when the tempera-
ture is lowered. Note, however, that we always maintain
a finite value for o (0) consistent with the DOS in Fig. 7.
At the same time the spectral weight of the charge exci-
tation peak at w = U increases. When we further lower
the temperature, the situation reverses. A Drude peak at
w = 0 builds up again (see inset in Fig. 10) and the spec-
tral weight at w = U is decreased. In addition, a shoulder
emerges at ~ —1. This feature must be ascribed to the
additional excitations from the lower Hubbard band to
the Abrikosov-Suhl resonance at p. Note that the spec-
tral weight associated with this additional resonance is
rather small.
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FIG. 10. Optical conductivity cr(u) for the half-filled Hub-
bard model with U = 3 in units of ere at' /(2h). While the
high-temperature variation is consistent with a semimetallic
state, a conductor with a Drude peak at zero frequency is re-
covered when T ~ 0. In the inset, the low-frequency results
are shown on a semilogarithmic plot.
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Let us finish the discussion of the half-filled case with
a look at the typical behavior of the optical conductivity
inside the insulator region in Fig. 1. Although the nu-
merical problems prohibit a discussion of thermodynamic
quantities here the results prove to be stable enough to
allow the calculation of cr. Figure ll shows our results for
the DOS [Fig. 11(a)] and cr(a) [Fig. 11(b)] for a value of

U = 6 and temperatures P = 1.44 (solid curves) and
P = 28.8 (dashed curves). The high-temperature re-
sult represents a point in the semimetallic portion of the
phase diagram (Fig. 1) and still shows a small peak at
cu = 0 due to the thermally induced states in the gap
here. This feature i.s, however, completely lost in the "in-
sulating phase, " where only the charge excitation peak at
u = U survives. We point out that the high-temperature
results for U = 3 are indeed similar to the general behav-
ior found here even though the larger DOS at p of course
leads to a finite value for ~(0) there.

The situation of half filling is studied for the case U = 4
and n, = 0.97. The variation of the DOS with tempera-
ture for these parameter values is collected in Fig. 12.
Compared to the temperature dependence of A(0) in
Fig. 7, we observe a slower increase here, i.e. , we have
a somewhat smaller low-temperature scale Tg. From the
value of A(0; T = 1/28. 8) —2/~vr we extrapolate to a
To & 1/30 for these parameter values. Although we are in
principle able to trace the properties of the model (1) for
a fixed electron density, it turns out that the obtainable
numerical accuracy is not sufficient to get a reasonable
result for the free energy. However, as already mentioned
for the half-filled case, the internal energy E(T) is much
more well behaved and we shall concentrate on its be-
havior here. The results for the thermodynamics are col-
lected in Fig. 13. The features found are actually very
similar to the ones known from heavy-fermion physics, as
expected: We observe a maximum in C(T) at approxi-
mately To/3, where To —1/30 was read off the half height
of the DOS in Fig. 12. Note that in contrast to half filling
we do not have a pronounced fiat region in E(T) or S(T)
here. The values for the entropy in Fig. 13 were obtained
by direct integration S(T) = f C(T)/TdT. Taking into
account the decreasing relative precision in E(T) and the
resulting large errors in C(T) for lower temperatures we
find, as expected, an entropy 8 —ln2 associated with
the low-temperature peak in C(T).

C3
C3
C3—6.0

C3

C3

—3.0 0.0 6.0

p=3.6
p=7. p,

P =28.8
p =57.6

CU

b ~

CU

C3

C3
C3

C3
0.0 2.0 4.0 6.0 8.0 'I 0.0

D
D

—4.0 0.0 2.0

FIG. 11. DOS (a) and optical conductivity cr(cu) (b) for
the half-Blled Hubbard model with U = 6 for two tempera-
tures p = 1.44 (solid line) and p = 28.8 (dashed line). The
units are the same as in Fig. 10.

FIG, 12. Temperature dependence of the DOS for U =
4 and n = 0.97. Note that the increase of A(0;T) with
decreasing temperature is slower than for U = 3 and n, = 1,
indicating a smaller low-temperature scale To. From A(0; T =
1/28. 8) —I/2~vr we deduce a Tp —1/30 here.
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FIG. 13. Thermodynamic quantities for U = 4 and n, =
0.97. The variation of p with T is shown in the lower right
picture. The results for the entropy were obtained from nu-
merical integration of C(T)/T (also see text).

The resistivity in this case is shown in Fig. 14. As in
the picture for half filling we observe an increase of p(T)
at high temperatures which eventually goes through a
maximum. For low temperatures we find a power law

p(T) = a(T/To) with To = 30 and a = O(1) consistent
with Fermi-liquid theory. This time we do not observe
any unphysical behavior down to the lowest temperatures
studied. This may be related to the fact that the slight
shift of the minimum of ImE(w —i6) above p, sufficiently
reduces the inHuence of the NCA pathology here.

It is noteworthy that for half filling and ofF-half filling
the position of the maximum in p(T) does not seem to be
related to Tg in a way similar to heavy-fermion systems.
In fact, from the position of these maxima one would

CU

C)

C3
C)

0.0

PIG. 15. Optical conductivity for U = 4 and n, = 0.97
for some characteristic temperatures. Unlike for half filling
we observe a Drude peak at u = 0 from the onset, i.e. , the
system is a metal for all temperatures. As in Fig. 10, the inset
shows a semilogarithmic plot of the low-energy portion of the
optical conductivity.

rather tend to rate the systems as weakly correlated. It
is, however, important to remember that since the DOS
at p, is strongly temperature dependent, the Kondo scale
itself is a function of temperature.

Finally we present the optical conductivity for the pa-
rameter values U = 4 and n, = 0.97 in Fig. 15 for
some characteristic temperatures. The general structure
is similar to half filling except that the Drude peak for
a ~ 0 continuously develops when the temperature is
decreased. Also, the "Kondo" shoulder found in Fig. 10
is not visible here. Again, the weaker temperature de-
pendence of cr(w ~ 0) points towards a smaller To in
this case.
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FIG. 14. Resistivity as a function of temperature for U =
4 and n, = 0.97. For low temperatures we find p(T) = a .

(T/To) (see inset) with a = 0(1). In contrast to half filling
we do not observe any sizable deviation down to the lowest
temperature points here. Note that the data are noisier than
those for half filling. This must be attributed to the additional
numerical inaccuracies due to tracing p.

In this paper we have presented a detailed study of
thermodynamic and transport properties of the Hubbard
model on an infinite-dimensional hypercubic lattice. In
contrast to the previous studys s we did not take into
account the antiferromagnetic ordering expected for this
model with nearest-neighbor transfer, but concentrated
on the paramagnetic case. The importance of such a
study is motivated by the fact that inclusion of trans-
fer beyond nearest neighbors will magnetically frustrate
the system and thus depress the ordering. Besides, the
efI'ect of an antiferromagnetic transitio~ on thermody-
namic quantities like S(T) and C(T) is well known once
their behavior in the paramagnetic regime is known.

The erst part of this paper was devoted to a com-
parison between difI'erent approaches to the Hubbard
model. As a reference point we used the essentially exact
QMC method discussed extensively in Refs. 5 and 6. We
found that a good description can be achieved by using
the NCA to approximately solve the impurity Anderson
model which enters the solution of (1) in infinite dimen-
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sions. Using the NCA, the self-consistent set of equations
can be solved very quickly which enabled us to present
a variety of quantities as functions of temperatures for
physically meaningful parameters. One of our main re-
sults is the interesting variation of the entropy and spe-
cific heat in the half-filled case. We believe that this
behavior can be viewed as generic for the strongly cor-
related model. This conjecture was basically confirmed
by the qualitative similarity between our results for half
Ailing and n = 0.97.

Unfortunately, the NCA approach breaks down for too
low temperatures due to an intrinsic violation of Fermi-
liquid properties. However, our low-temperature results
strongly suggest that a heavy-electron liquid builds up
with a unique energy scale deductable from the varia-
tion of the various physical quantities. One thus can
in principle adopt the mell-developed phenomenology
for these systems to extrapolate to a consistent low-
temperature limit for the paramagnetic phase of the
infinite-dimensional Hubbard models2.

Together with our previous study, to the extent of our
knowledge this represents the first consistent and reli-
able study of dynamic and thermodynamic properties of
the d ) 1 Hubbard model in the thermodynamic limit.
Although the qualitative eifects of finite-dimensional cor-
rections are not well understood, we believe that many
of the features found here will basically persist in at least
d = 3.
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APPENDIX A: EXPRESSIONS FOR A(T)
AND E(T)

In the following we will provide the derivation of the
expressions for the free energy (9) and internal energy
(10) for the Hubbard model in d ~ oo.

I et us start with the free energy. According to
Baym4'33 one can quite generally write the grand canon-
ical potential as

PB(Z) = C(G) —Tr(Z. Q) —Trln[(C )
i —Z] (Al)

where shorthand matrix notations

(Q)i j;nm = Gij (~~n~ &~m)

and

(Z);j,„=Z,~ (ku„, i~ )

were introduced. The functional 4 is defined via the per-
turbation expansion of Z in terms of G by the property

(A2)

For d —+ oo we know that Z(z) = Z(z)l and its per-
turbation expansion involves only the local component
of C, G,, (z). This implies that O(c) = C((G,,))
N C;m~ (G,, ) (Refs. 2 and 4) and finally

PA(T) = NC; p(G, , ) —N Tr(ZG, ,) —N Tr ln(G, , )

—) Tr 1
~

**)

=NP&, p
—) Trln (A3)

Here, 0;m~ is the local free-energy contribution from
the efFective Anderson impurity problem for a given Z
(Ref. 4).

For the derivation of E(T) we first note that from
0 = E —TS —p,N one obtains for fixed particle number
E = B(PA)/BP+ pN+ PBy/BPN, . With 0 = —P ln Z
this leads to the relation E(T) = (H) + p,Ne. Note that
this unusual form arises because our definition of the
Hubbard Hamiltonian (1) absorbs the term pN. In-
order to calculate the expectation value, let us evaluate
the following commutator34:

= Hkin PN + 2U = 2H Hkin + P~
That means for (H)

(H) =-1
2

Hk;„+) ct [c,~, H] —2pNe+ ~) tk(c„ck~)+ 2) (c, [c,~, H]) —2pNe
io ko. 2CJ

=
2 ) .tkGk-( —~) + -') G(...~),.t. (-~) —2&N

) c, [c,~, H] = ) tel(c, [c,~, c& cj~]+c, [c;,c~ ci~]) —p, ) c, [c,~, nj ]+) c," [c,~, nirni~]

(A4)

) ~ ) tkGko (&~n) + ) G[e. Ii] et (&~n) & &PNe
i'll/~ k klT ) (A5)
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With the equation of motion

zG;, (z) = 1+G~, Hj, 2 (z) (A6)

and using translational invariance, i.e. , G,,(z) = ~ Q Gk (z), one arrives at

E(T) = ) ) [)!kGk~(2& )+2(d Gk~(iw„) —l]e' " + sy, N,
LCdee kO'

(A7)

Now,

—) G„(2~„)= ckuf(~)Ak (~)

and with f dwAg (w) = 1

—) [iw„Gk (i(v„) —1]e' " = —) MAk (~) i~„—u )
2Cd ee &~n

= —) ~Ak (~).
Z4d~ —QJ

~wf(cu)Ak (~)

the final equation reads vk = V'tk. This leads to

E(T) = 2) deaf(w) (tk+w) A& (~)+ 2pN, 1 1
der(z) = —. —) ) vt„vk ((nk ~ng ))(z)

k, k', cr t

(B4)

APPENDIX 8: OPTICAL CONDUCTIVITY

In general, the conductivity tensor is expressed via the
current-current susceptibility as

1 1
ee((e) = ——Re —y,;,„(e+ e6) }

This expression has the perturbation expansion shown in
Fig. 16. One important implication of the limit d —+ oo is
that the irreducible vertex I'(iw„, i(v; iv) in Fig. 16 has
to be purely local3. This means that the k summations
in the second part of Fig. 16 can be performed indepen-
dently and thus these vertex corrections vanish, because
vg has a different parity than t2, (Ref. 35). This means
that only the simple bubble survives and we are left with
(the lattice constant to be taken unity)

1 1
((iiile))(~+~~)}-.N iu

—:Reheat(~+i6) .

For the simple cubic lattice under consideration, the ten-
sor is proportional to the unit tensor, i.e. ,

1$ k
n

iS+iY k
n

is k
Il

k k

iS+iY k
n

is k'
m

Vk'
+. . .

iS +iY k'
l11

11
d~(z) =

N —,. ) ((i(lii))(z). (B2)

Further, the current operator for the Hubbard model (1)
is given by (e = 5 = 1)

0
Vknk

kyar

where the group velocity or the particles is defined via

FIG. 16. First two contributions to the perturbation ex-
pansion for the conductivity, Eq. (23). Note that the irre-
ducible vertex part I'(i(e), i(e); iv) in the second diagram is
purely local, i.e., the different k vectors appearing on both
sides can be summed over independently. Since vk has a dif-
ferent parity than tz, this contribution necessarily vanishes
and so do all higher-order vertex corrections (Ref. 35).
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o(iv) = — ) ) 2)„,Gk~(2ur„)Gk~(iod„+ iv) = — ) ) 4t sin (ki)Gk~(i(o„)Gk~(uu„+ iv)
ka, td L kts, td

for nearest-neighbor transfer.
The problem left is to evaluate the sum

pp(e) = —) ) sin (ki)6(e —tk).
k l

)op(e)e"'de = —) ) sin (ki)e"'" = d
k t

= —
[Jp(28t)] + —

[Jp(28t)] Jg(28t)
2 2

where J (z) are Bessel functions. Noting that Ap(e) = J ds e "' [Jp(2st)], we find

For this purpose, we use the method applied by Muller-Hartmanns and study the Fourier transform of (B6),
7r -d —1- 7r

&.() = —ain't cos k d~

2K

(B5)

(B7)

) ) sin (kt)t(e —ts) = —(tto(e)+ dse *"]do(ost)] do(2st)) (BS)

This relation is valid for a simple cubic lattice and nearest-neighbor transfer in any dimension. For the current purpose
we are only interested in the limit d —+ oo, where one can achieve a further substantial simplification. Noting that
2t 1/~d && 1 we may approximate Jq(2st) = s~t for large d and find for the last term in (B8)

dse "' [Jp(2st)] Jq(2st) t dss e "' [Jp(2st)] = t— (B9)

Since t 1/d this term is negligible in the limit d —+ oo, i.e. , Pp(e) = d)op(e)/2 and finally

11 1
0(2v) ='——) de Ap(e)G(e 2ldrts)G(e, 2(trav, + 2v) =—

V V
de d~o d~'Ap (e)A(e, io) A(e, (o')tf~ —fio

4) —(d + ZV
(Blo)

Taking the real part of the analytic continuation of Eq. (B10) leads to our final result for the optical conductivity

(T((t)) = 2r d(t)' de Ap(e)A(e, (t)')A(e, (t)' + (t))
f(~') f(~'+—~)

(B11)

When we collect the missing constants we find for the unit of the conductivity

+eat* N
Op = = 10 10 (pA cm)

2h Vol

for t' = 1 eV and a = O(ap).
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