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Conductivity of weakly disordered metals for an arbitrary,
momentum-dependent, integrable scattering potential
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It is pointed out that the explicit form of the impurity scattering potential is not needed to derive the
electrical conductivity of disordered metals in the quantum weakly localized regime. The derivation can
be done for any momentum-dependent well-behaved potential, in terms of only the transport time and
the elastic lifetime of the electrons. The specific form of the scattering potential is needed only for the
computation of these two characteristic times. Comparison is made with previous results. The question
is raised whether the one-parameter scaling remains valid in the general case of an arbitrary potential.

I. INTRODUCTION

The problem of the Anderson transition in disordered
metals containing randomly spread nonmagnetic impuri-
ties has been extensively studied during the past decade. '

The perturbative treatment in the weakly localized re-
gime (for uzi))1, e~ being the Fermi energy and r the
elastic lifetime) has proven to be quite useful in the case
of free electrons, which is the case to which we will
confine ourselves in the following (we will also assume
neither inelastic nor spin-orbit scattering). Various stud-
ies have appeared, in general using a contact-type impuri-
ty scattering potential. ' However, a few papers have
dealt with "correlated disorder" models. The case of in-
teracting impurities has also been considered when a
small amount of local ordering between the impurities is
taken into account. Recently, in the independent-
impurity case, a Yukawa-type of scattering potential with
a variable range was examined. From these studies, it ap-
pears that, for integrable, well-behaved potentials belong-
ing to the short-range universality class, the fixed point of
the conductance, in 2+ e dimensions, remains un-
changed. On the other hand, except for the contact po-
tential case and independent impurities, the transport
time ~„ is different from the elastic lifetime ~, as it is
affected differently by the specific scattering potential
which is involved.

In the present paper, we point out that the precise
form of the potential is not needed to derive, to first order
in perturbation, the electrical conductivity o. in the weak-
ly localized regime. The general form of o. is obtained in
terms of ~„and ~ only, for the arbitrary dimension d.
From such a derivation, it is particularly clear why the
fixed point in the 2+ @ dimension remains unchanged (as
long as one deals with an integrable, well-behaved poten-
tial belonging to the short-range universality class).
From the general formula for o., it is easy to verify that
one recovers the usual contact-potential result for in-
dependent impurities. ' We also discuss the result ob-
tained for a Yukawa-type potential in Ref. 4, as well as
the one for the contact-potential but interacting impuri-
ties of Ref. 3.

II. THE GENERAL FORMULA
FOR THE CONDUCTIVITY

where N(0) is the density of states at the Fermi energy
per spin direction, nI is the impurity density, and the an-
gular integral Id 0 is

d/2

dr—
2

(2)

I (d/2) is the gamma function for the argument d/2.
The transport time ~„ is given by

1
=2vrN(0)nl J (1—cos8)[V (1—cos8)] . (3)2 dQ

+tr dQ

The Drude part of the conductivity, shown in Fig. 1(a), is
obtained directly through the Einstein relation:

dn
+Drude dp

D is the diffusion coefficient given in atomic units by

kF~„2

D=

(4)

dn/dp is the derivative with respect to the chemical po-
tential p of the effective number of electrons per unit
volume. We thus obtain, alternatively,

We consider an arbitrary, but integrable, well-behaved
isotropic (to simplify) potential V(r), whose Fourier
transform V( ~k —k'~) depends on the transfer momentum
k —k' before and after collision (or on the scattering an-
gle 8 between k and k'), in an arbitrary manner. Since
the conduction electrons are close to the Fermi surface,
we take advantage of the fact that ~k = ~k'~ =k~, so that
V(~k —k'~) is only a function of ~k —k'~

=+2k~(1 —cos8), denoted as [V(1—cos8)]. Standard
techniques tell us that the elastic lifetime w is given by

1—=2vrN(0)nl J [v (1—cos8)] dQ

fdic
'
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(a) ~Drude

=2 N(0) f G(k, co„+ )G(k, co„)
kA, k dg

2' cc) ~O

k=2 N(0)r=2N(0)D
7

FIG. 1. (a), (b), and (c) are the diagrams contributing to the
conductivity to first order in perturbation. (c) must be counted
twice to account for the symmetric diagram with the extra
single-impurity line dressing the bottom electron line. The ver-

tex renormalization A obeys a Bethe-Salpeter equation diagram-
matically shown in (d). The cooperon I „denoted by a square
box with diagonals, obeys a Bethe-Salpeter equation shown in

(e). In all these diagrams, the full lines are electron lines dressed

by impurity scattering, and the ones with crosses single-

impurity lines.

crD,„~,=2N (0)D .

On the other hand, one can calculate o D«z, from the
diagrams in Fig. 1(a), with the impurity vertex A, obeying
the Bethe-Salpeter equation shown in Fig. 1(d) and calcu-
lated with the standard techniques to be

which identifies with (6). The factor 2 accounts for the
spin degeneracy; G(k, co„} is the electron Green's func-
tion for the kinetic energy g=k /2 —p with momentum
k and Matsubara frequency co„=co„+1/(2r)sgnco„,
co„=2wT(n + —,'};however, co„does not appear in the re-

sult of the integral in (8).
The weak-localization correction comes from the con-

ductivity diagrams shown in Figs. 1(b) and 1(c). By sym-
metry, diagram 1(c) has to be counted twice since the
single-impurity line can dress the bottom electron line as
well as the top one. Computing diagram 1(b) and taking
care of momentum conservation, we obtain

2(kA, ).(
—kA, ) d "Q

(b) (2ir )
d

XN(0) G (k, co„+ )G (k, co„)
277 ((( ~o

where the cooperon I, (with momentum Q and Matsu-
bara frequency co,) shown in Fig. 1(e) is known to have a
diA'usive pole due to the Ward identity, which insures the
conservation of the total number of particles as

(10)

7

in the limit where the external Matsubara frequency
co —+0; k is the momentum of the electron lines in Fig.
1(a). Then, computing the diagram in Fig. 1(a), we obtain

Therefore, we obtain

kF '4
3 d "Q

cr(i, )
= —4 N(0)r „I,(2ir )"

For diagram 1(c), we also obtain

—kA, —k'A, dd
I ~,~=4 f nI[V (1+cos8)]d8 f &1, N (0)[ f G (k, co„)G(k,co„)dg]

(2ir )"

k
4 f

d

dd
N (0)r f cos8nl[V (1+cos8)]d8 f „1,

(2ir )"
(12)

Therefore, combining the localization terms, we have

kF d&Q de
cr~1 ~+~, ~

= —4 r„N (0)r f & I, 1+2rrN (0)r cos8nI [ V (1+cos8)]
(2~) 277

(13)

Indeed, a detailed examination of the momenta involved in diagram (c) of Fig. 1 easily shows that it is [ V ( ~k+k'
~ )] or

[V (1+cos8)] which appears instead of [ V ( ~k —k'~ )]. However, one must take into account the following identity:

1—+2'(0)nl f cos8[V (1+cos8)] =2vrN(0)nl f [V (1—cos8)] + f cos8[V (1+cos8)]2 d0 dO 2 dO

7 2~ 2' 2'
—:2~N(0)nI f (1 —cos8)[V (1—cos8)] dO 1

2' 7t1
(14)
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Therefore, to take into account the following conditions.

(b)+(c)

Using (2) and (10), we obtain

4k'e~(0) f "~„r,
(2~)" (15)

(i) (kFgr(1) is needed for the small-Q expansion of
the single-particle Green's function to be valid.

(ii) On the other hand, the diffusive pole of the coope-
ron r, (g, a) ) requires that corn&1 and Dg ~&1. The
last condition reads (kzg+rr„) & l.

f d "Qr,
(2ir )"

f dQ gd —
idQ

(..)
f .. (.)~ g

1 1 d

I- 2d~(«~+ i)
2

3d (16)

so that

~(b)+(c)
2d —2 (d/2+ 1)

2

(17)

The lower cutoff' in the integral (when needed) is taken to
be the inverse of the linear dimension of the system, in
the absence of any other natural cutoff (we recall that we
have assumed that we have no inelastic or spin-orbit
scattering). The upper cutoff Qo will be discussed short-
ly. We note that r„as mell as r has disappeared from the
coefficient in front of the integral over Q in (17), which is
a pure number unaffected by the scattering potential.
This tells us that, particularly in the 2+ @ dimension, the
conductance fixed point remains the same, independent
of the specific form of the potential.

In order to choose the appropriate cutoff go, we ought

It is therefore reasonable, on physical grounds, to choose
Qo to be equal to I min[(kFr) ', (kz"(/ r„r) ']].

The common belief is that the small-g range of the
cooperon extends over 0 & Dg (r, , ', although this has
never been proved microscopically. Instead, here, formu-
la (10) follows from first-principles arguments given in
Ref. 7, and has also been derived rigorously in Ref. 4 for
the particular case of the Yukawa potential. (10) implies
that 0 & Dg ( r ', yielding condition (ii) above. When

'(r, , ' (a case encountered, for instance, in Ref. 3),
there is no ambiguity, and Qo is equal to (k~r) . In the
case where r,, ' (r ', it may be argued that it takes the
longest time, i.e., r„, for the electron to come back to the
point of origin after many collisions, while the time
Qrr„, being shorter, allows for many less such events. If
one could perform a calculation to higher orders in per-
turbation, in particular for the single-particle Careen's-
function self-energy, one could possibly imagine that in
its renormalized lifetime, r„would replace r, so that r
would disappear from the calculations and only r„would
survive. However, to our knowledge, such a study has
not been made. Therefore, to first order in perturbation
theory, which is the case to which we confine ourselves
here, it follows from the microscopic calculation that
DQ ought to be smaller than r ' so that
QQ (kFQ rr„) ' when rt ' (r

Then, combining (8) and (17), we obtain

dn
(~) —(c) dp

1 min[( kF ~) ' kF 'rtr
Qd 3dg

L
—1

2d —2 (d/2+1)
2

(18)

with D given by (5) with (3). Thanks to identity (14), for-
mula (18) has been derived without any knowledge of the
specific form of the potential, which will be needed only
to calculate explicitly r„and r. This will be done in the
following section for some particular cases.

Thus (18) yields [with (Ref. 6) I (3/2) =3/n/2 and
I (1)=1]

III. APPLICATIONS
OF THE i ENERAL FORMULA (18)

TO KNOWN CASES

In this section, we examine various scattering potential
forms.

kF'r
0 =

3772

1 1

k
1

, 7 d 3
L

kFr
2&

1 Lln, d =2,
7T Fr

which are well-known results. '

(20)

A. The contact potential
with independent impurities, d =3, 2

This case has been extensively studied in the litera-
ture. ' Here V ( ~k —k'~) is a constant Vo. Then,

B. The Yukawa potential for variable range
and independent impurities for d =2

In Ref. 4, a Yukawa type of scattering potential was
studied, V(r)=a[kF/(2')]exp( ykFr)/r (where a and—
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y are numbers), whose Fourier transform yielded d =2:

V(~k —k'~) =a/(y'+ ~k —k ~'/k,')'" .

kF e++12

2nr

1 L
2

ln
k,. (23a)

Then

2~ dO 1 nr—=nr
0 2~ chy —cosO shy

(21)

2~ dO 1 —cosO=nr
0 2m chy —cosO

nr 2nr
(1—e ~)=

shy e~+1

(22)

Thus, with r given by (21), and taking into account
only the condition (i) of Sec. II [i.e., if Qo is chosen to be
equal to (kFr) '], (18) would read

nI[ V (1—cos9)]= [nra /2](chy —cos8)

with chy=(y /2)+1. It was noted in Ref. 4 that if the
constant a is chosen to be equal to y and let~ ~, one re-
covers the contact-potential case. But if
a =const ( =&2) and y varies, one finds, from (1) and (3)
[and with N (0)= I /(2m) in 2d],

(23a) identifies with formulas (36) and (37) in Ref. 4.
However, since according to (21) and (22), r,, '(r
then, if we combine conditions (i) and (ii) of Sec. II, the
above formula should read

k„
o. = ~„— n2' 77

L
kF+r„r

(23b)

In this case the two characteristic times ~„and ~ explicit-
ly appear in o.. Next, we will see another example where
this is so.

C. The contact potential with interacting impurities

In Ref. 3, a contact potential was used. However, the
local positional ordering between the impurities (always
present even if it is usually ignored) was shown to yield
an "effective" potential depending on the scattering an-
gle. If we divide o. , as written in formula (18) above, by
o.

o (the conductivity for independent impurities) we ob-
tain

O0

l«

l0
J' '

21 —2 (d/2+ 1)d L

0

l0
kF l« I 2d —2 (d/2+ 1 )

dn d L

dp

(24a)

(with I„=kFr„and I =kFr), when Qo is again chosen as to fulfill only condition (i) of Sec. II. (24a) identifies with for-
mula (17) of Ref. 3. However, taking into account (i) and (ii) of Sec. II, we must instead write

00
1—

l0

d 1

kF l« I 2d —2 (d/2+1)
dn

dp

(24b)

where [min[i ', (I„) '~ ]] will depend on the sign of the
impurity interactions involved in the problem. Indeed,
according to Ref. 3, ~,, 'o~~ ', depending on whether the
impurities attract or repel each other. Therefore, in this
case as well, o. depends on both ~„and ~.

IV. CONCLUSION

We have studied the conductivity of weakly disordered
metals for an arbitrary scattering potential to first order
in perturbation. When ~„W~, the correct perturbative
parameter is actually (kFr„) instead of (kFr) We have.
shown that the conductivity can be expressed in terms of
tauo characteristic times ~„and ~j without any knowledge
of the precise angular dependence of the scattering poten-
tial. Then, with identity (14) we have proved that the
coefficient of the integral j g dg is a pure number de-

pending only on d. Therefore, whatever the potential is,
in particular whether it has a zero or a finite range, the
above coe%cient is the same for a given dimensionality.
Particularly in the 2+ @ dimension, the fixed point of the
theory is insensitive to the particular shape of the poten-
tial or its range. However, the explicit formulas for ~„
and w require the specific expression of the potential.
Therefore it is necessary to deal with a well-behaved, in-
tegrable potential. On the other hand, the fact that, in
general, two characteristic times, or alternatively, two
characteristic lengths l« =kF ~«and l =kF ~ are involved
in o. appears to render questionable the "one-parameter
scaling" argument, especially when one takes into ac-
count the positional local ordering between the impuri-
ties. As already mentioned, such a local ordering is,
indeed, always present, since the experimental samples
are always quenched from a finite temperature (only an
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infinite quenching temperature would allow to consider
the impurities to be independent). r, when it explicitly
appears, does so only via the cutoff Qo. This is not a
minor point, especially when dealing with small or meso-
scopic samples; then the precise value of Qo will become
essential when compared to L

Tote added. After this paper was submitted for publi-
cation, we became aware of a paper by R. N. Bhatt, P.
Wolfe, and T. V. Ramakrishnan, Phys. Rev. B 32, 569
(1985), dealing with an anisotropic scattering in two di-
mensions. They show that the effect of the anisotropy
only results in an anisotropic diffusion constant. Com-
pared to the Bhatt, WolfIe, and Ramakrishnan deriva-
tion, ours is much simpler since it uses only first-
principles relations and yields a result valid for an arbi-
trary dimension. Furthermore, we discuss the question of

one or two characteristic lengths, which is an important
question to raise and which was not addressed in the
Bhatt, Wolfe, and Ramakrishnan paper.
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