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Friction and inertia of a vortex in an underdamped Josephson array
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We study the motion of massive vortices in Josephson-junction arrays by numerically solving the
equations of motion for square lattices of resistively and capacitively shunted Josephson junctions.
We find that the viscous drag force on a vortex, which varies as the inverse of the junction resistance
for low-mass vortices, becomes independent of the junction resistance as the vortex mass increases.
We present a semiquantitative model that explains this unusual behavior. As a consequence of the
excess drag, ballistic vortex motion should only be observed for a limited range of parameter values,
in agreement with the recent experiment of Van der Zant et aL [Europhys. Lett. 18, 343 (1992)j.

I. INTRODUCTION

Vortices in the phase configuration of an array of
Josephson junctions dominate its dynamic properties for
bias currents I small compared to the junction critical
current I, Abov. e a threshold of Ia —0 1I, (Re. f. 1)
the bias current causes the vortices to move. This im-
plies that the Josephson phases change in time, voltages
across the junctions appear, and currents flow through
the resistors R shunting them. The accompanying energy
dissipation amounts to a frictional force on the vortices,
limiting their velocities.

Since the junctions also have a capacitance C, voltages
imply the storage of electrostatic energy as well. This en-
ergy storage occurs simultaneously with vortex motion,
and it has been interpreted2 s as the kinetic energy of
the vortices, which therefore also should have a mass m.
Simple estimates agree with the result of a more elab-
orate theory2 s and give m- (h/2e)a(2vr/a) C/2, where
a is the lattice constant, and —e is the electronic charge.

Accepting the concept of a massive vortex it is con-
ceivable that, for sufficiently high mass and low damp-
ing, ballistic vortex motion becomes possible: a vortex,
once accelerated by an externally applied current I,
should travel for many lattice constants after I has been
switched off, until eventually it is brought to rest by the
remaining friction.

Last year, an important experiment by Van der Zant et
aLs indicated the existence of ballistic vortices. Shortly
afterward, however, Bobbert" conducted the first system-
atic numerical study of vortex motion in underdamped
Josephson arrays, and found a greatly enhanced friction
as compared to the theoretical predictions. He could not
detect ballistic vortex motion.

Motivated by this discrepancy, we also performed a
numerical investigation of vortex motion. We avoided
approximating the sinusoidal Josephson potential by a
piecewise linear function as done in Ref. 7. The calcu-
lation is very straightforward and described in Sec. II.
In Secs. III and IV results for the current-voltage (IV)-
characteristic are presented, and the friction coefficient is
discussed. We conGrm Bobbert's result that the friction

becomes independent of the shunt resistance for McCum-
ber parameters P, = 2eI,R C/h much larger than one.
He correctly recognized the excitation of spin wavess as
the source of additional friction, but an explanation of
the magnitude of the friction is missing in his paper (the
energy balance argument he provides is independent of
the vortex velocity). We study the interaction between
vortices and spin waves more closely, and give a semi-
quantitative explanation for the near linearity of the I-V
curve in the flux-flow range. Our Bndings explain why
experimentallys ballistic vortex motion could only be ob-
served in a narrow parameter region. This is discussed
in more detail in Sec. V.

A final section deals with the "row-switching" phe-
nomenon, which leads to hysteretic steps in the I-V
curve. An earlier suggestion to explain it by an analogy
to solitonic vortex motion in a long Josephson junction
is found to be inadequate.

II. CALCULATION

d—Q, = —) [I, sin(&p, —
&pz

—A,z) + (U, —Uz)/Rj
(ji)

+ Iexternal ~ (2)

Here the sum runs over islands j connected to island i by
a junction. The current Ie„te»al equals the applied cur-
rent I at one side of the array, —I at the opposite side,
and vanishes for the interior islands. Perpendicular to
the external current direction we use periodic boundary
conditions. A homogeneous external magnetic Geld per-

We use the RCSJ (resistively capacitively shunted
junction) model for a square lattice of Josephson junc-
tions. Our variables are the charges (Q, j, and the or-
der parameter phases (p,j (at some interior point r, ) of
the superconducting islands connected by the junctions.
Their equations of motions are

G 26—(p = —U
dt
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pendicular to the array plane causes frustration; it enters
the equations of motion via the line integrals of its vector
potential A,

annihilated, and just one vortex is left. By translating
the phase configuration this vortex is positioned in the
middle of the array; then the "measurement" of the I-V
curve is started. After each change of the bias current
the system is typically given a time 10RC to equilibrate.

Magnetic fields created by the Josephson currents are
neglected. This is justified for small lattice constants and
low critical currents. The electrostatic potentials (U, ) of
the islands are related to the charges by

q, =) C(U, —U).
(ji}

(3)
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FIG. 1. The topology of the array used for the numeric
calculations. The applied current I fiows in the x direction,
in the y direction periodic boundary conditions are used. The
dashed line indicates the vortex path. In this array N x N& ——

7x8.

The array geometry is shown in Fig. 1.
The calculation of the potentials for given charges must

be done for each step in the numerical integration of
the equations of motion (1), (2). Since the capacitance
matrix is diagonal in Fourier space for a homogeneous
array, s this can be significantly speeded up by solving
for the U~ in Fourier space. For N islands in the array
it takes only G(N log N) operations using a fast Fourier
transform, whereas N2 operations are required to multi-
ply the (long-ranged) inverse capacitance matrix in real
space with the charge vector. This trick, in a somewhat
different guise, was applied before by Eikmans and Van
Himbergen.

A single vortex can be accommodated in the system
by choosing a frustration equal to the inverse number of
dual lattice sites (for zero frustration the periodic bound-
ary conditions would generate an additional antivortex).
It is, however, not easy to construct, or guess, the phase
configuration containing exactly one vortex in the middle
of the array. Therefore we start with a random initial-
phase configuration, which usually contains many vor-
tices and antivortices. Monitoring the vorticity (see the
Appendix for its precise definition) of all plaquettes, we
let the system evolve until all vortex-antivortex pairs are

III. CURRENT-VOLTAGE CHARACTERISTIC

Figure 2 shows I-V curves of an array with N x N& ——

15 x 32 plaquettes for P, = 10 and P, = 100 (see Fig. 1
for the orientation of the coordinate system). The total
dc voltage across the array in the I direction, divided
by the number N~ of junctions in that direction, is V.
The vortex depins at I, = 0.1I„in agreement with Ref.
l. Its average velocity v is given by

2~—" (4)
2e N&a

because each time a vortex moves through all N„pla-
quettes in the y direction, the total phase difFerence
across the array in the x direction changes by 2vr, lead-
ing to an average voltage according to Eq. (1). After
depinning, the vortex velocity rises roughly linearly with
I for a large interval [cf. Fig. 2(b); note the scale dif-
ference as compared to Fig. 2(a)]. This region is called
the flux-flow regime. At its upper end a small, staircase-
like structure is seen for P, = 100. It is caused by a
phase locking between the vortex and spin waves it ex-
cited during its previous passage through the array. For
a single vortex configuration, this phase locking is there-
fore related to our use of periodic boundary conditions in
the y direction. For a larger array with the same P, the
structure disappears [see Fig. 2(c)]; we shall come back
to this point below (cf. Fig. 7). In a real array there will
of course be no periodic boundary conditions, and a vor-
tex cannot reencounter spin waves it previously excited.
However, if several vortices are present, we may expect
that a vortex phase locks to the spin waves generated by
a second vortex moving in front of it.

In the flux-flow regime, the phases only change in time
when the vortex passes by, and come to rest in a time
of order RC after the vortex has moved on. The rate
of change of the phase difference across a junction, i.e.,
the voltage across it, increases with decreasing distance
between the junction and the vortex core [see Fig. 3(a)].
Only the voltage across the junctions that are right in
the vortex path has a dc component.

At I~ —0.78I, for P, = 10, and I —0.6I, for
P, = 100, the flux-flow regime ends with a jump of the
voltage. At this point the character of the phase motion
is altered completely, and the phase motion is no longer
dominated by the vortex. The row of junctions in the
original vortex path, and one (for P, = 100) or more (2
for P, = 10) neighboring junction rows on either side
transit to the nonzero voltage state. The voltage across
each of these rows is now nearly exclusively dc, while the
remaining junctions in the array show hardly any voltage
across them [see Fig. 3(b)]. The total dc voltage across
the array equals the number of rows that switched times
the voltage across a single, current-biased junction in the
nonzero voltage state.
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value at which the row switching occurs.
For I~ = I„finally, all the remaining junctions in the z

direction also switch to the nonzero voltage state, and the
dc current flows through the shunting resistors. When
the current is lowered again, the voltage stays close to
BI also for I below I„reflecting the hysteresis of a
single underdamped junction. In fact the I Vc-urve of
the array nearly coincides here with that of a single junc-
tion [see Fig. 2(a)]. The retrapping current, however, is
somewhat higher in the array.

When the junctions switch back to the zero-voltage
state they may be in a configuration corresponding to
additional vortex-antivortex pairs. Some of these do not
leave the array immediately; this can cause small addi-
tional steps on the retrapping branch of the I Vcurve. -
Also, the number of vortices and antivortices remaining
in the array depends strongly on the rate at which I~
is decreased, and consequently so does the shape of the
retrapping branch.

If one decreases the current after row switching oc-
curred, but before I = I, is reached, there is also hys-
teresis. The retrapping current in this case is close to
the retrapping current for the situation that I~ had been
increased to above I, [see Fig. 2(a)].

IV. FRICTION COEFFICIENT

In the flux-flow regime, for I & 0.1I, but below the
row-switching current, the vortex velocity v is nearly lin-
ear in the applied current I, and one can define a friction
coefficient g by equating the driving force exerted on the
vortex by I (i.e. , the energy supplied by the current
source per unit length of the vortex path) to gv,

2' I~
a I,J

In the last member of this equation we introduced the
Josephson energy E~. For low McCumber parameters g
is dominated by the resistors R shunting the junctions.
In this case the value

(6)

for g was derived in Refs. 4 and 5.
In Fig. 4 our numerical results for q are plotted versus~. Clearly, the result (6) is quite good for P, of order

one. However, g/go then rises roughly proportional to

(2vr ) 1 2eI,C
vr (2ej (a) m h

2m EJ

in agreement with Bobbert's~ findings. Note that this
expression for the friction coefficient g depends only
on E~ and the Josephson plasma frequency
/8EJez/2C/5 = ~/RC, but it is independent of the
resistance B—at first sight a surprising result. In terms
of the vortex velocity it means that v =aur&I /I, in the
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FIG. 4. The friction coefficient g, normalized by go, vs
the square root of the McCumber parameter P, . Here g is
calculated at I = 0.4I, .

flux-flow regime for a strongly underdamped array.
Our simple explanation of the independence on R is

that the vortex excites charge oscillations (or spin waves)
on the islands adjacent to its path. These excitations
do not propagate along with the vortex, which therefore
loses energy by creating charge oscillations on each new
island it passes. This mechanism for vortex friction was
already speculated about in Ref. 11. The resistance R
determines the decay time RC of the charge oscillations,
but for v ) a/RC the vortex has moved on before the
Ohmic damping becomes effective, and R does not influ-
ence the amount of energy transferred from the vortex to
the charge oscillations.

While the independence of g on R is thus easy to under-
stand, it is not clear why this damping mechanism should
lead to a linear I Vcurve, i-.e., a velocity-proportional
friction. In fact, we conclude that it does not: for high
P, the flux-flow branch is neither strictly linear nor does
its extrapolation to I = 0 pass through the origin.

In order to gain some understanding of the shape of
the I-V curve we first consider an infinite array in the
continuum limit. In this limit the equation of motion (2)
for the charge becomes linear,

—Q(r, t) = I,'7 y(r, t) + —7' U(r, t).
Ot

(8)

a2 1 8
Q(r, t) +~„Q(r, t) + —Q(r, t) = 0. (10)

(We omitted the vector potential, which is not needed
to accommodate a single vorte~ if no periodic boundary
conditions are used. ) The symbol Q now denotes the
(areal) charge density, and 7'2 is the Laplace operator.
Combining (8) with the Josephson relation (1) and Pois-
son's equation

7' U = —Q/C,

the continuum limit of Eq. (3), we obtain for a non-
singular phase field
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The charges at diEerent positions behave as uncoupled
harmonic oscillators. For B ~ oo their eigenfrequency
is the Josephson plasma frequency u&. Due to the lack
of spatial coupling the dispersion relation of spin waves
is of the "optical" type, i.e. , their eigenfrequency does
not depend on the wave vector, and their group velocity
vanishes. They can therefore not carry away energy. In
particular, this implies that the coupling between vortex
and spin waves will not give rise to a damping force for
a small-amplitude oscillatory motion of the vortex.

The spin-wave spectrum acquires an "acoustic" branch
if the conducting islands are given a nonzero capacitance
to ground. Friction due to acoustic spin waves has been
studied in Refs. 2 and 3. Here we treat the case of a
purely optical spectrum.

In the continuum model a single, static vortex with its
center at rp = (xp, yp) corresponds to the starlike phase
configuration

(p (r) = Im ln [2: —zp + i(y —yp)] .

For a vortex moving with velocity v we define the spin-
wave part y~ of the phase configuration by the di6'erence
between the translating configuration (ll) and the solu-
tion p of the equations of motion (8), (1),

The spin-wave part QS of the charge density is defined
analogously by Q—:—CV' Us = C—V'2(h/2e)B&ps/Bt.
From Eqs. (8), (9), and (1) one obtains for its motion

S 2 S 1 B S
Bt Q '"Q 'RCrtQ

v 1 B v=
Bt Q -

RCBtQ

Equations (14) and (15) describe how the moving vortex
excites spin waves.

We now calculate how much energy the vortex loses to
the spin waves when it moves. The total energy E of
the spin waves consists of the charging energy connected
with Qs and the (linearized) Josephson energy of the
phase field p )

QS 1 USQSd2T + 1+ Ig+S!2d2T.

Its rate of change is

BZs
USQ dT Ez j 7'P dT

Bt

(p(r, t) = p (r —vt) + rp (r, t). (12) US (r, t) ! Q (r, t) + cu„ Qs(r, t')dt'! d T

= C—v 2~6'(x) b(y —vt).
2e Bx (14)

The spin-wave part is nonsingular, and $ 7'ps dr van-
ishes for any closed loop. The vortex contribution, on the
other hand, is singular at the core, and there its partial
space and time derivatives do not commute. Since y+ is
the solution for a static vortex we have

V2pv(r —vt) = 0.

For the charge density Q+ connected to a moving vortex,
on the other hand, we find (putting 2;p = yp = 0, vz = 0,
vy=v

~hQ—:—CV' U = —CV' ——
&p (r —vt)

2e Bt

= CV' —v ln Qx2 + (y —vt) 22h B
2e Bx

1

RC
USQSd2

U
I

—Q — Q !dT

@S +
(18)

due to coupling to the moving vortex. Evaluation of the
gain term is more convenient after a spatial Fourier trans-
form; using Eqs. (14) and (15) one finds

where we have used Eq. (15) in the last step. The rate
of change of the spin-wave energy consists of a loss term
due to Ohmic friction, and the gain term

(BE i v Eg
B

k.2k„, , t' (2RC)-'
d kk2+ k2[(vk„) + (RC) ] I

(k A)2+ (2RC) 2

(2RC)
(k„v+ A)2+ (2RC)-') (19)

Here 0 is the eigenfrequency u„—(2RC) of the damped charge oscillations. The integral in (19) diverges for

large k. This stems from our use of a coreless vortex. In the array there is a natural cut-off at the wave vector x/a,
which we shall therefore also impose on the integral in (19).

For R ~ oo, the strongly underdamped case we are most interested in, Eq. (19) then takes the form

(BZ'i+ v'Z,
( Bt ) 2cus

7r/a k~v~ky3
dk dky

* "
vr [6(~„—k„v) —b(~„+kyv)]

—n/a ~ + y
t' arctan(harv/ace„) i= (2vr Eqv/a) O(v —a~„/m) vr !
1—

harv/au&„)

(20)
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A formula for the vortex velocity can now be obtained
by equating (BE~/Bt)+ to the energy transferred per unit
time to the vortex by the external current,

8(„ / ) ~1
t n(~"/ ~)

~
(2j)

7I V/GQ)p j Ig

According to formula (20) there is no frictional force on
the vortex for v ( mu„/7r. This is related to the sharp
wave-vector cut-off employed. Introducing instead the
smooth cut-off function exp( —ka/v'2x) (used in Ref. 3)
in the integrand in Eq. (19) we obtain

of the velocity range in which spin-wave friction can be
neglected.

The continuum model has been studied before by Eck-
ern and Schmid. s These authors disregarded the vortex
friction due to the excitation of optical spin waves be-
cause they focused on the limit v/ace~ -+ 0. However, if
one is interested in modeling ballistic vortex motion in
the array for I = 0, the velocity of the vortex cannot be
arbitrarily low, because the vortex kinetic energy at the
bottom of the pinning potential must not be smaller than
the amplitude of the pinning potential, about 0.2Eg for
the square lattice. Using the result

(' (
d( 2 exp

v o 1+
(2+ 1 au&„) I

2m U) I,
t'2m ) C

(2e) ( a) 2

(22)

Figure 5 shows the vortex velocity versus the applied
current according to both Eqs. (21) and (22), together
with results of the numerical calculation. [The Heaviside
function of Eq. (21) is omitted in that figure. ] We observe
that the continuum model gives the right order of mag-
nitude, although it overestimates the friction by about
a factor of 2. Also, of course, pinning by the lattice-
periodic Josephson potential, which for the array inhibits
vortex motion for I lower than about 0.1I„is absent in
the continuum model. A very important feature of the
energy loss to spin waves is that it strongly decreases for
a vortex velocity very small compared to mu„. Unfor-
tunately, in the region of low velocity the results of the
continuum model depend on details of the cut-off; the
model therefore only provides us with a rough indication

from Refs. 2—5 for the vortex mass this implies that the
vortex velocity must reach at least cue„/0. 2/x = 0.15m'„
whenever the vortex moves by a lattice constant. Accord-

ing to Eq. (22) the friction due to the excitation of optical
spin waves is already effective at this velocity (see also
Fig. 5).

In the "linear medium approximation" also studied in
Ref. 3 the pinning potential is taken into account, so
that in that model the limit of vanishing vortex velocity
is not an option. The reason why the friction mechanism
discussed in this paper was not noticed for the linear
medium approximation of Ref. 3 is not entirely clear.

We shall now examine the results of the numerical cal-
culation in light of the above discussion. In Fig. 6 we

plot cu2Q; as a function of time for an island i next to
the vortex path, together with

2qV, efr g + 2q + q (24)
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Eq. (21), with the Heaviside function omitted] and exponen-
tial cut-ofF [solid line, cf. Eq. (22)] at P, = oo. Also shown
are numerical results for the 15 x 32 array at P, = 10 (dashed-
dotted line) and at P, = 100 (dotted line).
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FIG. 6. Solid line: effective charge [cf. Eq. (24)] on an
island next to the vortex path. Dotted line: total charge on
the same island. Crosses + indicate times at which the vortex
passes a junction.
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This quantity is the effective charge connected with the
moving vortex if one enforces Eq. (15). Also shown in
Fig. 6 is the position of the vortex. At t = 0 the vor-
tex enters the plaquette bounded by the island i under
consideration. We see that Q, " is essentially differ-
ent from zero only if the vortex is less than about two
lattice constants away. The charge oscillations created
by Q,. " decay like exp( —t/2RC), and persist for some
time after the vortex has moved on. This can also be
seen in Figs. 7(a) and 7(b), which show "snapshots" o
the charge distribution. Appreciable charge oscillations
occur only on two island rows in the wake of the vor-
tex. For the parameters Ia = 0.5I, and P, = 100 used
1n 1g.F' 7 the charge oscillations have not yet died out

1 32completely in the time it takes the vortex to trave
lattice constants. This causes the staircaselike feature in
the I Vcurv-e of the 15 x 32 array, which is absent in the
15 x 64 array for the same P, [cf. Figs. 2(c) and 7].

The time integral of uzQ, " equals +2vrI, for an is-
land next to the vortex path and vanishes elsewhere To.
understand this fact note that (for an infinite array)

~ ~

~

~

~

OO

~„'Q; ""«=
I Q'+ ~„'Qt + &c0 l

«

=~~ f Qdt

=cu„) c(U, —U~)ck
—00 (

~

)

=I,) (V; —V, )l . (25)
(2~)

The sum over phases in this equation equals +2vr or 0,
as can be seen from the sketch in Fig. 8. While the

0.3

(a) (b)

FIG. 8. Sketch of the phases on islands next to the vortex
path before the vortex passes (a), at the passage of the vortex
(b), and after passage of the vortex (c). Dashed line indicates
vortex path. Notice that phase difFerences across the vortex
path increases by 27'. , while other phase difFerence have zero
net change.
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complete time integral of tu~Q " is a constant, the

shape of the Q ""pulse depends somewhat on vortex
velocity and McCumber parameter. Figure 9 displays
j' * "Ch'~'Q '~(t')/(2vrI, ) fol' various values of Ia and

P, . The differences between the curves appear minor
for I not too close to the value at which row switch-
ing sets in. Except for the dip at x ——a they also agree
quite well with what one would expect from a star-shape
phase configuration for the vortex from the continuum
model [cf. Eq. (11)]
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Close to the current where row switching happens, the
oscillations excited by the passing vortex develop such a
large amplitude that the linearization of the Josephson
current for the spin waves fails. Then the right-hand side
(RHS) of Eq. (24) is not only nonzero due to the vortex,
but due to spin-wave anharmonicity as well (see the curve
for P, = 10 and I = 0.78I in Fig. 9). Also, in that case
charge oscillations on different islands become coupled,
and the simple description of the charge oscillations in
terms of independent harmonic oscillators breaks down
completely. Row switching occurs in this regime.

V. VORTEX MASS AND INERTIA

FIG. 7. Snapshots of the charge distribution in a 15 x 32
array (a) and a 15x 64 array (b), for Is = 0.5I, and P, = 100.
In the 2: direction we show only half of the array for clarity.

As long as there is a linear relation between the vor-
tex velocity and the applied current, the total charging
energy of the array is quadratic in the vortex velocity.
This follows from the fact that the energy supplied by
the current source is ultimately converted into heat in
the shunt resistors. For steady motion
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FIG. 9. The integral of the efFective vortex charge vs vor-
tex position. For P, = 10 (dotted lines) curves corresponding
to I = 0.2, 0.4, and 0.78 are shown, for P, = 100 (thin full

lines) curves corresponding to I = 0.2 and 0.4. The thick
full line gives the result for a starlike vortex configuration [cf.
Eq. (26)j. Note that as long as the current is not too close to
the point where row switching occurs (I = 0.78 for P, = 10),
the curves fall close together.

) (U, —U~—) = (N„I )(N V) = 2vrEg ——
(U&

(27)

thus holds. The left-hand side (LHS) equals the to-
tal charging energy divided by RC/2, and the RHS is
quadratic in v for a linear I-V characteristic.

In the flux-flow regime the I Vcurve tu-rns out to be
nearly linear, and consequently there the total charging
energy is nearly quadratic in the vortex velocity, as must
be required of the kinetic energy. Nevertheless only that
part of the charging energy that travels along with the
vortex qualifies as vortex kinetic energy; the remaining
part is contained in the spin waves created by the vortex.
Only in the adiabatic limit v/mu„—+ 0, when excitation
of spin waves is suppressed, the total charging energy
may be regarded as vortex kinetic energy. By considering
this limit the expression (23) for the vortex mass rn was
derived in Refs. 2—5.

As already noted above, the adiabatic limit is only
marginally realizable due to the lattice periodic pinning
potential. If one approaches this limit, the vortex ve-
locity will vary considerably over a lattice constant, an
efFect neglected in the derivations of rn in Refs. 4 and 5.
In the linear medium approximation developed in Ref. 3
the efFect is accounted for, but found to have little eKect
on the vortex mass. One must keep in mind, of course,
that the vortex position, and with it the vortex velocity,
is not unambiguously defined within one plaquette. This
ambiguity also aKects the de6nition of the vortex mass.

Experimentally, Van der Zant et aL6 found vortices

moving ballistically over a distance of 60 lattice constants
with a speed of about 2 x 10s lattice constants per second.
Since cu„= 1.2 x 10 s in that experiment, the aver-

age vortex velocity was only about 0.016m'„. Due to the
periodic pinning potential the peak velocity must have
been higher, as discussed above. For the triangular lat-
tice used in Ref. 6 the pinning barrier is about 0.05EJ.,
with the expression (23) this requires a peak velocity of
+0.1E~/m = 0.07am„. The results obtained in this pa-
per suggest that these velocities might just be low enough
to avoid the friction due to the excitation of optical spin
waves (cf. Fig. 5). In this respect we disagree with
Bobbert, 7 who inferred &om the enhanced friction coef-
6cient at vortex velocities not very small compared to
ace„ that ballistic vortex motion is impossible. However,
we conclude that in the parameter region where ballis-
tic motion can be achieved the pinning potential is never
small compared to the vortex kinetic energy.

We also note that the McCumber parameter in Ref.
6 must have been extremely large. Since all charging
energy decays exponentially with time constant RC, the
observed path length of 60 lattice constants and the aver-

age vortex velocity of 0.016m'„ implies 0 016m&R. C ) 60,
i.e. , a McCumber parameter p, ) 10 . The McCumber
parameter calculated with the normal state tunnel resis-
tance in Ref. 6 had the value 46. In that experiment
there were no Ohmic shunts, but B is to model the sub-

gap resistance for quasiparticle tunneling. The subgap
resistance must thus have been +10"/46 = 500 times
larger that the normal state tunnel resistance, which for
high-quality tunnel junctions is not unreasonable.

In Ref, 6 the external current was applied in the left
vertical part of an H-shaped array. The ballistic vortex
moved through the channel (the "-" of the "H" ) and the
right vertical part, where no external current was ap-
plied. Ballistic vortex motion could only be observed for
very low currents just barely sufficient to depin the vor-
tices. In the Erst instance one might expect that a higher
current, resulting in a higher initial vortex velocity in the
current-free part of the array, would do no harm, with the
vortex just slowing down until friction by spin-wave exci-
tations becomes inefFective. The reverse side of friction,
however, is fluctuations, and charge oscillations created
by a moving vortex can have a strong back-action on it
after the driving current has been removed.

Figure 10 shows our numerical results for the motion
of a vortex in a 15 x 64 array with p, = 2500. At t = 0
the current I~ is reduced linearly from 0.15I, to zero in
a time 2m/cued- 0.125RC . We see that the vortex does
not persist in its motion, but rather oscillates back and
forth a couple of times. This one might interpret as the
influence of a "fluctuating force" exerted on the vortex
by the spin waves it created. It is possible that this efFect
spoiled ballistic vortex motion in Ref. 6 for higher initial
vortex velocities.

To gain complete confidence in the interpretation of
the Van der Zant-Orlando-Mooij experiment~ in terms of
ballistic vortex motion it is desirable to perform a com-
puter simulation of the H-shaped array with extreme val-

ues of P, . The computational requirements for such work
are beyond the power of the work station on which the
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FIG. 10. Vortex motion at P, = 2500 in the 15 x 64 ar-
ray. The applied current is 0.15I, for t ( 0, and is linearly
decreased to zero between t = 0 and t = 0.125 .

calculations reported in this paper were performed. An
implementation on a faster machine is in progress.

We conclude this section by a remark on the vortex
mass in the quantum regime. If, by lowering capaci-
tance and temperature, the unit charging energy ez/2C
becomes small compared to the thermal energy, quan-
tum fluctuations of the phases are important. A vor-
tex can then behave as a quantum mechanical particle.
Since it moves in the periodic pinning potential, its en-
ergy eigenvalues form a band structure. The band mass
of the vortex has been calculated numerically for very
small arrays, is and in the limit of high E~/(e2/2C) ana-
lytically with an instanton method. i4 is It was found to
lie at least a factor 5 higher than the band mass obtained
from a model Hamiltonian for vortex motion combining
the free mass (23) with a sinusoidal pinning potential. s

The enhancement of the band mass is also a consequence
of the coupling between vortex and spin waves, which
hinders vortex tunneling, thus making the band flatter
and the band mass larger. However, as we have seen in
Sec. IV, for translational motion of a classical vortex the
coupling to the spin waves leads to additional friction
rather than to an enhancement of the vortex inertia: the
notion of vortex mass thus has a different meaning in
different contexts.

VI. ROW SWITCHING

(y —vt (
(v)

~i
c ) (28)

We finally return to the row-switching phenomenon.
This instability of the vortex solution above a thresh-
old current had already been predicted by Nakajima and
Sawadais and was experimentally observed by Van der
Zant et al i7

In Ref. 11 it is suggested that there exists an anal-
ogy between the vortex velocity at which row switching
occurs and the maximum velocity of a soliton in a long
Josephson junction. Such a soliton solution does not de-
pend on space and time separately, but rather on the
combination s

Here Ag is the Josephson-penetration depth and v the
soliton velocity, which cannot exceed the limiting velocity
c = u„A J. We believe that this maximum soliton velocity
bears little relation to the maximum vortex velocity in
the arrays we studied.

First, A~ is infinite in our system, since we neglected
any magnetic field created by the Josephson currents.
Furthermore, we see from Fig. 9 that the vortex does not
suffer the Lorentz-like contraction characteristic for the
soliton [the square-root denominator in Eq. (28)]. Fi-
nally, the velocity at which row switching occurs, mea-
sured in units of au„, decreases with increasing P„noted
experimentallyii as well as in the numerical work (cf.
Ref. 7 and Fig. 2). This also differs from the behavior of
the soliton in a long Josephson junction.

Qualitatively it is easy to understand what happens in
the row switching. The individual underdamped Joseph-
son junctions have a hysteretic I Vcurve-and are on the
metastable part of the zero-voltage branch when the row
switching occurs. External perturbations (e.g. , noise) ini-
tiate the transition to the nonzero voltage branch for bias
currents smaller than I,. In our case the disturbance
is provided by the passing vortex. In the discussion of
Fig. 9 we already pointed out that for a I just below
the row-switching value, large amplitude oscillations of
the phases are created on islands the vortex passes. If
the damping due to the shunt resistors is lowered, i.e. , P,
increased, the metastable zero-voltage branch becomes
more vulnerable to this disturbance.

A quantitative theory of the current value at which
row switching sets in is not available at present. Some
additional insight, however, can be gained by studying
the related phenomenon in fully frustrated arrays, is for
which a reduced description in terms of only 2 degrees of
freedom is possible,

VII. SUMMARY

We have simulated square-lattice arrays of under-
damped (p, & 1) Josephson junctions containing one
vortex by solving the full set of RCSJ equations for the
coupled junctions. At moderate values of P„our sim-
ulations agree with a simple description of the vortices
which assigns a mass (23) and a simple viscous damping
parameter (6) to the vortex.

As Bobbert~ has pointed out previously, however, this
description breaks down for much higher values of P, .
An extra damping mechanism appears, so that even in
the limit of arbitrarily small Ohmic loss in each junc-
tion, there will be a nonzero drag force on the vortex,
see Eq. (7). We have discussed the physical origin of
these extra losses in terms of the generation of charge os-
cillations by the moving vortex, and have developed an
analytic theoretical description of the extra losses.

As a consequence of our analysis, we conclude that
ballistic vortex motion should only be observed under
very limited circumstances. Extremely high values of P„
a driving current only slightly above the vortex depinning
current, and arrays with weak pinning potential, such
as triangular-lattice arrays, appear to be necessary to
observe ballistic vortex motion. These are precisely the
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conditions reported in the experimental work of Van der
Zant et al.s

Note added in proof R.eference 20 contains experimen-
tal verification of the enhanced viscosity, Eq. (7), as well
as a semiquantitative model to explain the enhancement.
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APPENDIX: DEFINING VORTICITY
IN A JOSEPHSON ARRAY

In a bulk superconductor, the net number n of vortices
enclosed by a curve C is given by

1
n = Vp dl. (A1)

2K C

For n g 0 the phase field is multivalued, but 7'&p is (lo-
cally) well defined and unique. In applying (Al) to a
junction array, however, an ambiguity arises, since the
phase is not defined inside the tunnel barriers, and con-
sequently phase difFerences across the junctions are only

determined up to a multiple of 2z. To get a definite re-
sult, one needs to establish an additional rule on how to
choose this multiple.

It is natural to restrict the value of the phase difFerence
across a tunnel barrier to the range —m to vr, i.e., to use
the value of the phase difFerence with minimum modulus.
If the phases are uniform inside each superconducting
island, the vorticity of a plaquette is then defined by

2eVy= ——A
c (A3)

holds. In this case the array analogue of (Al) becomes

where i runs over all superconducting islands forming
the plaquette, N(i) is the neighbor of i in counterclock-
wise direction, and [&p]m~„ indicates the application of
the above "minimum-modulus-rule" to &p. This rule is
essential [without it, Eq. (A2) would always give n = 0!]
and implicitly used, though not spelled out, in much of
the literature.

If an external magnetic field with vector potential A is
present, the phases on the islands are no longer constant.
Inside the islands, the supercurrent density is usually so
low that in good approximation

1 2e
&F ' "I+ ) . piv('i —A ——

side islands 2m .
' hc

2e 1 ~ 2eA ~ dl + ) spiv (i) —(pi —— A dl
hc 27r, ' ' bc

mmr

mmr

Here r; is some point inside island i and y; the phase
at the point. The first term in the last member of this
equation is (up to the sign) the frustration, i.e. , the flux
through the plaquette normalized by the flux quantum.
The second term sums the gauge-invariant phase differ-

I

ences (with the minimum-modulus-rule applied). The
latter just expresses the phase difFerences across the tun-
nel barriers in terms of the phases y, in the interior of
the islands. They also occur in the Josephson currents
[cf. Eq. (2)].
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