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It is widely believed that the ¢-J model contains some of the key physics of the high-temperature su-
perconductors. It was proposed that the low-energy physics of the 7-J model can be described by a
gauge theory of fermions and bosons coupled to a gauge field. The normal state of these fermions was
assumed to be a Fermi liquid. We show that perturbation theory around the Fermi-liquid state breaks
down at low temperature in a wide class of gauge theories of high-temperature superconductors due to
the interaction with an overdamped singular mode arising from the gauge field. This breakdown is
present even if the coupling to the gauge field is arbitrary small.

Recently gauge theories of high-temperature (HTC) su-
perconductors attracted a lot of interest. These theories
were able to explain a number of the normal state proper-
ties of high T, superconductors.!™* Although the high-
temperature properties of these theories are intensively
discussed at present, much less is known about their
ground state. The particular interesting question is
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whether their ground state is a normal Fermi liquid or
not.

The gauge field theories are thought to describe the
low-energy physics of the two-dimensional 7-J model in
terms of fermions (spinons) and bosons (holons) coupled
to a U(1) Abelian gauge field. The effective Lagrangian
has the form

Linn)= 3 7207 (3, —ag—pp+5—(—iV=a) |/, (5,7)
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Here b is the holon field, f is the spinon field. The pa-
rameters up and pug are the chemical potentials of fer-
mions and bosons, respectively. The holon and spinon
masses are denoted as m, and m. The action of the
gauge field Sgauge is given by!
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where Y, =Xr+Xxp and ¥y and xjp are the diamagnetic
susceptibilities of the fermions and the bosons and
a(q,w,) is the gauge field. The gauge field coupling con-
stant is g?=my .

For definiteness we will work here in a slave-boson for-
malism. We assume that the bosons do not condense.
The key to the description of the normal state, and the
common property of this class of theories, is the existence
of an overdamped singular mode, i.e., a mode with a
dispersion law w~ik3.>"7 The importance of this mode
for properties of the HTC superconductors was first
recognized by Lee.® The physical origin of this mode is
the transverse part or magnetic part of the gauge field
which is not screened statically at large distances. The
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cutoff is provided by dynamical screening or Landau
damping, for details see, e.g., Ref. 9. Formally it arises
here once we integrate out of the lower spinon band in
the 7-J model.! This mode is not unique to the gauge
theories of the #-J model. It arises in any U(1) gauge
theory if the transverse, i.e., magnetic part, of the interac-
tion is not screened.

The question of the influence of the overdamped singu-
lar mode on a Fermi-liquid ground state for the three-
dimensional relativistic quark gluon plasma and the rela-
tivistic electron gas was discussed by Baym et al.>!° In
this case the overdamped singular model arises due to the
radiative corrections to the gauge field propagator.
These theories describe the fermions with the Lagrangian

af—ao T HF
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Sgauge 18 given again by Eq. (2). All the fields now live in
3+1 dimensions however. Reizer noted that the interac-
tion with the overdamped singular mode leads to the
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creation of the nonphysical resonant state near the Fermi
surface.” The influence of the overdamped singular mode
on the ground state was studied in detail in Refs. 9 and
10. It was shown that this interaction leads to the loga-
rithmic correction to the self-energy of fermions. The
dispersion law of the low-lying excitations near the Fermi
surface has the form

e~vp(p—pp)—g*vp(p —pp)Inlp —pg| . 4)

Here g? is the dimensionless gauge coupling constant.
The dispersion law Eq. (4) implies the break down of the
Fermi-liquid picture. The dispersion relation, Eq. (4), is
only valid for small couplings and momenta not too close
to the Fermi momentum, since we used perturbation
theory to derive it. Nevertheless we can say that the per-
turbation around a normal Fermi-liquid ground state
breaks down already in the second order. A new ground
state is needed if we want to be able to use perturbation
theory.

The analysis of the three-dimensional case shows
that the interaction with the singular mode plays a major
role in the study of the ground state. It is natural to ask
what will be the effect of the singular overdamped mode
in two dimensions in the case of the gauge theories that
describe high-temperature superconductors. In this pa-
per we consider the influence of the singular mode of a
gauge field on the Fermi-liquid ground state in two di-
mensions for the gauge theories described by the La-
grangian Eq. (1). We show that this interaction leads to
severe infrared problems in these theories. In particular,
the perturbation theory around a normal Fermi-liquid
state of spinons breaks down no matter how small is the
coupling to a gauge field. This means that the perturba-
tion theory cannot be applied in a straightforward way
for the study of the ground state properties of these
theories. A summation of all orders of perturbation
theory must be carried out or a new ground state must be
chosen in order to make these theories self-consistent.

All our calculations have been carried out at zero tem-
perature. The effects discussed here become irrelevant at
high temperatures where the infrared divergencies are
smeared out. Thus our results do not apply at high tem-
peratures where the calculations of the transport proper-
ties in these theories have been done. We believe that
coulombic interactions due to the longitudinal part of the
gauge field does not play a role since they are Debye
screened.

We consider the theory with a Lagrangian Eq. (1).1%*
We restrict ourselves to the case of a spinon spectrum. In
particular we shall calculate the spinon dispersion law.
We assume that there is no Bose condensation of holons
and that the spinons are in a Fermi-liquid ground state.

We calculate the spinon self-energy to lowest order in
g2 Then we find the spectrum of low-lying excitations
near the spinon Fermi surface by looking at the poles of
the single particle propagator:

7,10,9

G Up)=G, '(p,e)+=(p,e)=0. 5)

Here G(p,e) is the full spinon propagator, Gy(p,€) is the
noninteracting spinon propagator and Z(p,¢€) is the self-
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energy of the spinons arising from the interaction with
the gauge field.

The analytic evaluation of the self-energy gives the fol-
lowing expression valid near the Fermi surface (.e.,
€~0; p~ppg), for details see, e.g., Ref. 5:

2p
Im3R(p,e)=g> [de' [ " dgImDRe—eq). (6
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Here

ImDR(e'—¢,q)= (e —elk (7)
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Vf
is the spectrum function for the gauge field.* The

momentum p(€) is defined as p(e)=1"2m(e+up) where
pp is the spinon Fermi energy. An explicit calculation
shows that there are two regimes for the energy:

2 3
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In particular for p =py we find in agreement with?®
Im3R(e,p=pp)=gup'"?e*" . 9

The real part can be found from the dispersion relations
that can be conveniently written in the form

1 1

’

dImX
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Using Eq. (10) we see that ReX has the same structure as
ImZ=. For the two regimes we find
3

RezR(e’p)~ i .L << B_ﬂi ,
193 193 Pr
(11)
2/3 _
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Particular at p =p; we have
ReZ~glup'3e?”? . (12)

Let us now find the dispersion law for low-lying excita-
tions. To order g? the dispersion relation is given by

e=vp(p—pr)+g*Re(€=vp(p —pp),p —DPr) - (13)

Using the explicit form of ReX, Eq. (11) it is easy to see
that

ReZ(e=vp(p —pp),p —pp)~(p—pp)*’pi? . (14)
Indeed, this is consistent with Eq. (11)
3
€ _PTPF . P —Pr (15)
Ur Pr Pr

Since (p —pp)/pF is small in our case. We can use then
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Eq. (9). Hence we obtain
e~vp(p—pp)—8*(p —ppP’pi/m . (16)

In other words, the velocity for the low-lying excitations
diverges at the Fermi momentum:

”ng—;:vp{1—g2[pp/(p—pp)]”3} : (17)
We see from the latter expression that the perturbation

theory breaks down since the effective parameter in the
perturbation theory is not g2, but

p—p -1/3
glp~g | —— (18)
PFr
or, since €e~vgp(p —pg),
e 1717
2 2
8er 8 | T — (19)
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The singularity is even more severe than in the three-
dimensional case where the velocity has a logarithmic
singularity, Eq. (4). Here the singularity has a power-law
behavior.

The effective mass m  for spinons goes to infinity once
p~pp. This means that there is a break down of the
Fermi-liquid picture. But this result was derived using
perturbation theory and is indicating that using perturba-
tion theory is not valid in this regime. The breakdown of
the perturbation theory happens for effective coupling
strengths g.x~ 1. In other words, at an energy scale of

e~g%ur . (20)

This energy scale defines a “‘crossover” temperature when
the effects considered here become important:

Tk ~8%r - (1)

If we assume that the coupling constant g is small and
therefore using perturbation theory is allowed, this tem-
perature is of course very small. This means that the
effects considered above have no influence on the calcula-
tion of the transport coefficients at high temperatures.?™*
However we must note here that in the case of a coupling
constant g of the order of 1 that probably occurs in real
materials, we cannot exclude the possibility that Ty be-
comes large. This follows from Eq. (21), although the
more sophisticated analysis is certainly needed in order to
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get a reliable estimate of T for strong coupling. If Ty is
indeed large, the condition T'= T will be an additional
constraint on the validity of the calculations of the trans-
port coefficients.

Another branch of the dispersion relation can be found
by setting p =p in the Dyson equation, Eq. (5). Then us-
ing Eq. (13) we see that Eq. (5) has two roots: €=0 and
€=g%u ;. The latter is a broad resonant state near the
Fermi surface. It is very wide (Im2~gu ;). This is the
two-dimensional analog of the bound state Reizer found
in his study of the three-dimensional electron gas.” Its
existence also must be an artifact of the perturbation
theory.

We see that no matter how small (but nonzero) the
gauge coupling is the interaction with an overdamped
mode leads to the breakdown of the perturbation theory
in the spinon sector at low temperatures. The reason is
that effective coupling constant is not g2, but
g%/[(p —pr)/pr]'”? and becomes strong near the Fermi
surface. It would be interesting to investigate the bosonic
sector. In this case the situation is much more compli-
cated because there are no small parameters like €/uyp
and p /pr.

There are several possible ways out of the difficulties
mentioned above. First, we could try to sum higher or-
ders in perturbation theory and look whether taking into
account the higher corrections will cure the theory.
Second, some other mechanism, present in the real ma-
terial can provide the infrared cutoff. For example, the
bosons can condense or the fermions can form Cooper
pairs above the crossover temperature Eq. (21) although
the situation is still unclear and requires further studies.
Another possibility is that in the real material scattering
by impurities can smear the singularity. Finally, the
breakdown of the perturbation theory can signal that a
normal Fermi liquid is not the ground state.!! It is im-
portant to know which mechanism really provides the in-
frared cutoff if we want to know the true ground state of
the theory.
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