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We study the superconductor-insulator transition of Bose-Hubbard models with finite-range in-
teractions. Commensurability of the charge distribution with the underlying lattice leads to a richly
structured phase diagram. In addition to the lobes of insulating phase characterized by integer fill-

ings, we find —for finite-range interactions —lobes with rational filling factors. At low temperatures
we can investigate the phase transition by mapping the model onto a XXZ spin- 2 Heisenberg model.

I. INTRODUCTION

Two-dimensional Bose-Hubbard models have been
studied as models for superconducting films and arrays
of Josephson junctions. At low temperatures and with
increasing strength of the hopping matrix element t they
show a transition from an insulating to a superconducting
phase. The chemical potential p controls the number of
bosons (n) per site. The resulting low-temperature phase
diagram in the t-p plane consists of a series of lobes. In-
side the lobes (i.e. , for t small compared to the Coulomb
interaction energy) the system is insulating; outside it
is superconducting. Apart from an overall scale factor,
proportional to 1/(n), the lobe structure depends peri-
odically on p, .

In most of the previous work on this problem only
on-site Coulomb repulsion Uc has been considered. In
this limit the lobes are centered around integer values
of p/Uc. Each lobe is characterized by an integer num-
ber of bosons per sit" the same for each sit" and a
correspondingly defined compressibility vanishes. i s In
real systems the interaction has a finite range. In this
case a much more structured phase diagram emerges. 5

We find further lobes with rational filling factors. In
these lobes the charges form a superlattice that is com-
mensurate with the underlying lattice.

In this paper we will exploit the analogies of Bose-
Hubbard models and quantum-spin models to further
support these conclusions and to derive further quanti-
tative results. Away from the centers of the main lobes
at p oc integer we can map the Bose-Hubbard model
onto a spin-& XXZ Heisenberg model. Different phases
of the magnetic model correspond to different commen-
surate charge lattices, which are insulating, or to (dif-

ferent) superconducting phases. For instance, if we take
on-site and nearest-neighbor Coulomb interactions into
account, denoted by Uo and Ui, respectively, we find two
different types of lobes, one with integer filling, the other
with half-integer filling, alternating with increasing p.
The width of the half-integer lobe (in the p direction)
is proportional to Ui/(Uo + 4Ui), and it extends to the
symmetry (Heisenberg) point t oc Ui. Longer-range in-
teractions lead to further lobes with more general ratio-
nal fillings. It can also lead to different superconducting
states (supersolids). s 7

In one dimension the spin-z AÃZ Heisenberg model
has been studied in much detail. s i Using these results
we can determine the critical properties of the one (1D)
Bose-Hubbard model. Further results can be obtained in
a large-8 mean-field approximation and from the spin-
wave analysis. Finally we can solve the full quantum
problem for small clusters. The different approaches give
us a rather complete picture of the phase transition.

II. THE EQUIVALENT MODELS

The Bose-Hubbard model with a finite range of the
interaction can be written as

H = t ) btb~ + H. c—.—+ —) U;~n, n~ —p, ) n;.

Here b, is a Bose annihilation operator, and n; = b,. b,
is the number of bosons at site i, which is controlled by
the chemical potential p, . The hopping-matrix element
is denoted by t. The interaction term is written in a
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form that is nonzero already for a single boson per site.
We could remove this contribution by subtracting a term
(1/2) P,. U;,n;, which merely corresponds to a shift in the
chemical potential. The combination of interaction and
chemical potential term depend periodically on

Oi
(2)

with period 1. However, the hopping term is still sensitive
to the value of n;. As a result the phase diagram is not
strictly periodic. It becomes so approximately at large
particle numbers.

The Bose-Hubbard model is similar to the quan-
tum phase model of arrays of mesoscopic Josephson
junctions. is s In small capacitance junctions we have to
take into account the interaction between the charges Q;
on the islands. Most important are the capacitances
Ci associated with the junctions themselves and the
capacitances Co of the islands with respect to a com-
mon ground. (Second-nearest-neighbor capacitances are
usually of the same order as Co and can be ignored
for the present purposes. ) The charges interact with
the inverse capacitance matrix C, , which has a finite
range. It decays exponentially for distances exceeding
A = QCi/Co. If a voltage V is applied to the array
relative to the common ground (to be distinguished from
a transport voltage) the energy provided by the voltage
source V P,. Q; has to be included in the Hamiltonian.
Obviously V takes the role of a chemical potential in
the Bose-Hubbard model. The voltage-dependent term
can be rewritten in terms of the "charge frustration"
Q~ = V~/P, . Co,. ——COV~. If we ignore quasiparticle
tunneling, which will be discussed further below, we have
Q, = 2en;, and the Hamiltonian of the array is

i B(hg;/2e)
'

In contrast to the Bose-Hubbard model the properties of
the quantum phase model (3) are strictly periodic in V .
Both models are equivalent in the limit of large particle
numbers per site, provided that we identify the Josephson
coupling with the product of the particle number and the
hopping term Eg = (n, + 1)t.

We assume now that the reduced chemical potential
p, (or Q~/2e) lies between two integers, not too close to
either one

n& p&n+l. (4)

Then for strong on-site interaction U, ; = Uo &) t, k~T
the particle number per site takes only one of the two
integer values n or n+ 1 bracketing p, . This means we
have to consider only two states per site, and the Bose-
Hubbard model (and the quantum phase model for the

H = —) (Q, —Q )C;z (Q~ —Q ) —) EJ cos(P; —P~)
(ij)

(3)

with

h =(p, —n —~)) Uo;. (6)

The effect of the hopping term depends on the particle
number. In the interval given by Eq. (4) the coupling
strength in xy direction is

J=(n+i)t.
The reduction to a spin problem becomes exact for

hard-core bosons Uo = oo. Of course, in this case the
(quasi)periodic dependence on the chemical potential is
not observable. However, the additional lobes, which we
will discuss in the following, corresponding to fractional
filling, also emerge for this case.

III. NEAREST-NEIGHBOR INTERACTION

We first assume that the interaction U,~ is restricted
to on site and nearest neighbors only, and denote it by
U, ; = Uo, U,~

= Ui for i and j nearest neighbors (z near-
est neighbors), and U~~ = 0 otherwise. Then the model
(5) reduces to a spin-2 XXZ Heisenberg model with
nearest-neighbor coupling. The on-site energy Uo sets
the scale for the chemical potential; it has to be retained
in the definition of h. Longer-range interactions, which
introduce longer-range couplings of the z components of
the spins, will be discussed below. In the spin model the
coupling in z direction is antiferromagnetic, that in xy
direction is ferromagnetic. En bipartite lattices we can
rotate the spins of one sublattice by n around the z axis,
thus making the coupling antiferromagnetic also in xy
direction. In this rotated form some of the symmetries
are more obvious, but for definiteness we will use in the
following the original spin variables, i.e. , those explicit in
Eq. (5).

Several qualitative and quantitative properties of the
Bose-Hubbard model can be deduced at this stage. On
the symmetry axis h = 0, i.e. p = n+ z, the ground state
of the model (5) in dimensions D ) 2 is a Neel state in
the z direction for strong Uq or a ferromagnetic state in
the xy plane for strong J. They are separated by a phase
transition at the symmetry (Heisenberg) point

(J/U, )., = 1 for h = 0.

Josephson-junction array) can be replaced by a spin-z
Heisenberg modeli4

a =-') U„S;S;.-J ) S,*S,* S~S~ -h) S;.
i)2 &ij& i

(5)

The spin operators S; = n; —n —
&

replace the parti-
cle number n, (or Q, /2e), while the rising and lowering
operators S,+ = S,* + iS," replace the creation and anni-
hilation operators b, and b, [or exp(+i/;)], respectively.
If the reduced chemical potential is exactly half integer
P = n + 2i the two states with n, = n and n; = n + 1
bosons per site are degenerate. Otherwise this symmetry
is broken, which introduces a field term
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FIG. 1. The classical phase-diagram of a two-dimensional
Bose-Hubbard model with nearest-neighbor interaction Uy.
The field h of the spin problem is related to the chemical
potential of the Bose model by |i = p —(n+ 1/2)(Uo + 4Ui).
The "half-integer" lobe in the center corresponds to a Neel
state, which means the bosons form a superlattice with n and
n+ 1 bosons on every other site, The paramagnetic phase
at the bottom (top) marks the onset of the lobe with integer
filling by n (n+ 1) bosons on every site.

(This property can easily be understood in terms of the
rotated spins. In this case both states are Neel states,
oriented in the z direction or in the xy plane, depending
on the relative strength of Ui and J.) The Neel state
oriented in the z direction corresponds to a superlat-
tice of the bosons (a Wigner lattice, but commensurate
with the underlying lattice). Apart from a uniform back-
ground of n bosons per site the expectation value of the
boson number (n, ) alternates from site to site, forming a
checkerboard pattern. The average density is n+ 2. This
state is a Mott insulator. The particle-hole symmetry
of the problem implies that the total number of bosons
is constant in this phase, independent of the chemical
potential. Hence, the compressibility r oc B(g,. n, )/Bp
vanishes. The ferromagnetic state in the xy direction is
characterized by long-range order of the operators S,+.
Since they replace the operators bt and b; [or the func-
tions exp(+i/, ) of the phases of the junction array] this
state is superconducting.

Off the symmetry axis, h g 0, the field term weakens
the Neel state, which reduces the critical value of J/Ui.
The ferromagnetic state in the xy direction is favored.
It is canted, however, to acquire a component in field
direction. The average number of bosons (P,. n, ) changes
continuously as a function of p, , which implies a finite
compressibility. Finally, for strong fields the system goes
into a paramagnetic state with magnetization pointing
into the field direction. This state has the same number
of bosons on each site (n or n+ 1, depending on the sign
of h) and is insulating again. The results obtained so far
are shown in Fig. 1. The Neel states, which arise as a
consequence of the finite-range interaction, produce lobes
in the phase diagram centered at half-integer values of p, .
The paramagnetic states are what is left in our approach
of the lobes centered around integer values. These integer
lobes also exist in a model with on-site interactions only.

They shrink in the presence of finite-range interactions.
Further rigorous conclusions can be drawn and the crit-

ical exponents can be determined if we consider a one-
dimensional chain. We first study the problem on the
symmetry line h = 0. The Jordan-Wigner representa-
tion for the spins S =

&
can be employed, which intro-

duces a Fermi field, to map the problem onto a Luttinger
model. s s The bosonized version of the Luttinger model
can be reformulated as a sine-Gordon field theory with
the action

dxd~ zy ~c + ~C' +g cos 2C

At this stage the coefficients are undetermined. However,
from the Bethe-ansatz solution one knows that

1 ——cos

The action has been studied in Refs. 8, 9, and 12. The
model shows a phase transition of the Kosterlitz- Thouless
(KT) type at a critical value Ui = J. In the (mas-
sive) disordered phase the correlation length diverges as

( oc exp[ —a(1 —J/Ui) ~ ], where a is some constant.
The ordered phase is massless with a power-law decay
of the correlation functions. The disordered and ordered
phases correspond to Neel order in the z direction and
to ferromagnetic order in the xy direction, respectively,
which in turn correspond to the insulating and supercon-
ducting phases of the Bose-Hubbard model.

Off the symmetry axis, i.e. , for h g 0, the sine-Gordon
field theory acquires the term

dad~ B,C . (10)

This action has been studied as a model for the
commensurate-incommensurate transition. ' For
small fields the disordered phase remains the Neel state,
but the critical value of J/Ui is shifted. More interesting,
the transition is changed into a second-order transition.
On the ordered (superconducting) side the critical expo-
nents for the correlation length and the specific heat and
the dynamical exponent are v = 2, n = 2, and z = 2,
respectively. They coincide with the mean-field values.
Approaching the transition from the disordered side (the
Neel state) the specific heat does not diverge. is

It is interesting to compare the properties derived here
for the half-integer lobe with those derived by Fisher et
at. and Batrouni and co-workers for the integer lobe
of the model with on-site inter'action only. In 1D the
transition is a KT transition in the maxima of both types
of lobes, and it is a second-order transition elsewhere. In
both cases the critical exponents take mean-field values
if one approaches the phase transition from the ordered
side.

Further quantitative results, and results for general di-
mensions can be obtained from the large S expansion.
(In the following we concentrate on D = 2.) In this limit
we compare the energies of difFerent spin configurations
assuming that the spins are classical vectors. As long as
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the interaction is restricted to nearest-neighbor couplings
(Ui), only the three states mentioned above need to be
considered.

(i) The Neel state oriented in the z direction with spins
+ z on the two sublattices, corresponding to an insulating
superlattice of n or n+ 1 bosons per site, is realized for
small fields ~h~ & hp, where

ho =2 Ui~ J
The phase boundary takes a lobelike shape.

(ii) For larger fields the spins are ferromagnetically
ordered in the zy direction but canted in the z di-
rection. The angle relative to the z axis is given by
2(S;) = cos(a) = (1/2)h/(Ui + J). This state is super-
conducting, with a continuous change of the expectation
value of the number of bosons as a function of p, .

(iii) For strong fields ~h~ & hi, where

h., =2(U, + J), (12)

a transition to the paramagnetic state occurs where all
spins point in the z direction, corresponding to a uniform
distribution of bosons. At J = 0 a direct transition oc-
curs between the Neel state and the paramagnetic state.

In the magnetic problem the critical value of the field
hq separating the canted state from the paramagnetic
state is linear in J. Applied to the Bose-Hubbard model,
where h = p —n —

&, this result ceases to be correct
when p approaches an integer, say n. In this case the
state with n bosons per site dominates and those with
n 1and n+1 be—come degenerate. Hence our restriction
to a two-state problem becomes insufficient. The correct
phase boundary between the superconducting and the
insulating state with integer number of bosons per site
also takes a lobelike shape.

The classical phase diagram can be complemented by
the usual spin-wave analysis. Applied to the Neel state
we find the following spectrum of the excitations:

~(k) = —
~h~ + 2 Ui2 —Jzp(k),

Applied to the Bose model this means that for finite
hopping amplitude J the expectation value of the excess
number of bosons per site deviates from the classical val-
ues n or n+ 1. However, the average value does not
change, which implies that the compressibility remains
zero within this lobe. A similar analysis of the paramag-
netic state shows that it too is stable within the classical
phase boundary. In this case the magnetization is not
reduced by quantum fiuctuations, which means the num-
ber of bosons is precisely n or n+ 1 in the two phases.
It is interesting that the spin model reproduces this re-

where p(k) = [cos(k~) +cos(k&)]/2. The Neel state is sta-
ble within the phase boundaries obtained classically. On
the other hand, the staggered magnetization is reduced
by quantum fluctuations from + 2 per site to

.( U,

suit, which follows from the particle-hole symmetry of
the Bose-Hubbard model.

We can also solve the full quantum problem if we re-
strict ourselves to small clusters. For a 2 x 2 cluster with
periodic boundary conditions this can be done analyti-
cally. The total spin in the z direction is a good quantum
number, which immediately allows a partial diagonaliza-
tion. For small fields h and weak J the ground state is a
superposition of the two Neel-like states oriented in the
z direction with a small mixing (oc J) of the remaining
states with zero magnetization. For larger J, of the order
of Uy, the ground state changes continuously into a state
mixing all the basis states with zero total magnetization.
Above a critical field hp = Ui —2J+ QUi + 8Jz another
state, a superposition of the states with magnetization
1, has the lowest energy. At still larger fields, above the
critical field hi given by Eq. (12), the paramagnetic state
with maximum polarization in field direction becomes fa-
vorable. For small J the transitions obtained from the
quantum cluster model agree well with the result of the
large-S expansion. However, in the small cluster we do
not find the transition at small h at a critical value of
J/Ui. An improvement of the analysis requires either
considering larger clusters, which is beyond the scope of
the present paper, or else to embed the small cluster in
a staggered mean field.

IV. FINITE-RANGE INTERACTIONS

We now consider longer-range interactions. In this
case the phase diagram acquires further structure. We
had studied this problem within the so-called "coarse
graining" approach in Ref. 5, and found a rather com-
plex phase diagram with different phases corresponding
to various rational filling factors. We can reproduce these
results within the large-S expansion presented above.
For definiteness we assume here that the interaction is
characterized by on-site, nearest-neighbor and second-
nearest-neighbor interactions, Up & Ui & Uz. In this
case further spin configurations need to be considered. In
addition to the states already discussed we find a ferri-
magnetic phase corresponding to 4 and 4 filling in which
the spins arrange in a 2x2 unit cell with three spins point-
ing in the field direction and one opposite. This corre-
sponds to one excess (or deficit) boson on every fourth
site. These phases lead to additional lobes in the phase
diagram, which are shown in Fig. 2.

We also find more general superconducting states. For
finite J, the Neel state and the 4-lobe state are separated
by two phases, viz. , the "o; —P" state with a 2 x 2 unit
cell characterized by two canting angles, o. and P, on the
two diagonal sublattices, and the "a —P + p" state with
canting angles a on one diagonal and P + p on the other.
These phases have both long-range order in the xy di-
rection, which implies superconductivity, and staggered
magnetization in z direction, which implies a superlattice
of the bosons. The coexistence of both types of order
has been denoted as "supersolid. " (In Ref. 6 only spin
configurations characterized by two sublattices were con-
sidered. Consequently the 4 lobe and the "n —p 6 p"
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FIG. 2. Same as in Fig. 1, but second-nearest-neighbor
interactions are included as well. We assume Uq ——0.1'.
Shown are the insulating lobes with filling factors (modulo
1) 0, 4 (same as 4), and 2. In addition, we find difFerent
supersolid phases SSl and SS2, which are characterized by
two angles ("n —P" phase) or three angles ("a —P + p") in
a 2 x 2 unit cell.

they do not change the nature of the transition. There-
fore, we also expect that the fractionally filled states are
incompressible and insulating.

In the absence of screening the interactions have an
infinite range. This limit is realized in a junction array
if the self-capacitance is very small Co (( Ci.is i~5 In
two dimensions the charges interact with a logarithmic
dependence on the distance, similar as the vortices inter-
act. A duality exists between charges and vortices, which
allows us to draw conclusions about the phase diagram in
the limit of long-range interactions, It is known that the
magnetic frustration f leads to a phase diagram, which
as a function of f looks like the wing of Hofstadter's
butterfiy. is zo In view of the duality, we expect a sim-
ilar dependence of the phase diagram on the chemical
potential or charge frustration. Even in this long-range
limit the interaction decays with increasing distance. In
particular we have Ui/Uo ( 4. The opposite case ap-
pears unrealistic to us. However, it was considered in
Ref. 21 and was shown to lead to an instability, namely,
that two particles on one site are preferred to a uniform
charge distribution.

state had not been noticed. )
Most of the phase boundaries can be determined an-

alytically. They are for the boundaries between the
paramagnetic and the canted state: hi = 2(Ui +
U2 + J), the canted state and the 4 lobe: h

Ui + U2 + J + Q(Ui+ U2+ J)(Ui+ U2 —SJ), the
canted and the "o. —P" state: h = 2(Ui + U2 +
J)Q(U1 U2 J)/(Ui —U2 + J), and the "n —P" and
the Neel state: ho = 2/(Ui —U2) —J . The boundary
between the 4 lobe and the "n —p +p" state is given by

J2 = Ui —Uq —
[ h —2(2Ui + Ug)h

+4(Ui + 2UiU2 —U2)]/(8U2) .

At this stagc for an interaction that is truncated be-
yond U2—the 4 lobe appears to have properties very sim-
ilar to the other lobes discussed above. The spin-wave
analysis shows that the excitation spectrum has a gap
within the phase boundary obtained from the classical
analysis. Furthermore, since the total spin P,. 8; is con-
served, the compressibility in this lobe should vanish as
in the other lobes. However, there exist also important
difFerences between the 4 lobe and the half-integer and
integer lobes. The former does not have the particle-hole
symmetry of the latter two. The differences become ap-
parent, when we consider longer-range interactions.

Longer-range interactions lead to more complicated in-
sulating states with higher-order rational fillings. For
instance, a phase with 3 filling appears when we in-
clude U3. These additional states with higher rational
filling are not separated from each other or from the 4
lobe by a superconducting phase reaching to J = 0. In-
stead they are separated by first-order transitions. For
small J the critical value of h separating them follows
from consideration of the Coulomb interaction only. On
the classical level the transition line is independent of
J. Lowest-order quantum corrections in J renormalize
the interaction and bend the transition lines. However,

V. DISCUSSION

It is well known that for the case of an on-site inter-
action the phase diagram of the Bose-Hubbard model
shows a series of lobes of the Mott-insulating phase char-
acterized by an integer number of particles per site. If
we consider a more general interaction allowing nearest-
neighbor interaction, Ui, we obtain secondary lobes sep-
arating the integer lobes. The new lobes correspond to
the "checkerboard" Wigner lattice of excess bosons with
expectation values in the window n & (n, ) ( n + 1,
which alternate from site to site. If we continue to longer-
range interactions further lobes appear. They correspond
to higher commensurate phases in which a fraction of
the lattice sites is occupied in a periodic fashion. Here
we discussed the effect of U2, which leads to a 4 lobe.
Taking into account longer-range interactions leads to
an ever more complicated picture. However, the inte-
ger and half-integer lobes remain well defined with the
properties described above. Similar conclusion have been
reached recently in a difFerent approach by Feigel'man
and Ziegler. z2

We now turn to the question of whether the lobe struc-
ture in the phase diagram can be observed in a realistic
Josephson-junction array. This would require that dis-
order, for instance arising from charged impurities, does
not play a role, and that the quasiparticles are completely
frozen out. Even if the disorder is weak, the effect of
quasiparticle tunneling on the ground-state properties is
actually never negligible. In good quality tunnel junc-
tions the subgap quasiparticle current can be extremely
small, so small that it cannot be detected in an I-V char-
acteristic. However, at any finite temperature the rate for
inelastic scattering of electrons is finite (in contrast to the
rate for creation and recombination of particle-hole pairs
it vanishes only like a power of T) These inelastic . pro-
cesses smear out the density of states and lead to a non-
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vanishing quasiparticle current. (An estimate for dirty
Al at T = 10 mK yields a current that is 8—10 orders of
magnitude smaller than the normal-state current).

This means that the ground-state charge configura-
tion is determined by quasiparticle tunneling. Single-
electron charges interact with the same finite-range in-

verse capacitance matrix as Cooper-pair charges. Hence,
we will find, for weak Josephson tunneling, a sequence
of insulating phases, characterized by commensurate lat-
tices formed by single electron charges. As a result the
periodic dependence on the applied voltage is half that
what we expect for pure Cooper-pair tunneling. Stronger
Josephson tunneling leads to a transition into a supercon-
ducting state. The details of the phase boundary depend
on the interplay between Cooper pair and single elec-
tron tunneling. If we can assume that the single-electron
charges remain frozen (in the configuration they assume
in the absence of Cooper-pair tunneling), we still have
to generalize the procedure outlined above such as to
consider a site-dependent charge frustration (and hence
site-dependent field h, ). The results will differ in many

details from what we described above. However, the pe-
riodic dependence of the phase diagram on the applied
voltage still should be observable.

It would also be interesting to study normal tunnel
junction arrays. There one also observes a transition
between an insulating and a conducting phase at low
temperatures. ~s ~7 Also this transition depends in a pe-
riodic fashion on an applied voltage. We can mention
that a periodic dependence on gate voltages is seen rou-
tinely in systems consisting of a small number of tunnel
junctions.
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