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Electronic and magnetic structures of cuprates with spin-orbit interaction
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The effective Hamiltonian for the Cu02 plane of high-T, cuprates is derived by taking into account
the spin-orbit interaction. A finite-size exact-diagonalization technique is applied to the Hamiltonian,
and the magnetic and electronic structures of the CuOz plane in the low-temperature orthorhombic
(LTO) and low-temperature tetragonal (LTT) phases of the La2Cu04-type crystals are examined. It is
shown that the contribution from the in-plane oxygen 2p, orbital perpendicular to the plane is essential
for the emergence of the weak ferromagnetism in the LTO-phase LazCu04. In the LTT phase, either the
uniaxial antiferromagnetism or the weak ferromagnetisrn is induced, depending on how the 2p, orbital
contributes to the anisotropic superexchange interaction of the single Cu —0—Cu bond. We study the dy-

namics of a hole in an extended t -J model, and show that the lattice distortion works to change the sym-

metry of the electronic ground state via the spin-orbit coupling. The effect is, however, small and seems
irrelevant to the anomalous properties of La, 88Bao»Cu04.

I. INTRODUCTION

The La2Cu04-type compounds such as Laz Sr Cu04,
La2 Ba Cu04, ' and La& 6 Ndo &Sr Cu04 (Ref. 2) ex-
hibit a number of crystal structures including the high-
temperature tetragonal (HTT) phase, the low-
temperature orthorhombic (LTO) phase, and the low-
temperature tetragonal (LTT) phase. Depending on the
crystal structures„ the compounds show various electron-
ic and magnetic properties, which are of particular in-
terest in relation to emergence of the high-T, supercon-
ductivity of cuprates. Undoped La2Cu04 shows weak
ferromagnetism in the LTO phase, for which the
Dzyaloshinski-Moriya (DM) interaction in the CuOz
plane is responsible. La& Ba Cu04 shows anomalous
behaviors of both the normal-state transport and super-
conducting properties at a doping rate of x =0.12,
which is accompanied by a structural phase transition
into the LTT phase. A magnetic ordering has been found
in this phase. ' '" It has also been reported' that the
disappearance of superconductivity in overdoped
La& Sr, Cu04 is associated with the LTO-HTT
structural phase transition. These experimental facts in-
dicate that the magnetic, normal-state transport, and su-
perconducting properties of the cuprates have an intrigu-
ing coupling with the distortion of the lattice structure of
the CuO2 plane. To clarify the nature of the coupling is
obviously very important and may provide a key to un-
derstand the mechanism of the high-T, superconductivity
of the cuprates.

One of such couplings proposed so far is the DM in-
teraction. The DM interaction, which arises from a mix-
ture of superexchange and spin-orbit coupling under dis-
torted lattices, was first studied to find the origin of the
weak ferromagnetisrn of LTO-phase La2Cu04. Coffey,
Bedell, and Trugman' have correctly described the
structure of the DM interaction in the Cu02 plane from
symmetry arguments for the first time. Coffey, Rice, and
Zhang' then used the perturbation theory of Moriya

and claimed that the obtained DM interaction in the
Cu02 plane has the structure of various patterns and in
some cases causes the weak-ferromagnetic component in
ordered antiferromagnetic Cu spins. Bonesteel, Rice, and
Zhang' have further claimed that the spin-orbit coupling
of the type responsible for the DM interaction can result
in a stabilization of a commensurate antiferromagnetic
state over a spiral state in the presence of a sufficiently
large tilt distortion in the doped Cu02 plane and argued
that the effect may be the origin of the anomalous proper-
ties of La& 88B3o i2Cu04. Recently, Shekhtman, Entin-
Wohlrnan, and Aharony' have pointed out the impor-
tance of the pseudodipolar term (higher-order spin-orbit
coupling term). The work of previous authors '
has not fully recognized its role. Shekhtman, Entin-
Wohlrnan, and Aharony' claimed that the exchange in-
teraction of a single bond derived by Moriya is in fact
isotropic and that the frustration due to the noncolinear
structure of the DM interaction is essential for the emer-
gence of weak ferromagnetism. Bonesteel' has discussed
the magnetisrn of YBa2Cu306 as well.

In this paper we derive the effective Hamiltonian for
the Cu02 plane in the LTO and LTT phases of
La2CuO&-type crystals, by taking into account the spin-
orbit coupling, and study the effects of lattice distortions
on the magnetic and electronic structures of the Cu02
plane. The proposal of Shekhtman, Entin-Wohlman, and
Aharony' for weak ferromagnetism is thereby reexam-
ined. The exact-diagonalization technique for finite-size
systems is then used to obtain the eigenstates of the Ham-
iltonian, and some correlation functions for the ground
and excited states are evaluated. The results given by
Coffey, Rice, and Zhang' and Bonesteel, Rice, and
Zhang' are thereby reexamined.

In Sec. II we apply the perturbation theory of Moriya
to the CuOz plane and obtain the effective spin Hamil-
tonian in the LTO and LTT phases. The Hamiltonian
consists of the Heisenberg exchange, DM, and pseudodi-
polar interactions. We show that a subtle balance of con-
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tributions from the orbitals on the oxygen ion determines
the anisotropic superexchange interaction between two
spins of the neighboring Cu ions. The contributions from
the oxygen 2p, orbital appearing due to lattice distortions
are essential for understanding the magnetism induced by
the spin-orbit interaction. The single-band model' is not
sufhcient when one discusses the anisotropy of the
magnetism.

In Sec. III we apply the exact-diagonalization tech-
nique for Gnite-size lattices to the obtained effective Ham-
iltonian for the undoped CuOz plane and discuss the
magnetism of the plane. We show that, in the LTO phase
of LazCu04, the contribution from the 2p, orbital of the
in-plane oxygen ions is essential for the emergence of
weak ferromagnetism. In the LTT phase of LazCu04-
type crystals, either weak ferromagnetism or uniaxial an-
tiferromagnetism is shown to be induced, depending on
how the oxygen 2p, orbital contributes to the anisotropic
superexchange interaction of the single Cu —0—Cu bond.
The frustration among different bonds' need not be put
forward for discussing weak ferromagnetism.

In Sec. IV we study the effect of the spin-orbit interac-
tion on the dynamics of a hole in an extended t-J model
by using the exact-diagonalization technique. We show
that the symmetry of the electronic ground state changes
due to the lattice distortion via the spin-orbit interaction.
The change appears most strongly in the case where the
uniaxial antiferromagnetism is stabilized in the undoped
phase. This effect is, however, small in the realistic pa-
rameter region, ' we do not think that the effect may be the
origin of the anomalous properties of La, 88Bao,zCu04.

Conclusions are given in Sec. V. We have reported
some preliminary results given in Sec. III elsewhere. '"

II. DZYALOSHINSKI-MORI YA INTERACTION

In this section we derive the DM interaction in the
CuOz plane by following the perturbation theory of Mori-
ya. The Hamiltonian for the CuOz plane with spin-orbit
interaction is written as a sum of the on-site, hopping,
and spin-orbit terms:

II=&o+Ht +H~s

where

Hp = g Emdjmadjma+ Q Ep PknaPkna
jmo kno

+ U g jmt jm't jm'L jmt
jmm '

and

H, = g g (t~ k„d~ . pk„+H. c. ),
jmo k(j)n

HL~=A, Q L S
J

(4)

k (j) denotes the oxygen site of the neighboring Cu site j,
d is the creation operator of a hole with spin cr on the
mth 3d orbital of the jth Cu ion, c. is the energy of the
mth 3d orbital, pk„ is the creation operator of a hole on
the 2p„orbital (n =x, y, and z) of the kth oxygen ion,
and c is the energy of the 2pn orbital. The energies are

~n

measured from the lowest-energy level of the Cu 3d orbit-
als, and U is the Coulomb interaction constant between
holes on the Cu site. We assume that U is independent of
the orbitals. t kn denotes the transfer of a hole between
the mth orbital of the Cu ion j and one of the 2pn orbitals
of the neighboring 0 ions k; note that a number of
nonzero t kn values appear due to lattice distortions.
L and S denote the orbital and spin angular momenta
at the j site, respectively, and A, is the spin-orbit coupling
constant of the Cu ion.

Let us apply perturbation theory. In the first order of
A, , we obtain the following Hamiltonian by eliminating
the excited crystal-field levels of Eq. (1):

X p PknaPkna g jot jo$ jof jot
kn o. J

+ g g (tqp, kn dgOapkna+ H C )

jk (j)n cr

+ g g [Cjk '(d&p cr t3pk„t3)+H. c. ]
jk (j )n ap

with

L,* o
jkn jm, kn2 m Fm

where o & is the Pauli spin matrix and L o is the com-
plex conjugate of the matrix element of L between the
mth and ground states of the jth Cu ion. Examining the
fourth-order terms with respect to the transfer parameter
t k, in perturbation theory, we find the following Ham-
iltonian with the effective superexchange interaction be-
tween the neighboring spins on the Cu ions S; and S:

H,„=Jg S, .S + g D, .(S, XS, )+ g S, l, S),()' '

with

and

J=4&(to, k. tk. ,,o+C, k. Ck. , )g..(t ok'tk. ;o+C,, k. Ck. , »
nn'

D;, = 4i g [(C, k„tk„&o+ t,p k„C—k„, )g„„(tjok„ tk„;p+C, k„. .C„„;)
nn'

(t)O kntkn Jo+C( kn Ckn J )gnn (CJ kn tkn (P+t P kn Ckn ( )]
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I'; =4 g I ( C~~„ tk„&p+ t p k„CkJ )g«( C k„ tg„;o+ t p k„Ck„;) + ( Cjp„ tk«p+ t p k„Ck„;)g«(Ck„ tk„~ &p+ t p g„Ck„» )
nn'

—1[(C;„„tk„jo+ t, o k„Ck„, )g„„(C&k„tk„. ,o+ tjo „„.C„„,) ] I . (10)

The vector with the arrow ~ or ~ indicates that the inner product is taken with the spin operator put in the direction
of the arrow. 1 is a 3 X 3 unit matrix. g„„.is given by

r

2
Ep

1 1+
U 2E

pn

(n =n'),

Inn'= '

1 1—+
Ep Ep U

pn pn' Ep Ep

1 1

Ep +Eppn pn

(nWn') .

The Cu02 planes of La2Cu04-type crystals are illus-
trated in Figs. 1 and 2. In the LTO phase, the Cu06 oc-
tahedra rotate alternately about the (110& axis, and in
the LTT phase, the octahedra rotate alternately about the
(100& axis. The angle 5 of the rotations is about 0.05 rad
in the LTO phase. ' Let us first consider the LTO phase
shown in Fig. 1(b). The 3d orbitals on the a (and b) Cu
ion are given in the original coordinates by

octahedron:

Ip. &=lp. &—

lp, &=lp. &+

—(Ip. &+Ip, &),
2

—Ip. &

5
2

Ip, &=Ip. &+ —Ip, &,
2

(13)

I0& = lx' —y'&+ 5
v'2

I
1 &

= I3z' —r'&+~( —', )'"(lyz &+ Izx &),

These expressions are used to obtain t~ &„. Inserting the
orbitals of Eqs. (12) and (13) into Eq. (9), we have the DM
vector between the a and b ions of Fig. 1(b) as

I2& = lyz &
— —(lx y &+&313z r& —lxy &),v'2

—( —lx' —y'&+v'313z' —r'& —lxy &),v'2

D~b (0, dLTo, 0),
D =( dLTo 0 0)

with

(14)

I4 &
=

I xy &
— ( lyz & +

I
zx & ),5

2

(12)

where 5 should read —5 for the orbitals on the b ion.
These expressions are used to obtain LJ. p of Eq. (6). The
2p orbitals on the kth oxygen ion are given with respect
to the x'y'z'-coordinate system tilting with the tilt of the

d LTO
Ezx

2
Ep

zx, p

2E,
pa

1 1

Ep Ep +Ep
PZ

1 1 1+—+
U UE E

Z

(16)

where we have used the relation E, =E,,„. E is the ener-
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FIG. 1. (a) La2CuO4-type crystal structure in the LTO phase.

Open arrows indicate the rotation of the Cu06 octahedron. (b)
The Cu02 plane of the LTO phase. Oxygen ions indicated by an
open (hatched) circle are tilted up (down) out of the plane.

FICx. 2. As in Fig. 1, but for the LTT phase. In (b) oxygen
ions indicated by a checked circle remain in the plane.
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lo& = lx' —y'&+Slyz &,

Il &
= I3z' —r'&+&&3lyz &,

I2& = Iyz &
—5(lx' —y'&+&3I3z' —r'&),

I
3 &

= Izx & +5 lxy &,

I4&= Ixy &
—5lzx &,

(17)

where 5 should read —5 for the orbitals on the b ion.
The 2p orbitals are written

gy of the 2p orbital, and t, ~ is defined as the transfer

of a hole between the Cu zx orbital and 0 2p, orbital. It
should be noted that the symmetry relations' required
by the crystal structure exactly hold in our expressions.
In the LTT phase, the orbitals on the a (and b) Cu ion in
Fig. 2(b) are written as

dependent of n. In the case of La2Cu04-type crystals, the
anisotropic superexchange interaction is the one that
gives the weak ferromagnetism between the two spins of
the neighboring a and b Cu ions, in both LTO and LTT
phases.

III. MAGNETIC STRUCTURE
IN THE INSULATING CuO2 PLANE

In this section we examine the mechanism of the weak
ferromagnetism of LTO-phase La2Cu04 and discuss a
possible magnetism of La2Cu04-type crystals in the LTT
phase. We examine the spin system on the two-
dimensional square lattice, for which the Hamiltonian is
given by Eq. (7). We assume that e =E for simplicity.

(7 2

This assumption does not change the essential physics
discussed below. We then have the Hamiltonian

H,„=JQS; SJ

+(1+() g D, (S, XS )

Inserting these orbitals into Eq. (9), we have

D,6 =(0,0,0)

and

D„=(d „TT,O, O),

(19)

(20)
with

+ g S;(2D; D; —1ID, I )S
(~j&

(23)

with

LTT LTO (21)
—,'(3/2E~ )

(1/E~ )(I/U+1/2e~ )
(24)

I „= (2D,,D,, —I D,, l')
4J (22)

These are the DM interactions in the Cu02 plane of the
LTO and LTT phases.

It may be useful to give a limiting case where only the
oxygen 2p orbital is taken into account. The Hamiltoni-
an in this case is obtained by retaining only the 2p orbit-
al in Eqs. (7)—(11). We then readily confirm that the rela-
tion

The contribution from the 2p, orbital can be represented
by a single parameter g owing to the above assumption:
/=0 gives the isotropic single bond, where only the p
orbitals are involved. g takes a value of —1 for the realis-
tic parameter values of U and c,

The DM vectors must have a spatial structure adapted
to the crystal symmetry as shown in Fig. 3.' We define
the angle of the DM vector 0 in the LTO phase and the

holds between the J, D;., and I; terms. Thus the Hamil-
tonian in the presence of only the single orbital on ligand
oxygen ions becomes equivalent to the Moriya's spin
Hamiltonian, which is isotropic, as has been pointed out
in Ref. 16.

Shekhtman, Entin-Wohlman, and Aharony' have
pointed out for the single-band Hubbard model and also
for the d-p model that the spin-orbit interaction cannot
provide the anisotropic exchange interaction in a single
bond connecting between two spins on the neighboring
Cu sites. However, when one considers the anisotropy
caused by the reduction of the crystal symmetry, it is of
essential importance to take into account the contribu-
tion from multiorbitals of oxygen ions appearing due to
lattice distortion. The Hamiltonian (5) leads to the aniso-
tropic superexchange interaction even between the single
Cu —0—Cu bond, as we can easily see from the Hamil-
tonian; it can be isotropic only when Czk„/tjo k„ is in-

~ e ~

0
1 ~ 0 e

e

e
~ Q ~

l e

(a)

~ ~ ~ ~ ~
D, -D,

-D~ Dq
J y ~ ~ ~ ~

-Dj Dq

D2
~ ~ ~ ~ ~
i D~ -D)

FICx. 3. Spatial structure of the DM vectors 0;~ (indicated by
open arrows) in the CuO2 plane of (a) the LTO and (b) LTT
phases. The arrows for the DM vectors are drawn by noting
that the site j is always in the right or upper direction of the site
i. The DM vectors always lie in the CuO& plane. In (a) the an-

gle 0 indicates the symmetry-permitted rotation of the DM vec-
tors. In (b) the ratio D&/D& is arbitrary, where D&=(D&,0,0)
and D2=(D2, 0,0).
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ratio D, /D2 in the LTT phase (see Fig. 3). The symme-
try arguments alone do not determine the values of 0 and
D& /D2. To examine what types of magnetism the spin-
orbit interaction induces, we consider the Hamiltonian
with a wide range of the parameter values.

We employ the exact-diagonalization technique for the
finite-size 4X4 lattice with the periodic boundary condi-
tion. Note that the Hamiltonian does not commute with
the total-spin operator, and we have to work with the 2
spin space, where N is the number of sites. Translational
symmetry is used to reduce the size of the Hilbert space.
The ground-state energy and eigenstates are calculated by
the Lanczos method at the independent k points in the
irreducible part of the Brillouin zone (see Fig. 4). Hereaf-
ter we refer to the k points in the Brillouin zone defined
for the HTT structure without magnetic orderings.

To examine ground-state magnetic structures, we cal-
culate the correlation functions

(25)

for a measure of the uniform magnetization, and
2

(S (
—q)S (q))= 2

e ' '(S;S ), (26)
ij EA

Q

(0,0)
0,

(z/2, n/2)'e

x. '(rt, O)

at q=(0, 0), for a measure of the uniaxial anisotropy.
The summation in Eq. (26) runs over the sites on one of
the two sublattices A. The ground state always has the
wave vector k=(0, 0), irrespective of the parameter
values for both LTO and LTT phases.

Let us consider the LTO phase first. We have a frus-
trated spin system. The frustration is characterized by 0:
The system is unfrustrated only at 0= —~/4 and is most

strongly frustrated at O=vr/4 .The expressions in Eqs.
(14)—(16) give H=rr/2. What is the spin structure in this
case? The calculated results for the correlation function
lr are shown in Fig. 5. First, we examine the case of /=0.
Ir is plotted as a function of 0 in Fig. 5(a), which gives us
a measure of the frustration. ~ has a peak at 0= —m/4
when D/J is small. The peak splits into two as D/J in-
creases. Shekhtman, Entin-Wohlman, and Aharony' ar-
gued that the Hamiltonian (23) is iso-
tropic at 0= —m/4 and that frustration is essential for
the emergence of weak ferromagnetism. In fact,
(Sz( —q)S&(q)) at 0= vr/—4 is independent of D/J,
having the same value as that of the Heisenberg model,
and also the ground-state energy is equivalent to that of
the Heisenberg model with replacing Jby J+D /4J. We
thus confirm that the interaction between the spins is
really isotropic; i.e., weak ferromagnetism is not induced
at 6= vr/4. —It is also true that, for unrealistically large
values of D/J, frustration generates the peaks in ~ at
8% —~/4, as shown in Fig. 5(a). However, for realistic
values of D/J, frustration diminishes Ir as 6 changes from
—~/4. Frustration seems not sufficient for weak fer-
romagnetism. What then is the true origin of weak fer-
romagnetism? It is straightforward to answer this ques-
tion if we examine the behavior of tr at /&0. Figure 5(b),
which shows the dramatic enhancement of ~, clearly indi-
cates that the contribution from the 2p, orbitals is essen-
tial for the emergence of weak ferromagnetism.

Next, we consider the LTT phase. It is characteristic
of the LTT phase that all the DM vectors are along the x
axis. The calculated result for the correlation functions
(25) and (26) at /=0 is shown in Figs. 6(a) and 6(b). The
LTT phase with D, /D2 = 1 corresponds to the LTO
phase with 0= —~/4. Thus the Hamiltonian is isotropic
at D&/D2=1. When D, /D2&1, the four classical spins
in a plaquette of the square lattice are of the antiferro-
magnetic arrangement with the anisotropy of the x direc-
tion in the ground state, of which the energy eigenvalue is
—

—,'[2J+(D, +Dz)/4J]. Thus we understand Figs. 6(a)
and 6(b) to indicate that the quantum spin system has the
uniaxial anisotropy of the x direction in this case. Now
let us examine the case at /%0, i.e., the effect of the 2p,

1.5— I
s & & s

(~) (b)

0
'~,(z/2, z/2)

x
~'(n, O)

N

1.0—

0.5—

— 2.0

— 1.5

— 1.0

— 0.5

FIG. 4. Brillouin zone and its irreducible part (shaded) of the
two-dimensional CuOz plane in (a) the LTO and (b) LTT phases.
We take the axes k and k~ defined in the HTT phase.

I

-z/2 0
0 (rad)

—0.0
I I « i & I &» j I

~/2 0.0 0.5 1.0

FICs. 5. (a) Correlation function v as a function of 0 at /=0.
(b) The correlation function Ir as a function of g at 0= —rr/4



3396 W. KOSHIBAE, Y. OHTA, AND S. MAEKAWA 47

2.0

o 1.0

the spin-orbit interaction cannot provide such an anisot-
ropy; the magnetic structure in the LTO phase of
La2NiO4 must be of a different origin, say, the on-site an-
isotropy due to the Ni + ion of the spin of S = 1.

0.0
1.0

I

0.9

q=(o,o)

a=y, z
I « \

q=(o,o)

—1.0 0.0 1.0 0.0 1.0
Dl /D2

2.0

FIG. 6. (a) Correlation function ~ as a function of D, /D2 at
(=0. (b) The correlation function Eq. (26) at q=(0, 0) as a
function of D~ /D2 at /=0. (c) The correlation function s. as a
function of g at D& /Dz =0. (d) The correlation function Eq.
(26) at q= (0,0) as a function of g at D

~
/Dz =0.

orbitals. In Figs. 6(c) and 6(d), we show the calculated re-
sults for the correlation functions (25) and (26) at
D& /D2 =0 as a function of g. The anisotropy along the x
axis decreases for g+ 1, while a increases monotonously
with g. This behavior may be understood in the classical
spin system: We find that the four classical spins in a pla-
quette of the square lattice have a ground state character-
ized by uniaxial antiferromagnetism for g(1 and by
weak ferromagnetism for g) 1. Thus, in the LTT phase,
either uniaxial antiferromagnetism or weak ferromagne-
tism may be induced depending on how the oxygen 2p,
orbital contributes to the anisotropic superexchange in-
teraction of the single Cu —0—Cu bond. A recent experi-
ment has shown that weak ferromagnetism is induced in
LTT-phase La& 65Ndo 35Cu04. ' The magnetic structures
which we have obtained for La2Cu04-type crystals are il-
lustrated in Fig. 7.

One of the characteristics of the spin-orbit interaction
observable in the experiment is the magnetic anisotropy.
The anisotropy has the following features in the realistic
parameter region. In the LTO phase, the easy axis of
magnetization cannot be in the (110) direction, irrespec-
tive of whether weak ferromagnetism or uniaxial antifer-
romagnetism is obtained. In the LTT phase, the easy axis
is always in the (100) direction. It has been observed
that in the LTO phase of La2Ni04 the antiferromagnetic
easy axis is in the (110) direction, unlike the case of
La~CuOz where it is in the (110) direction. As above,

IV. ELECTRONIC STRUCTURE
IN THE DOPED Cu02 PLANE

with

+ + U+ LS (27)

and

H, = g g(t, /„d, d „+H..c. ),
(ij )o mn

HU U g d~~m Tdi td td
imn

(28)

(29)

HIs AgL; S;, (30)

where t, -„denotes the transfer of holes between m and
n orbitals on the neighboring i and j sites. The other no-
tation is the same as those in Eqs. (2)—(4). As has been
done in Sec. II, we obtain the effective Hamiltonian by el-
iminating the excited crystal-field levels:

In the previous section, we have found that the mag-
netic structure depends on lattice distortion through the
spin-orbit interaction. Recently, Bonesteel, Rice, and
Zhang' have suggested that the spin-orbit interaction
also results in a change of the electronic structure of
hole-doped La2Cu04. Following Bonesteel, Rice, and
Zhang, ' we assume that the single-band Hubbard model
should describe the relevant electronic structure of the
Cu02 plane. This is purely an assumption, because the
multiband nature is expected to be important as we have
shown for the magnetic structure in the previous sec-
tions. We believe, however, that it is necessary to exam-
ine the effect of the spin-orbit interaction within the
single-band Hubbard model as a first step. Here we
derive the effective Hamiltonian for the electronic struc-
ture as an extension of the t-J model. We then calculate
the ground-state energy and photoemission spectrum by
the exact-diagonalization technique. The effect of the lat-
tice distortion via the spin-orbit interaction on the dy-
namics of a hole is thereby discussed.
We confine ourselves to the LTT phase, which is in-
teresting in relation to the anomalous properties in
La~ Ba Cu04.

Let us first write the Hamiltonian,

s $ ~ g s

(a) (c)

FIG. 7. Schematic representation of the
spin structure (solid arrows) and direction of
the DM vectors (open arrows) in the CuO&
plane of the LTO and LTT phases. (a) Weak
ferromagnetism in the LTO phase. All the
spins cant up out of the plane. The easy axis is
in the (110) direction. (b) Weak ferromagne-
tism in the LTT phase. All the spins cant up
out of the plane. The easy axis is on the (100)
plane. (c) Uniaxial antiferromagnetism in the
LTT phase. The easy axis is in the (100)
direction.
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H= g (t p.jpd p djp +H.c. )
(ij &o

+ g g [C,. (d, o rr P,&»)+H. c. ]+Up n;tn;&,
( &-p

with

cx= — (t»+t 2 z 2 2+ 3t3 2 2 z, )
Eyz

(42)

(31) and

with

L*o L o
Cij = g t/rn jo+ g tio j

m ~m m ~m
(32)

A,6
c = — — (t +tq q 2 2

—V3t z 2 2, ),y ~g yz, yz x —y x —y 3z —r, x —y
&yz

(43)

where n, =d;o d;o . We apply the second-order pertur-
bation with respect to the transfer parameters in Eq. (31)
and obtain the effective Hamiltonian

I—6- I
I I I I

I

( zz /2, 0),(0, rz /2) (a)

H,~=H, J+H. .
with

H, J= —t g (c; c/ +H. c.)+J g (S,. S,. ,'n, n——)

(33)

(34)

a —8-

C

CD

a) —10—
LLI

and

H, = g g [C;/ (c; tr /3c~/3)+H c ]. .
(ij& ap

+ g D;j.(S;Xs )

~ ~ ~
—12-

0.0

(0, K /2)

0.5
Clt

1.0

where

c; =(1—n, )do

4t
U

+g sr s.——
t ~ 4 4J(ij&

n;n (35)

(36)

(37)

CO

—8-
CD

CD

LLI

and

D;j = (C; —C,;)=2i(J/t)C,J (38) -" 00

~ ~ ~

0.5
C/t

1.0

r,, =—[c„c,, +c,, c,, +1(c,, c,, )]lj U ( rz /2, 0),(0, rz /2)

=—[Cjcj;+Cj;Cj+1(C/ Cj,. )] .t' (39)

We have used an abbreviation t= —
~t;pjp~. The pair-

hopping term has been neglected. The Hamiltonian (33)
is an extension of the so-called t-J model, which includes
the effect of the spin-orbit interaction. Note that the
spin-orbit interaction induces the hopping term with an
effective vector potential (or fiux). ' '5 We call the first
term of Eq. (35) the spin-orbit hopping term.

Inserting the orbitals of Eqs. (12), (13), and (17), and
(18) into Eq. (32), we have

o —8-
V)

CA

g) —10—
LLI

—12-
0.0 0.5 1.0

Clt

and

C,b =i(c„,c,O)

C„=—i(c,c,O), (41)

FIG. 8. Calculated energy eigenvalues of H,z as a function of
C/t =D/2J. The results are for the 16-site square lattice with a
hole at J=0.25t. (a), (b), and (c) correspond, respectively, to the
case where D&/Dl = 1, 0, and —1 in the LTT phase as shown in
the insets.
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for the LTO phase, and

C,„=i(c„',0,0)

and

C„=i(c",0,0),
with

k6
cx — (t~ z+t 2 2 p 2+v 3t ~ q q 2)X yZ&yZ X y

(45)

and
(46)

A,6
c~ ( t ~ z+t 2 2 2 2 3t 2 2 2 2), (47)

~yz

for the LTT phase. We note that t =t 2» 2 in Eqs.
X —y, X —y

(34) and (37)—(39). t„& denotes the transfer between the
neighboring g and g orbitals. The corresponding expres-
sions for D," and I," are given by using Eqs. (38) and (39).

In the following we calculate the ground-state energy
and photoemission spectrum for the above Hamiltonian
and examine the effect of lattice distortion on the dynam-
ics of a hole through the spin-orbit interaction. We apply
the exact-diagonalization technique for the 4X4 square
lattice with the periodic boundary condition. The spin
quantization axis is taken along the DM vectors in the
LTT phase, so that we may have the Hamiltonian com-
mutable with the component (along the spin quantization
axis) of the total-spin operator. As we have argued in
Sec. III, we do not take the expressions of Eqs. (42), (43),
(46), and (47) seriously, but rather change the parameter
values over a wide range within the symmetry constraint
and Eqs. (38) and (39). We take the relation D /J =2C /t,
where D = D," ~, C =

~ C; ~.

The calculated results for the ground-state energy at a

number of wave vectors are shown in Figs. 8(a), 8(b), and
8(c). Figure 8(a) is the result for D2/D& =1, which corre-
sponds to the case where there is no frustration. Here the
Hamiltonian can be mapped onto the isotropic exchange
Hamiltonian when there is no hole. It is found that the
energy eigenvalues obtained are identical with those of
the t Jmod-el if we replace t by t[1+(Clt) )' and Jby
J[1+(Clt) ). Thus the system with a hole at D2/D& =1
is exactly equivalent to the t Jm-odel. Figure 8(b) is the
result for Dz/D, =0. The energies are not degenerate.
With increasing C It, the ground-state wave vector
changes from k=(vr, O) for Clt &0.85 to k=(m/2, 0) for
Clt ~0.85. Figure 8(c) is the result for D2/D& = —1,
which corresponds to the case where uniaxial antifer-
romagnetism is most strongly induced when there is no
hole. Here the energies at k=(vr/2, 0) and (0,~/2) are
degenerate because the Hamiltonian at D2/D& = 1 in
the LTT phase is equivalent to the Hamiltonian at
0=~/4 in the LTO phase and the wave vectors (vr/2, 0)
and (O, vr/2) belong to the same star of k in the LTO
phase. With increasing C/t, the ground-state wave vec-
tor changes from k=(n, O) for C/t &0.7 to
k=(m/2, vr/2) for CIt 20.7.

We find in the LTT phase that, by changing Dz/D,
from 1 to —1 with fixing D&, the degeneracy between
(7r/2, vr/2) and (w, O) is lifted monotonously to make
(~,0) the ground-state wave vector. The level separation
increases linearly with respect to Clt when D2/D, &1
and C/t is small. The effect of lattice distortion emerging
via the spin-orbit coupling is, therefore, to lower the en-
ergy at k=(n, 0) compared with k=(w/2, vr/2). This
effect is the largest when the uniaxial antiferromagnetic
character appears most strongly in the undoped systems.

The change in the symmetry of the ground state may
also be seen in the calculated photoemission spectral den-
sities I(k, co) for the undoped system. We calculate

I(k, co)= ——Q Im g. s. ck c~ g. s.
'IT CO Meg +Eg S + 1 YJ

(48)

and

I(co)= Q I(k, co),
k

(49)

where E, and ~g. s. ) are the ground-state energy and
eigenvector of the undoped system, and ek is the Fourier
transform of the projected annihilation operator c, . g is
a small parameter which gives a finite width to the 6
functions appearing at each pole of I(co). We use the
Lanczos algorithm for the numerical calculation. The
results for I(k, co) at k=(vr/2, m/2) and (n, O) with
C /t =0. 1 are shown in Fig. 9. We see a peak at
co= —1.9 when D2/D& =1. With changing D2/D, from
1 to —1, the peak at k=(~/2, n/2) remains as a single
peak, but the peak at k=(~, 0) splits into two peaks and a
small peak appears at co= —1.73. The lowest-energy
peak at k=(7r, O) is lower than the lowest-energy peak at

k = ( ~/2, vr/2 ), whose energy difference corresponds to
the splitting of the one-hole energy levels described
above.

It has been argued that the one-hole ground state of
the t-J model in the infinite system is at the wave vector
k=(vr/2, rr/2). We have shown here that the effect of
lattice distortion lowers the energy of k=(m, O) through
the spin-orbit coupling. Is this effect large enough to
change the ground-state wave vector? It has been report-
ed that the energy-level difference between
k=(m/2, n/2) and (vr, O) in the t Jmodel is an o-rder of
J/10 in units of t. We can evaluate the parameter values
for La2CuO4. . 5=0.05 rad, ' X=0. 1 eV, cyz 1 eV,
and t 2 2 ~ 2-—0.4 eV. Then we have C=0.003 eV.

X y, X

This value is two orders of magnitude smaller than the
value of t =0.4 eV. In Fig. 8(c), where we see the
strongest effect of lowering the energy of k=(vr, O), we
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0

4-

2

.0 —1.8
CO/f

ture work we should work out how the spin-orbit term
arises in the process of deriving a proper single-band
model that describes the multiband nature of the Cu02
plane.

V. CONCLUSIONS

2- (b) 43

0

(c)
2

0
I I I ( I I I I I I I I I

0 5 10

FIG. 9. Calculated spectral densities I(co) for H,& at
C/t =0.1. A broadening of q =0.1t is used. (a), (b), and (c) cor-
respond, respectively, to the case where D2/Dl =1, 0, and —1

in the LTT phase. I(k, co) at k = (m, 0) (solid curve) and

(~/2, m/2) (dashed curve) is shown in the insets of panels (a),
(b), and (c). In (a) the two curves coincide. A broadening of
g=0.01t is used.

find that the energy-level splitting between k =(vr/2, vr/2)
and (n, O) at C/t=0. 01 is 0 Olt-T.his .is less than a
half of the value of J/10 =0.025t. We therefore conclude
that the effect of lattice distortion via the spin-orbit cou-
pling is too small to change the ground-state wave vector
k.=(vr/2, vr/2) into (vr, O).

Here we have examined the spin-orbit effect starting
with the single-band Hubbard model. The extended t-J
model is not, however, a sufficient model for describing
the distorted Cu02 plane with the spin-orbit interaction,
as we have stated in the beginning of this section. In fu-

We have examined the effect of the lattice distortion
appearing through the spin-orbit coupling on the magnet-
ic and electronic structures of the Cu02 plane of
La2Cu04-type crystals. The contribution of the 2p, orbit-
al of the in-plane oxygen ions is essential for understand-
ing the magnetic structure; the DM interaction does not
always induce weak ferromagnetism, but can provide a
variety of magnetism. We have shown that, in the LTO
phase of La2Cu04, the contribution from the 2p, orbital
is essential for the emergence of weak ferromagnetism.
In the LTT phase, either uniaxial antiferromagnetism or
weak ferromagnetism may be induced depending on how
the oxygen 2p, orbital contributes to the anisotropic su-
perexchange interaction of the single Cu —0—Cu bond.
The effect of the spin-orbit interaction on the dynamics of
a hole has been studied within the extended t-J model,
which includes both spin-orbit hopping and the DM in-
teraction. We have shown that lattice distortion works to
change the symmetry of the electronic ground state via
the spin-orbit coupling. The effect is, however, small in
the actual CuOz systems and seems irrelevant to the
anomalous properties of La, 88Bao,2Cu04.
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