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We analyze the dynamics of the charge degrees of freedom in the extended Hubbard model for the
CuO, planes in copper oxides in the strong-coupling limit. We analyze the behavior of the collective
modes near the charge-transfer instability (CTI). The CTI is driven by an overdamped zero-sound mode
when the Landau stability criterion F3 > —1 is violated due to the charge-transfer mode-mediated at-
traction. The divergence of the compressibility at the CTI requires a Maxwell construction, which
determines a region of phase separation. Near the phase-separation boundary, at intermediate doping,
the singlet Cooper coupling is attractive both in the s- and d-wave channels. In the strong-coupling limit
the excitonic energy w,, is large and the energy scale for pairing is the Fermi energy itself.

I. INTRODUCTION

In the preceding paper we described the interplay of
the collective modes and the charge-transfer instability
(CTI) in the extended Hubbard model in the weak-
coupling limit. We found that the zero sound and the CT
excitonic mode interplay to drive the instabilities and the
superconducting pairing near phase separation. The
weak-coupling approach probably gives qualitatively
correct results for the intermediate to large doping region
where the correlation effect is not strong. But in the
copper oxides, U, is larger than the bandwidth and the
strong correlation effect is important anyway, especially
close to half-filling. Moreover, the fact that some impor-
tant results obtained in the weak-coupling framework
(e. g., s-wave pairing) are very sensitive to the strength of
U, motivates us to investigate the infinite U, limit using
the slave boson approach.

The recent analysis reported in Refs. 1 and 2 employed
a large-N technique combined with a slave boson tech-
nique to study the U; = oo limit of the three-band extend-
ed Hubbard model. According to that analysis, the CTI,
together with phase separation, is present in the U, =
limit just as in the weak-coupling limit. Furthermore, s-
and d-wave pairings were found in the proximity of the
phase separation. Therefore, regardless of the strength of
U,, a V of the same order of magnitude of ¢, is enough
to give a CTI in the three-band extended Hubbard model.
Moreover, this instability is intimately related to the
phase separation and to the superconductivity.

However, there are several differences between the
U;= oo limit and the weak-coupling limit. First, the
strong-coupling technique is able to describe the metal-
charge-transfer-insulator (MCTI) transition at the half-
filling (§=0), whereas the weak-coupling Hartree-Fock
approximation cannot describe the insulating regime.?
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This fact is reflected in a different location of the phase-
separation region in the phase diagram. While in the
weak-coupling case* the phase separation and the con-
comitant instabilities are approached as one increases
doping, in the strong-coupling case!? those features
occur for small doping in the proximity of the MCTI
transition. In both cases the physical reason for the
phase separation is the decrease of the renormalized
kinetic-energy contribution to the total energy. Roughly
speaking phase separation appears when the renormal-
ized kinetic energy is no longer large enough to provide
an upward curvature to the total energy as a function of
doping. In the weak-coupling limit decreasing doping
stabilizes the system, since the renormalized kinetic ener-
gy roughly behaves like the unrenormalized kinetic ener-
gy, which has the largest upward curvature at half filling.
This is not the case in the strong-coupling limit since the
renormalized bandwidth goes to zero near the insulating
phase and phase separation first appears near zero doping
by increasing V.

A second difference between weak- and strong-
coupling limits is that the excitonic collective mode has,
in general, a high energy in the strong-coupling limit,
even in the proximity of the CTI. Nevertheless, as in the
weak-coupling theory, this mode plays an important role
to induce the CTI, the phase separation, and the super-
conductivity.

In order to shed light on these aspects, in the next sec-
tions we extend the work of Refs. 1 and 2 to the dynamic
limit. We first introduce the strong-coupling formalism
and review the mean-field analysis. Then we analyze the
collective modes at small doping close to the insulating
phase, where an analytical treatment is feasible. The in-
stabilities are then considered in the context of the
Fermi-liquid theory. Finally numerical results are
presented.
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II. STRONG-COUPLING FORMALISM formed:
. . t
i - o pd V
A. Static mean-field analysis: An overview tod — W’ _ _]\7 .
In the U,;= o limit of model (1) in the companion pa-

per a no double occupancy constraint arises on copper
sites Ead,-t,d,-afl containing the major difficulty of the
formal treatment. A standard trick to handle the con-
straint is the slave boson technique,’ transforming the in-
equality into a completeness relation. The introduction
of bosonic degrees of freedom ‘““labeling” the empty sites
results in the mapping

df, —dlb;, d,—bld, . (1)

Since a given copper site can only be either singly occu-
pied by a fermion or singly occupied by an “emptiness”
boson, the constraint assumes the form
s dld. +blb,=1.

To av01d any perturbative approach in the coupling
constants we provide the model of a small expansion pa-
rameter by means of a large-N expansion technique as-
suming the spin index to run from 1 to N. In order to
keep all the terms in the Hamiltonian of the same order
N, the following rescaling of the couplings has to be per-

Then the model is further modified by partlally relaxing
the constraint, which becomes Ead d;,+b; b =qN,
with go=1 and N large. The original model can then be
recovered by setting N =2.

On the other hand, the nearest-neighbor interaction
term

()

(here j labels the four oxygen sites surrounding the
copper site i) can be decoupled by means of a Hubbard-
Stratonovich transformation by introducing two real
fields X and Y coupled to the CT density n, —n, and to
the total-charge density n, +n,, respectively (each densi-
ty is taken per unit cell and per spin).

The partition function of this system can then be writ-
ten as a functional integral

z= DpwapaaDdlDdanTDb DADX DY exp | — f()BSd’r] : 3)
_ + apioa N 2 2
S=73 Zd,g <+ > Piga—=—Tb + 2 —qoN)+ =X +Y") | +H, (4)
7 a camx,y or 2V
H= zduf io Ed+l}" +X +IY )—_ 2 pifuapiaa(Xl—iYi)-‘—sg 2 pitmrpiaa
i,o,a=*x,ty I,o,a=x,y
Lpd
- \/p"ﬁ 2 [(pi'tfx _piL—x +pitry _piTa-'y )diobiT+C'c-]

Tl

io

In terms of the functional integral the large-N expansion
is a saddle-point expansion, the saddle-point mean-field
solution being exact in the N = o limit.

The limitations of the present technique are due to the
unknown convergency properties of the 1 /N expansion.

Another important limitation is given by the absence
of magnetic phases in our treatment. Actually an
effective magnetic coupling (like the superexchange J be-
tween copper spins) is, in principle, present in the model
arising from a double exchange of bosons.” This process,
however, turns out to be higher order in 1/N (see the
next subsection) so that, at the mean-field level and 1/N
corrections, the present description does not include
relevant magnetic effects like long-range antiferromagnet-
ic order and spiral spin phases. On the other hand, this
approach has the advantage of being systematic in the
derivation of higher-order corrections and of being non-
perturbative in the physical couplings Uy, €, —¢eJ, and Lo

2 [piT+xox (pi¢7~y _piay +pi+2x0y ——pi+2xa*y )+C.C. ] .

so that all the various regimes of bare parameters can be
explored.

Besides the above technical advantages the slave boson
large-N technique presents the physical advantage that its
very starting point already contains some important
physics, which is intrinsic of the large-N version of the
three-band extended Hubbard model and it is not intro-
duced by any approximation (the mean-field solution be-
ing exact in the infinite-N limit). Specifically it is able to
describe already at the mean-field level the occurrence of
a CT insulating phase at half filling.® For #,, =0 this hap-
pens when 82—82+ V' >3.34t,;. Of course, in this re-
gime magnetism plays a major role in real systems, but it
is important to recognize that the present model, inten-
tionally designed to make evident the behavior of the
charge degrees of freedom only, still captures the CT in-
sulating character of the half-filled phase. The kinetic-
energy reduction in the metallic phase due to the close-
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ness to an insulating phase can indeed have important
physical consequences.

The model (3)—-(5) can be solved at the mean-field level
(large N) by setting the bosonic fields to uniform time-
independent numbers (b,)=b,=V Nry, (A;)=—iAk,,
(X;)=X,, and (Y;)=—iY,. Notice that the paths for
A; and Y; in the functional integral have been deformed
from the real axis inside the complex plane to meet the
saddle-point solutions. At this point the model has be-
come a tight-binding model for free fermions describing
the coherent motion of the quasiparticles of a Fermi
liquid. The only effect of the interactions is in the renor-
malization of the tight-binding parameters: ry multipli-
catively renormalizes the hopping #,, leading to a reduc-
tion of the quasiparticle bandw1dth whereas Ay, X, and
Y, shift the bare atomic levels

g, =0 —(X,—Y,) ,

g =3 +H(Xy+Y)+ A, .

The mean-field values of the fields must be self-
consistently determined by solving the integral equations
arising from the stationary conditions of the free-energy
functional per site and per spin

F=k0(r3—qo)+iV(Xg—Y3)
— L 5 n[14¢ B0 (6)
Ns k,l

E,(k) are the three eigenvalues of the tight-binding Ham-
iltonian (5) renormalized by the saddle-point values of the
bosonic fields. The self-consistency equations must be
solved together with the equation for the chemical poten-
tial fixing to (1+8)g, the average particle number per
cell and per spin.

The whole set of equations is given by

OF . BH | 1
W k%jf[E,(k) pIULR) | 20 UU,,(k) 0,
_dF

o~ 2 SIE(k)—p]=(1+8)q, ,

Kk

where W indicates the mean-field parameters (i.e., 7o, A,
Xy, and Y,), the U’s are the matrices which diagonalize
the Hamiltonian at a given point in k space, and f(E) is
the Fermi function.

In the particular case f,,=0 the renormalized band
structure assumes a simple form

El(k)ZL[g +gd—'\/(8p—£d) +16¢ droyk] 7)
E,(k)=

e, +eg+V (e, —eg 2+ 16t5r3vE], (8
Es(k)=¢, , 9)

where y%=sin%(k,/2)+ sinz(ky /2). In this simplified
situation the matrices U assume the form reported in Eq.
(8) of the companion paper and the self-consistency equa-
tions can be written in a more explicit way:
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2
2 ; (flk —fau) (10)
N, %
90= 2 ulgflk +U/3f2k) ’ an
N %
XO—Y0=—2Vnd_ 2f1k+U]3f2k) ) (12)
_ _ 2V 2 2
Xo+Yo=2Vn,= N D Wifutuifo+ ), (13)
sk
4o148)=2 3 (i + S+ 3 (14)
sk

where u?=1[1+(e f ed)/Rk] E%[l—(ep—ad)/Rk]
with R2 (e —gg)*+1615r5v%, and [ =f[E(k)—pu]
[compare expressmns after Eq. (3) of the companion pa-
per].

The analogy at the mean-field level between the extend-
ed Hubbard model and the Ising model discussed in the
weak-coupling framework* can be extended to the
present strong-coupling context, the main difference is
the presence of the constraint, which now forbids copper
occupancies larger than g,N, forcing r3 to be a non-
negative quantity.

The Curie-Weiss-like equation can more conveniently
be expressed in terms of r3 rather than in terms of the
“magnetization” n,—n,. This latter quantity can be
rewritten by exploiting the constraint and the total parti-
cle number condition Egs. (11) and (14):

2
r
1—6—2—2

n,—n;=—q
P d 0
90

Then, defining the Hartree gap
Ay=e)—ej+2V(ng,—n,),

the above expression represents a straight line in the
Ay —riplane,

1
W[A0+2qu(l_6)] (15)

with AoEsg —el.

The self-consistency problem is then solved by finding
the intersection(s) of the straight line Eq. (15) with the
curve r3=r3(Ay,8) obtained by solving Egs. (10) and
(11) together with condition (14) for all the values of Ay.
We show r3(Ay) in Fig. 1 at doping §=0 and 0.2 togeth-
er with the straight line at zero doping.

It should be recognized that the curve r3=r3(Ay,8)
no longer depends on V: the same curve would be ob-
tained in the three-band Hubbard model (without V')
(Ref. 8) by simply varying the bare CT gap A,. On the
other hand, the angular coefficient of the straight line (15)
is 1/(4V) so that the number of intersections depends on
V. Then a critical value V*(8) exists such that, for
V < V*(8), the straight line is too steep and only inter-
sects once the curve r3=r3(Ay,8). If V>V*(8), in-
stead, three solutions occur corresponding to one max-
imum and two minima in the free-energy functional. In



3334

N

To

AN

0.05 |-

o

0.00 Lo

4 5

FIG. 1. r3vs Ay for doping =0 and 0.2. The straight line is
given by Eq. (15) in the text defining the critical slope at which
the mean-field equations cease to have a unique solution. All
energies are in units of ¢,; (from Ref. 2).

particular, in the case with ¢,, =0, §=0, V'*=~1.76t,,.

When V> V*(6), with increasing doping, the mean-
field solution presents a first-order valence transition
from a d-like metal minimum with a small 73 to a p-like
metal minimum with a larger r2.

The MCTI transition is affected by the presence of the
valence transition: while the MCTI transition is second
order when V < V*, it becomes first order when V' > V*.°
In this latter case the valence transition line in the plane
Ay— & starts from the MCTI transition point.

Notice that the mean-field equations (10)—(14) describe
the system at fixed doping, in the absence of homogene-
ous density fluctuations. Then the fact that the mean-
field equations exhibit a valence change varying the dop-
ing is indicative that allowing density fluctuations can re-
sult in phase separation between d-like and p-like phases.
This occurrence can easily be investigated in the grand
canonical ensemble by studying the density-density corre-
lation functions at a fixed chemical potential. This
analysis requires the calculation of the Gaussian fluctua-
tions (1/N corrections) of the boson fields. In fact, the
boson propagators enter the diagrammatic structure of
both the total density and the CT density correlation
functions at leading order. This calculation will be de-
scribed in the next section.

The presence of a phase separation in the system can
also be revealed by a mean-field calculation of the chemi-
cal potential as a function of doping. A typical case is
shown in Fig. 2, where it is apparent that the chemical
potential is not a monotonically increasing function of
the number of particles. In particular, there are points
where the inverse compressibility Y ~'=du/dn is zero.
A diverging compressibility is a signature of phase sepa-
ration requiring the use of a standard Maxwell construc-
tion to determine the stable region in the phase diagram.

It is important to realize that, when the compressibility
diverges (that is, the static total density fluctuations
diverge), the static CT susceptibility y.r also diverges be-
cause the total density and the CT modes are coupled.!
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FIG. 2. Chemical potential as a function of doping for
t,, =0.2t,5, Ag=2.3¢,;, and V'=2.3t,; for U,=2t,; (solid line)
and U, =0 (dash-dotted line).

This is intuitively seen by noting that a decoupled CT
mode means that the intracell charge fluctuates from
copper to the surrounding oxygens and vice versa with
Sndi+8npi=O. On the other hand, the Hubbard repul-
sion depresses the charge fluctuations on copper, which
have to satisfy a constraint. This strongly favors a CT
mode accompanied by a total intracell charge fluctuation
S”d,. +8np'5é0 because copper cannot always accept all of

the charge that oxygen “would like” to give to it. A
deeper insight into the interplay between the CT and the
density modes requires the dynamical analysis which has
been presented in the companion paper in the weak-
coupling limit and which will be reconsidered in the fol-
lowing sections in the strong-coupling limit.

Mean-field phase diagrams for two typical sets of pa-
rameters are shown in Fig. 3, where the dashed lines indi-
cate the points where the compressibility and the CT sus-
ceptibility become infinite. Figure 3 (from Refs. 1 and 2)
is for ¥ < V* and shows that phase separation can occur
even in the absence of a valence transition. In the simple
case t,, =0 the minimum value for ¥ at which phase sep-
aration occurs 1s

Vmin=(2/\/‘72)(‘y4/7/2_ 1 )l/Zthz 1'63tpd .
¥,=(1/N)3,v%: and y,=(1/N;)3 v}, the sum being
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FIG. 3. Phase diagram A,/t,; vs 8 for t,,=0, U,=0, and
V=1.75t,;. The diamond indicates the metal CT insulator
transition point (from Ref. 1).
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extended to the occupied k states at §=0. These expres-
sion will be derived in Sec. IV.

On the other hand, Figs. 4—6, where V > V'*, show the
presence of a first-order transition line ending with a crit-
ical point (indicated by a dot). By increasing V' > V* this
transition line becomes longer and the critical point
moves away from the MCTI transition point deeper and
deeper inside the unstable region. Even though the criti-
cal point lays inside the physically unaccessible region of
negative compressibility, it is nevertheless instructive to
notice that this point is in some sense reminiscent of the
MCTI transition point at ¥ < V*. In fact, not only the
critical point continuously evolved from the MCTI point
when V exceeds V*, but also at both the MCTI point
when V' <V* and at the critical point when V> V* the
compressibility goes to zero. In both cases the excitonic
mode becomes soft and the zero momentum dynamical
scattering amplitude I', diverges as we shall see in the
next section. Notice, however, that away from half filling
rg is not critical.

In the phase diagram of Fig. 4 both ¢,, and U, are
different from zero. We find that z,, stabilizes the region
at small doping, while U, stabilizes the region at high
doping. By varying t,, and U, we can tune to a large ex-
tent the values of the doping involved in the phase-
separation region. For the purpose of calculating these
phase diagrams the oxygen oxygen repulsion U, was in-
troduced. The model with finite U, is still soluble in the
large-N limit and the large-N solution is equivalent to
treating U, at the level of the Hartree approximation.

Similar results are obtained at negative doping for
which a phase diagram is reported in Fig. 5. Comparing
this latter phase diagram with the one in Fig. 3 it is ap-
parent that the instability region extends on a much
smaller region.

The strong-coupling formalism described at the begin-
ning of this subsection does not allow for exchange effects
at lowest order in perturbation theory. It is, in fact, ap-
parent that the mean-field treatment of the Hubbard-
Stratonovich decoupling is equivalent to the Hartree
decoupling only, without any Fock term. In order to

3.00 prrrr e e :
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FIG. 4. Phase diagram Ay/t,, vs & for 1,,=0.2t,,
U,=2.0t,4, and ¥V=2.3t,;. The first-order p-d valence transi-
tion is shown by a thick line ending with a critical point indicat-
ed by the diamond. The metal CT insulator transition is first or-
der and occurs at the crossing point between the vertical axis
and valence transition line.
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FIG. 5. Phase diagram Ay/t,; vs & for t,,=0.2t,;,, U,=0,
and V'=2.3t,; in the case of negative (electron) doping. The
first-order p-d valence transition and the metal CT insulator
transition are shown as in Fig. 4.

consider these effects already at the mean-field level, we
have included “by hand” in the Hamiltonian a term of
the type

i T
2 diadio’pina’pi'qa .
i,o,o'
n=x=xx,ty

This additional term can be decoupled by means of a
complex Hubbard-Stratonovich field Z;,, for which one
can choose a mean-field solution of the form

roho
41,

V
(Z,,))= _Ni 3 sgn(n)(p,-,,(,d,-t, ) =V,sgn(n)

defined on the bond between site i and site i +1.'° This
term additively modifies the hopping resulting in an addi-
tional Fock renormalization of the mean-field band struc-
ture. This also results in a modification of the value for
V*, giving, when ty =0,
. Ya Ya
V=t o,

=1.76t,4+0.73V,=2.7621,,, .

Vs

2.4
2.2 |

2.0 |
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FIG. 6. Phase diagram Ay/t,; vs 8 for t,,=0.2t,;, U,=2t,,,
V=3t,;, and V,=1.1¢,;. The first-order p-d valence transition
and the metal CT insulator transition are shown as in Fig. 4.
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The phase diagram for the case V=31,;, U,=2t,
pp=0.2t 4> and V,=1.1t,; is reported in Fig. 6. By
comparing this phase dlagram with Fig. 3 we infer that
the Fock contributions introduced via ¥, have an effect
similar to that of ,,70 and stabilize the system at small
doping. We have found that for generic values of the pa-
rameters (that is, not too close to the metal-charge-
transfer-insulator transition), ¥, does not modify qualita-
tively the mean-field picture discussed above, but intro-
duces some quantitative modifications. The effects of this
term near the transition have been recently examined by
Hicks, Ruckenstein, and Schmitt-Rink using an equation
of motion method. They have shown that for
V=v*=2V,, U,=t,,=0, the lower and the upper
curves of infinite compressibility join at small but
nonzero doping. For these values of the parameters the
strong-coupling phase diagram is more like the weak-
coupling phase diagram.

The presence of long-range Coulombic forces would, of
course, prevent the formation of macroscopically large
phase-separated regions with different concentrations of
holes. In the real systems, however, the negatively
charged oxygen ions are rather mobile, so that the hole
phase separation could occur if the O™ 2 ions can also
separate compensating for the charge imbalance. In this
context the particular shape of the unstable region in
Figs. 4 and 6 is particularly appealing since it indicates
the possibility of having a stable region in the higher part
of the diagram at low and intermediate doping followed
by a phase-separation region at larger doping. A similar
behavior has been reported in La,_,Sr,CuO,,!" where
the phase separation occurs between a low-doping metal-
lic phase, which becomes superconducting, and a metallic
nonsuperconducting phase at high doping. The phase di-
agram of Fig. 4 could provide an explanation of electron-
ic origin if the phase separation in the strontium-doped
lanthanum copper oxide is confirmed.

Notice that relevant role in the phase diagrams de-
scribed above is played by the MCTI transition, close to
which the kinetic energy is so strongly depressed that it is
no longer able to stabilize the system. A similar situation
is present in the three-band extended Hubbard model
with V=0 in the presence of a Heisenberg magnetic cou-
pling (two-band #-J model).'? In this latter model the ex-
istence of a phase separation of a different origin than the
one discussed in the present context has been shown in
analogy with the single-band ¢-J model.!* In particular,
the kinetic-energy suppression due to the MCTI transi-
tion resulted in a low-doping region where the system
separated into a metallic paramagnetic phase and an anti-
ferromagnetic insulating half-filled phase. This oc-
currence could, then, account for the phase separation
observed in overoxygenated La,CuO,,s compounds. In
principle, a third scenario, in which both phase separa-
tions, the one at low doping of magnetic origin and the
one at larger doping of excitonic origin, can occur in the
same compound. No experimental evidence is, however,
available to support this lattice hypothesis.

We conclude this subsection commenting on the limi-
tations of our large-N analysis due to the fact that magne-
tism is not included, at least at the level of mean-field and
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1/N corrections. The absence of magnetism makes our
mean-field picture rather incomplete and unrealistic at
low doping. However, it is possible to estimate the dop-
ing above which the effects of the magnetic interactions
cease to be relevant. In particular, we performed the fol-
lowing analysis. In the absence of ¥V we introduced a
magnetic term in the Hamiltonian of the type

_F S dld;d},d,

ijoo’

and we mtroduced the standard mean-field decoupling
A;;=(J/N) Ea(dwdﬂ,) Then we 1dent1ﬁed for various
values of the parameters 7,; and sp—ed the doping at
which the uniform mean- ﬁeld solution (A4, =A;,, =A4)
is energetically more favorable than other simple magnet-
ic solutions (e.g., the dimer solutions A;,,=A,,

A;+,=A, and A;_,=A;), which mimic long-range-
ordered magnetic phases. Above this doping the system
is a Fermi liquid in the presence of magnetic correlations
described by a mean-field parameter A. The effect of
magnetic correlations can be thought to be unessential (at
least to the charge degrees of freedom) when corrections
to the band structure due to A do not sizably modify the
band structure obtained in the absence of H;. Typically
we find that, for a value of J corresponding to a physical
Heisenberg coupling of about 0.1 eV, the magnetic effects
seem to be irrelevant (at least as far as the mean-field
band structure is concerned) at a doping 6 =0. 15 or even
less. Specifically, for typical values of the parameters
(V=0, Ay=5t,;) we obtain for the bandwidth ratio
W(J=0.1t,;)/W(J=0)=1.29 at 6=0.14 and
W(J=0.1t,;)/W(J=0)=~1.18 at =0.2, showing that
already at doping as low as §=0.14 less than 30% of the
bandwidth is due to the presence of J.

We believe, therefore, that magnetic effects can be safe-
ly neglected in analyzing the extended Hubbard model
and its CTI down to doping as low as 0.15.'

Moreover, the main physical insight which can be
gained from the large-N analysis on the charge degrees of
freedom and on their high-energy behavior will hold to a
large extent irrespectively of the presence of magnetism
and therefore of the value of 6.

B. Dynamics

The mean-field analysis of the strong-coupling
(Uy;= o) limit shows that a sizable V leads to a divergen-
cy of both CT susceptibility and compressibility. In Ref.
1, Grilli et al. also evaluated the effective Cooper cou-
pling constant, which is mediated by the Gaussian fluc-
tuations of the mean-field variables, and found s-wave
and d-wave pairing close but outside the phase-separation
region. Since the calculation of the coupling constant
was done in the static limit, the dynamical origin of the
pairing was not elucidated. It is important to understand
the frequency dependence of the coupling in view of an
Eliashberg type of analysis. In the weak-coupling case,
the low-energy CT excitonic mode is found effective in in-
ducing the superconducting pairing near CTL.!*~!7 But,
as U, increases, this CT excitonic mode is pushed away
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to high energy. Nevertheless, in the strong-coupling lim-
it, where U, is set to infinity, phase separation and super-
conducting pairing are still found to exist. In order to
clarify this apparent contradiction and to fully under-
stand the dynamics of the instabilities and of the pairing,
we need to calculate the frequency dependence of the
density-density correlation functions and of the effective
interaction in the Cooper channel. We note that the X
and Y fields introduced to decompose Vn,n; and the A
and b fields implementing the constraint allow only A4,
and B, symmetry fluctuations. However, this is enough
to see the dynamics of zero sound and the CT exciton in
analogy with our simplified formalism in the weak-
coupling limit.

In the strong-coupling framework, we evaluate the col-
lective modes and the dynamical susceptibilities at lead-
ing order in the 1/N expansion. This requires summing
ring diagrams with fermionic bubbles (of order N due to
the spin summation) directly connected by boson propa-
gators (order 1/N). The various susceptibilities, when
defined per unit spin, will then be exact to order (1/N)°.

It must be noted that, within the present 1/N expan-
sion, no self-energy insertion of boson propagators into
the fermionic Green functions and no bubble exchange
diagrams are allowed at this order. For this reason the
only instability that we have detected in the model is the
CTI one: the spin-density-wave and the charge-density-
wave instabilities that show up in the random-phase ap-
proximation of the weak-coupling approach cannot occur
in the present context. In fact, spin-density waves can
only result from an effective magnetic coupling which is
generated in the 1/N expansion by a double exchange of
bosons at order (1/N)?. The charge-density wave, in-
stead, is an instability occurring at Q=(w,7) and is
suppressed in the absence of exchange diagrams because
V(q=Q)=0 in the direct diagrams. In the following we

take ¥,=0 for the sake of simplicity.!® We start our
J
€4 —2rgtyy sin(k, /2)
Hygp (k)= | —2rqt,y sin(k, /2) e,
—2rot,y sin(k, /2) —2t,,Bx

where B, =2sin(k, /2) sin(k,, /2).
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analysis by deriving the 1/N Gaussian expression of the
boson propagators.

In order to write the Hamiltonian of our system of cou-
pled fermion and boson fields H =Hy + H o+ H;,, in a
compact form we define a four-component field
A#=(dr,6A,8X,8Y) formed by the part of the boson
fields fluctuating around the saddle-point solution

ri=ro(1+08r;),
A =—iAy+8A; ,
X, =X,+8X, ,
Y,=—iY,+8Y, .

The field A4* is a function of both space and time
A¥= AH(7). As usual, in the zero-temperature limit the
Matsubara time —i7 and the Matsubara frequencies
iw,, =i2mxT have to be substituted by the real time and
the real frequencies.

In terms of the Fourier-transformed field A#(q) the
purely bosonic part of the Hamiltonian assumes the form

Hys =N 2 AMq)B*(g)A¥(—q) .
quv

To simplify the notation here and in the following the
time dependence is not explicitly written. A simple in-
spection of Eq. (5) shows that the matrix B*" has all ele-
ments equal to zero except for Bl!'=r3A,
B2=B*'=jr} B¥»*=B**=1,2V.

We then use the basis set Wy ,,=(dy,,iPxrosPyko) Of
three-component fermionic fields. In this basis the
mean-field (order N) fermionic Hamiltonian has matrix
elements

—2rgt,, sinlk, /2)

pka ’

This matrix can be diagonalized in order to obtain the bands reported in Sec. IT A.

The diagonalizing umtary transformation U(k) allows one to then transform to the quasiparticle basis

\Pkaa EBUaﬁ(k )‘PkaB so that
M= > HE: k)wk(,a\pka,, S E (k)\Pkaa\T/kaa.
koaB koa

The boson-fermion interaction term can then be cast in the form

H;,,= 2 ‘I’k+(q/2>aA (k, q)‘Pk—(q/z)aA Mq)=

k,q,0 k,q,0

> \pk+(q/2)a

(k,q)q’k_(q/z)o/i#(q) ’

where the fermion component index has been dropped and the (3 X 3) boson-fermion interaction vertices A* in the or-

bital operator basis can be obtained from Eq. (5):
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0 (ke ax/2 | |k, /2
sin > sin >
00
1 (kg 2 , |
A= —2rt,; |sin > 0 0 , A°= 1[0 0 O,
000
k,+q,/2
sin 9 ] 0 0
2
(16)
1 0 0 i 0 0
Ad= |0 —cosﬂzf‘— 0 |, A*=]0 icosﬂzi 0 ,
0 0 — cos 0 0 i cos &
2 2
. . -~ |
while the quasiparticle vertices ALz(k,q) are defined as where
1
Ale,q)=U [k+L | Ark, U [k—%]. (17) Pop(g,0)=1 3 (naol@ing (=)o (23)
oo

The propagators of the A field are given by
D¥(q,0,,)={ A" q,0,) A" (—q,—®,,))
=N"'[2B+1l(q,0,,)], (18)

with

fIE(k+q/2)]— f[Eglk — q/2)]
m"(q,w,,)= 3,
wap Ealk+q/2)—Eglk—q/2)—

X Ak, q)Ap.(k,—q) . (19)

The factor 2 appearing in the denominator of D**(q,w,,)
is due to the fact that the bosonic fields in the presently
used radial gauge are real.

Within the present formalism it is also possible to
define the effective scattering amplitude between the
quasiparticles in the lowest band

[(k,k';q,0)=—Ak(k',—q)D""(q,0)AY\(k,q) . (20)

Then the scattering amplitude in the Cooper channel can
be specified as

L(k,k";0)

=— 3 AMk,k")D*(g=k —k',0)A"(
pv

—k,—k').

2n

Notice that, the boson propagator being of order 1/N,
the scattering amplitudes are of the same order. On the
other hand, since the bare polarization bubbles are of or-
der N, the matrix form of the density-density correlation
function at leading order is given by

Pa/j(q (& ——z(naa(q)nﬁa q))
=Po%s(q,0)
+N 3 X0.(q,0)D"(q,0)X06(q, ) , (22)
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is the bare density-density correlation functions, and

Xoulq,®)
=—11\7 2 <naa(q)

where a= d,px,py, and u=1, 2, 3, and 4. Linearly
combining P,5(q,®), one can calculate the total
density-density correlation function x(g,w)
=((n, +ny)(n, +n,)) and the charge-transfer suscepti-
bility )(CT ((n —ng)n,—ng)).

> \I'IO'YA';z;(k,q)\vH,,g.a)o 4

III. THE COLLECTIVE MODES

The above definitions complete the set of formal tools
needed to calculate diagrammatically the various correla-
tion functions. In particular, the CT and the total densi-
ty dynamical susceptibilities per unit spin xcr(q,®) and
X(g,w) can be obtained from Egs. (22)-(24). More sim-
ply they can be extracted from the XX and YY propaga-
tors according to the following relations:

1
D33(q’w)=W[V+V2XCT(q’w)] N (25)

D44(q,a))=%[V—V2)((q,w)] ) 26)

Notice also that the poles of the x’s, describing (possible)
collective modes, coincide with the poles of D*"(q,w).
D*¥(q,w) therefore contains all the relevant information
we need. Specifically all the possible resonances out of
the continuum are the zeroes w=w(q) of detD ~!(q,w),
i.e., their dispersions satisfy the equation

det(2B +1I)=0 . (27)

From a dynamical point of view the CT physics is
characterized by the presence of a fluctuating noncon-
served field, ng—n,, coupled to a fluctuating conserved
field, n; +n,. The density fluctuations give rise, if propa-
gating, to the zero-sound mode, i.e., to a massless mode.
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On the other hand, the p-d CT fluctuations, being de-
scribed by a nonconserved field, will contribute to the ex-
citon “optical-like” mode.

The energy w.,. of the excitonic mode in the small-g
limit can be evaluated by putting ¢ =0 in Eq. (27). This
strongly simplifies the analytical computation. In fact,
setting ¢ =0 (while leaving w finite) eliminates all the in-
traband contributions to D#*(0,w). This reflects the
peculiarity of the ¢ =0 limit which decouples

plg)=ny(q)+n,(q)
=(1/vV/N,) 3 ¥ £+(q/2)ox4(k7q)q/k~(q/2)a
3

from the dynamics because of particle conservation. All
contributions to D*¥(0,w) therefore come from interband
transitions. Thus the only vertices that are needed in the
evaluation of IT**(0,w) are A¥,(g=0) and Af;(¢=0). In
the following we shall assume a vanishing oxygen-oxygen
overlap, #,,=0. In this case the evaluation of the deter-
minant in Eq. (27) is further simplified by the specific
form of the vertices A*(g =0): all vertices depend on k
via 7, and have the same k dependence apart from con-
stant factors. Moreover, a simple inspection shows that
the A#,(g =0) vertices vanish identically while

A

~ 2r0t d'yk i
© =0)=—2P2' %

Af5(k,q=0) R, 2

0

|
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These facts allow one to express IT*" in terms of a single
interband integral I(w):

A? iA 2A 0
iA —1 2i 0

= = — 2
(g =0,w) 2roloa 2i 4 o [{(@),
0 0 0 0
where
1 4‘,;2in
Iw)= —_— .
Ns % Rk(ng_a)z)

The proportionality between the various bubbles leads to
the remarkable property that I(w) appears at most
linearly in detD ~!, while all contributions that are of
higher order in I(w) cancel. This is because the matrix
IT*¥ has a range one in the particular limit ¢ =0 reflecting
the invariances of the fermion problem in the external
fields r, A, X, and Y. At g =0, both the total density p
and the fermion energy Hpyy are conserved quantities. r
and A being coupled to the hopping term and to the d
density, respectively, it is direct to show that the boson
fields are only coupled to n,—n, in the combination
J(iA+Ar)+X, while 8r3I(w) is the single bubble contri-
bution y21(0,w) to xcr(0,®). We note that the absence
in detD ~! of terms higher order in I(w) will result in the
presence of only one optical mode.

The final expression for D ~! can be obtained from Eq.
(18):

Ao— A i(1—AI) —2A71 0

. ) i(1—AI) I —2il 0

D7(q=0,0)=2Nro| _,ar  —2ir  1/(2r3V)—4I O

0 0 0 1/(2r3v)
|
and the determinant can be evaluated as with

Lp-1 64t v4
detFD (0,w) (o) = 1 pdY k

2

2r3 5
[1—QRA—Ay+8rgV ) (w)] . (28)

4

Equation (28) allows for a single resonant mode describ-
ing a resonant emission and absorption of interband
particle-hole pairs (the CT mode). The mode will be a
bound state or an antibound one with respect to the inter-
band quasiparticle gap depending on (2A —A,+8r3V) be-
ing positive or negative, respectively.'®

To proceed further analytically it is necessary to resort
to some approximation and therefore we will assume to
be at low doping deep inside the region of parameters
that give an insulating system at half filling. In this re-
gion one can take r, to be small. To make easily readable
the small-r, limit, I(w) can conveniently be rewritten as

Ao

———[1—al)rj] (29)
)

I{w)= e

AoN; < R (RZ—w?)

so that the determinant assumes the form

1

A2_w2

X {(A—2g)?—?
+ridgla(w)(2A—Ay)—8V]} .

2
1 0
=D 0,0)= | ==
detN (0,w) v

(30)
By expanding a(w) in powers of r(, one gets
161074 1
o)~ —2= (31)
Ya AZ_w2

with 7,=(1/N,)3 72 =142/7% and y,=(1/N,)Sx 7}

=3+4/m* Using Eq. (31) one can solve Eq. (27) to or-

2,
der rg:
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c‘)gxcz(A_}"O)z
+ridolalw=|A—Ay|)(2A—2y)—8V] . (32)

Equation (32) shows that near the insulating regime,
r3=0, w..~|Ay—Al|. This quantity is nothing but the
jump pu, —p_ of the chemical potential in going from
electron- to hole-doped systems and vanishes at the
MCTI transition. We shall briefly comment on that in
Sec. VI. Notice that near the insulating regime
@Were=|Ao—Al is larger or smaller than the interband
quasiparticle gap A (i.e., the CT mode has antibound or
bound character), depending on A,—2A being larger or
smaller than zero. Generally the CT mode is an anti-
bound mode for large values of the bare CT gap at posi-
tive doping, while it is a bound mode at negative doping
and near the MCTT transition.

At a given Ay—A, V decreases w’,, by a term
— 8V Agr3, which, being proportional to 73, is quite small
at small doping above the Brinkman-Rice (BR) point.
The important point to make here is that in the phase di-
agram of Fig. 3, A,—A=uw,,, is strictly positive at the in-
tersections of the curves Ycr=X= o with the §=0 axis
where r? vanishes. More generally, all along the upper
branch of the critical curve Ycr=X = in the 8 —A,
phase diagram o, is a large positive quantity (of the or-
der of A,) indicating that the CTI is not due to the soften-
ing of the CT mode. Numerical inspection of Eq. (27)
shows that this is a general feature of the CTI, the lowest
(nevertheless positive) values of w,,. at the CTI being at-
tained in the lower branch of the CTI in the § — A, plane.

That no naive direct correlation exists between w,,,=0
and the CTI is strengthened by the observation that in
the present strong-coupling framework o, (=p,—pu_
at r,=0) does, in fact, vanish at the MCTI transition
even in the case V=0, where no CTI is present.

The lack of softening of the CT mode at the CT1 is not,
however, a peculiarity of the strong-coupling approach.
As demonstrated in the preceding paper, ., #0 at the
J
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CTI in the weak-coupling approach for moderate values
of the copper-copper repulsion. In the weak-coupling
analysis @, at the CTI is nevertheless quite small and it
is difficult to resolve its difference from zero by a pure nu-
merical analysis of the random-phase approximation
(RPA) equations.

Equation (30) describes the CT mode in the dynamical
limit when no coupling to the conserved field
ny(q)+n,(q) is present. To go beyond this limit, and, in
particular, to connect with instabilities that we have
detected in the statistical limit, requires the generaliza-
tion of the above analysis at finite momenta. This is car-
ried out in a subsequent section along the lines of the
weak-coupling analysis presented in the preceding paper.
However, it is quite instructive from a physical point of
view to perform first this generalization in the context of
a Landau Fermi-liquid description.

IV. THE LANDAU FERMI-LIQUID PARAMETERS

Within our 1/N expansion the system is a Fermi liquid
as long as ry has a finite value. The singlet interaction
amplitude between quasiparticles with momenta k +gq /2
and k’'—gq /2, exchanging energy » and momentum g, is
given by Eq. (20). By taking suitable limits we can evalu-
ate the standard Landau amplitudes
[ (k,k')=—1lim lim A¥,(k’, —q)D"*(q,0)A},(k,q) .

0—0g—0
Notice that T (k,k’) would depend on k and k' only via
Y and v, [see Eq. (16) for the vertices]. Therefore, by
taking the quasiparticles at the Fermi surface (where
Yr=const=y), only the “zeroth” harmonic would be
nonzero and given by

r,=—lim lim Af,(k, —@)D*(q,@)A}\(kp.q) . (33)
wo—0g—

More explicitly we write I' j)=lim_,,I'(w), where

Rp —A? R} —A?
2Ry, 2R,
Ry, A a —i —ia(A— 1) 4roVa 0 || Re+a
Me)=— —L l 2Ry, —i—ia(A—Ly) Ag—(A—AgVa —4irfV(A—Aga O l 2Ry, (34)
2Nrg | A 4ryVa —4ir2V(A—Ag)a 2.2V (1+8r3Va) O A
Riy 0 0 2r3V Ry,
l 1
f
with The intraband screening processes can then be includ-

a=a(0)=1(0)[1—2A—Ay+8r3V)(0)] " .

The amplitude I, sums the bare interactions and the in-
terband processes only, the intraband bubbles being zero
due to the ¢ =0 limit first performed at finite frequency
(again because of particle conservation).

ed by considering the opposite static limit of the scatter-
ing amplitude

Fq=—3iiri)iiirt)xfl(kp,—q)D‘“’(q,a))K}',(kF,q) . (35)

The usual relation holds
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r r
r,= =—2_ 36
¢ 14NN, 1+F} (36

w

N, being the density of states per spin at the Fermi level
and with the identification Fy=NN,I', leading to the
standard definition of the Fj Landau parameter.

The static compressibility per unit spin Y can then be
written as

x=x(g—0,0=0)

=No(1—NN,T,)=No(1+F5)"" . (37)

The instability present in our model, i.e., the CTI, can
now be interpreted in terms of Landau Fermi-liquid
quantities. In particular, whereas the condition
NN,T',>0 establishes the existence of a propagating
zero-sound mode,”’ when 0>NN,I[,>—1 the zero-
sound mode is in the particle-hole continuum and gets
damped. Finally the instability is reached when

Nr‘o=El—zu‘p‘(ko+2RkF—2A)+4Vu}v,%
¥

2

2
(Ag+2R, —2A)+V |[1—2
0 kF R]%
F

1___
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NN,I' ;= —1 leading to a divergent I'; [see Eq. (36)] and,
consequently, to a diverging . The zero sound gets over-
damped. Being coupled to ¥, x¥cr diverges as well.

In the absence of V the condition Fy=—1 is never
reached. In fact, at V=0, the only singular point is at
the MIT, where w,,.=0, with, however, I' , diverging to
+ .19 The compressibility goes to zero at the MCTI
transition staying positive everywhere else. In the pres-
ence of V the interband processes generate a sizable
effective attraction between the quasiparticles at the Fer-
mi surface leading to a negative I', and eventually
F§=NN,I',, becomes minus unity by increasing V. In
order to gain insight on this point it is very instructive to
approach the calculation of I'(w) by separating in Eq.
(34) the w-dependent part

NT,= —Ei-—z—u,‘,i(k0+RkF—2A)2+4Vu§(u,%—-v%)(AO-I—RkF—ZA)—-Sr%VZ(u}—v,%)z

0

= l%ug(xoﬂmk;zm—z\/&roV(u,%—v,?-)

V2r

0

1

2rd

A
14—
Ry,

Equation (38) can be written in a more physically trans-
parent form using Egs. (25) and (34), which identify a(w)

in terms of Ycr(0,0), 2rda(w)=xcr(0,w). Defining
g*=—NT,/(8r}), we write
1 1 ?

F(w)=—]\7f‘0— v [NXcr(0,0)] . (39)

(1/N )T, is the bare, frequency-independent repulsion be-
tween quasiparticles. The second term in the rhs
—[(1/N)g*[Nxcr(0,0)], is the dynamical attraction
mediated by the CT mode (there are N equivalent CT
modes). (1/N)g is the coupling between the quasiparti-
cles at the Fermi surface and the CT mode.

V drives I'(w) negative because it reduces o, Eq.
(32), thus enhancing xcr(0,0). However, provided g2 is
finite and positive, from Eq. (39) it is evident that the in-
stability condition NN,I' ,= —1 is always reached before
the system meets the softening condition w. =0 at
which x¢1(0, 0., ) diverges. This last feature is shared by
both the weak- and strong-coupling descriptions of the
CTI.

To analyze the specific features of the strong-coupling

(ko+RkF—2A)—4V%
F

Now)=Ty+TI'a(w), (38)
where
2
2
—
limit it is convenient to consider the small-r, expansion
of Eq. (38).

We obtain
Ao 2 1
- 2 -
NFO_*Z_rg+4tpd)»o'}/F —&'}TO AZ ’
1 41,47
NI, =—8rig’~ ——2r—%(AO—A)2+ "A?_ (Ag—A)?
+2(A— A2V —4tLvE)

(1—ard)
(Ag— AP +rd[a(2A—1Ay) — 8V Ay~ ?

alw)=AX,

>

with o given by Eq. (31). We see that, near the insulating
regime, for 8 (and ry) going to zero, all the interactions
diverge reflecting the strong-coupling nature of the sys-
tem. However, the leading 1/r3 singularities cancel,
leaving a finite T, in the limit r;—O0 (as already men-
tioned, the BR point is exceptional in this regard). The
main effect of V is to shift the denominator of a (i.e., @)
by the small amount —8r3VA,. Nevertheless, this effect
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can be dramatic because the coupling g (or —TI') is
diverging at the same time. This leads to a finite [O(rJ)]
negative contribution to I' , proportional to ¥, which can
overcome its positive value at =0. The total expression
of ', in the limit ry, §—0, is

4A 2
NT,=—52 lae2, [ T2} 4 —AV
exc 4tpd7/2
with 0% =(A,—A)?. T, becomes negative for
2t 2
T | T gy & =pay. 40)
A7 41,57

At the same time, since No(~1/r}) diverges, the condi-
tion in Eq. (40) is the same condition for the instability to
occur.

In the region we are considering here, A, whose specific
value depends on the various bare parameters of our
model, ranges from zero to A§/2=2t,,¥}"*~1.65t,,, this
latter value being reached at the BR point. In this range
of A’s the function A(A) has a minimum at

Amin = 2tpd V74 72 and
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2t
— “'pd
h( Amin) - 7,
This last value is the minimum value V=V _, required
for the system to be unstable. We have then obtained the
expression already reported in the previous section.
The value

V7 7:~1.631,, .

Ag
2

— tpdy4

Ve =h
3

~1.761,

is the value at which the MCTI transition becomes first
order and the self-consistency equations (10)—-(14) start to
develop two solutions.

For V ,<V<V* two instability points, with
F§=—1, are met along the line §=0 in the § — A plane.
By generalizing the above analysis at finite & one recovers
the picture given in Sec. II A. In particular, we could
identify the curve Y =Ycr= o which signals the presence
of a phase-separation region to be determined by the
Maxwell construction.

In the presence of the exchange term V,, the expres-
sion for I' , has the same structure as in Eq. (38) with

NTy=—1ut [A,+ (2R, —2A) |1 A | I
=—Fu — - Ugbyp ,
0 27‘(2) F 0 kg 1+y (1+y)2 4t§d FYF
NT, = — - ut |1 49)+ R, —28P+2(R, —A) [ya——2— A2
1 273 F [L%0 y ke kg 1+y Ay
Ry
_1 e [ BeTA y A
22 F Ao 1+y 1+y A,
FAVuE (gt —p2 2 A A 202, 2 2\2 2
up(ug—vg) [Agl1+y) +RkF 1+y+yk— —2A 1+y+y7 —8rogViup—vp)(1+y),
0 0

where y =AyV, /4tp2d and in the expressions for ur, vp, and Ry one has to replace ¢,; with #,,(1+y). At the same time

a,=a(w—0) takes the form

amEIa)

Ao

By extending to the case V,70, the analysis performed
for ¥V, =0 in the limit rj, 6—0, we obtain the expression
for I,

4r0A
Wi (1+y)

[h(A, V)= V]

with o2, =[Ao—A/(1+y)]% T, becomes negative for

Y4
—(1+yp)?—(1+y)
” y y

2

2t2
V>h(AV,) =2

AZ

+— . 41)
a12y,(1+y)

1—(1+p)(A—Ay+8r3V)I, +A |1+—A—y —y?

Iﬂ)

Similarly to the previous case with ¥V, =0, the above
equation allows one to determine the conditions for the
occurrence of the instability. Specifically, for V,=0.5V
we find that on the =0 line V;, = V™*.

min

V. DYNAMICAL ANALYSIS AT FINITE q

In this section we report the numerical evaluation of
the dynamical correlation functions at finite g in the
strong-coupling limit. We also analyze the frequency
dependence of the effective interaction the Cooper chan-
nel. The results confirm and conclude the analysis
presented in the previous section on the role of ¥ in the
dynamics of the three-band Hubbard model at U; = «.
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In Figs. 7(a) and 7(b) we show the spectral density of
the total density-density correlation function y(q,w) with
parameters of V'=1.75¢,, 82 —e3=3. 5t,4, and $=0.3.
This set of parameter, for which s-wave and d-wave pair-
ing was obtained' is outside but close to the upper bound-
ary of the phase separation. The peak, which disperses
just above the intraband particle-hole continuum, is the
zero-sound mode. At small momentum it is damped into
the particle-hole continuum, signaling a negative value of
Fj, while it becomes a well-defined collective mode
separated from the particle-hole continuum at larger mo-
menta. This is contrasting with a homogeneous Fermi
liquid with a parabolic band, where the zero sound is usu-
ally well defined at low momentum and disappears by
Landau damping for high momentum. This is because of
the tight-binding band structure of the model. At high
frequency (w/t,;~3.7), a collective mode of a strong os-
cillator strength exists. This is the mode which corre-
sponds to the CT excitonic mode in the weak-coupling
limit. Here the CT fluctuation makes an antibound state
above the interband gap rather than a bound state below
the gap as in the weak-coupling case [compare the discus-
sion after Eq. (28)]. The characteristic frequency of this
antibound mode is given by Eq. (32) in the ¢ —0 limit.
For the set of parameters considered here the first term of
Eq. (32) is roughly the bare CT gap® and the second term
reduces it by the attraction of ¥ in the CT channel

0l = (A—Ap)2—8r3AV . (42)
. 8 — —
2
5
s (a) A
=
E .
(8]
c
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k] ]
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FIG. 7. (a) The spectral density of the total density-density
correlation function with &) —¢3=3.5, ¥=1.75, and §=0.3,
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The prefactor of V in the second term is about 0.3. Since
this high-energy antibound mode carries a dominant os-
cillator strength, it will control the dynamics at the high
energy, while zero sound provides the dynamic structure
for the energy range less than the conduction bandwidth
(~0.41,,).

Figures 8(a) and 8(b) are the spectral density of the CT
susceptibility with the same parameters as in Figs. 7(a)
and 7(b). It shows the same behavior as the total
density-density correlation function except the peak
strength.

To see the effect of V, we turn off ¥ in Figs. 9(a) and
9(b). Now the damping of the zero sound at small mo-
menta is substantially reduced and the peak disperses
much faster. The antibound mode peak is also moved to-
wards higher frequency showing the effect of V. From
these results it is clear that zero-sound mode gets damped
by the attraction mediated by the high-energy antibound
mode; the lower the frequency of the antibound mode is,
the stronger the attraction is. Notice that the zero sound
easily gets damped even with a weak attraction when the
coherent conduction bandwidth is renormalized by a fac-
tor §, since Fy=N,I',, with Ny~ 1/8. When the condi-
tion F§=—1 is eventually met this overdamped sound
mode is the direct cause of the phase separation. Near
the phase-separation boundary we expect s-wave pairing
to be promoted by the same attractive interaction leading
to Fi~—1.12 In fact, y~1/(1+F}) is large near the
phase separation, therefore —1<F§ <0 and it provides
attractive interaction in the s-wave channel. (This argu-
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FIG. 8. (a) The spectral density of the CT susceptibility for a
small frequency range with the same parameters and momenta
as in Fig. 7. (b) Plot of (a) for a larger frequency range.
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ment is qualitatively correct for not too small doping
when the Fermi surface is quite isotropic.)

In Fig. 10(a), with same set of parameters as in Figs.
7(a) and 7(b), we show I'(k,k’;w) for different sets of k
and k' on the Fermi surface. For the small momentum
exchange (lk—k’|<1), the effective interactions
I'(k,k’;w) are attractive at low frequency just as in the
weak-coupling results. This agrees with the presence of a
damped zero sound. However, there is not interesting
structure in the range of the interband continuum
(0.5=w/t,; =1) because the dynamics of this frequency
region is already dominated by the antibound mode at
higher energy, which carries a strong oscillator strength
[see Eq. (39)].

In Fig. 10(b), with V=0, I'(k,k";®) is repulsive at low
frequency because the antibound mode is at relatively
higher energy and, as discussed in the previous section,
the repulsion prevails in the screening process at V' =0.
In Fig. 10(c), we shut off the intraband process, therefore
there is no zero-sound contribution and I'(k,k’;w) is now
mediated by the high-energy antibound mode only. The
plot is almost the same as Fig. 10(a) except the low-
energy structure.

The numerical results of this section together with the
analytical results of Secs. II B and III allow one to draw
the following summary of our findings in the dynamics of
the three-band model in the U= limit. Near the CTI
at a moderately large bare CT gap (and small and inter-
mediate doping), the CT mode has a higher energy with
respect to the corresponding low-energy CT excitonic
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FIG. 9. (a) The spectral density of the total density-density
correlation function with the same parameters as in Fig. 7, ex-
cept ¥=0. (b) Plot of (a) for a larger frequency range.

RAIMONDI, CASTELLANI, GRILLI, BANG, AND KOTLIAR 47

mode in the weak-coupling limit. Even when this mode
has an antibound character, it carries a strong oscillator
strength and it controls the dynamics of the energy range
above the renormalized conduction bandwidth.
Moreover, the CT mode also strongly couples to the
quasiparticles and strongly screens their large bare repul-
sion even at ¥=0. However, without V, the compressi-
bility or the effective interaction in the static limit are
never negative. Now with a finite ¥ of the order of z,,,
the energy of the CT mode is slightly reduced but this
softening generates an attractive interaction which is
strong enough to drive a CTI and to make the effective
Cooper interaction between the quasiparticles attractive.
Regardless of its high energy, the strong collective mode

(arb. units)

Eff. Int.

Eff. Int. (arb. units)

(arb. units)
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FIG. 10. The effective interaction in the Cooper channel
I'(k,k’;00) with €5 —€3=3.5,8=0.3, and (a) ¥ =1.75, (b) V=0,
and (c) ¥=1.75 and the intraband process shut off; all momenta
k and k' are on the Fermi surface, k, =k, and k, —k,; =0.2, 0.6,
and 1.4 for solid line, dashed line, and dash-dotted line, respec-
tively.
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mediates an attractive interaction for frequencies below
its characteristic frequency w,,. once it strongly couples
to the quasiparticles. However, if the system had only
repulsive couplings in every channel, it would be very
hard to have the effective interaction be attractive in the
g —0 and w—0 limits, even when all dynamic screenings
and the local field effects are included. Our case with
V=0 shows this difficulty. However, we have a more
favorable condition for the pairing because V acts as an
attraction in the CT channel. This effect can shift the al-
ready sublet balance towards a negative I'(k,k’;0=0)
and eventually a negative compressibility. Thus, the
softening of the antibound mode by ¥V is just a dynamical
realization of this subtle balance between the repulsion
and the attraction.

Therefore, a low-energy collective mode is not neces-
sary in order to have the instabilities and the supercon-
ducting pairings in the strong-coupling regime. The
strong correlation effect substantially modifies the char-
acter of the charge-transfer exciton physics, in compar-
ison with the weak-coupling regime. However, as in the
weak-coupling regime, the intersite Coulomb interaction
V is crucial to finally drive the instabilities and the attrac-
tive interaction in the Cooper channel. The strong corre-
lation effect reduces the width of the quasiparticle band,
making the system more vulnerable to the instabilities.
The bound (excitonic) collective mode of the small-U lim-
it becomes a higher-energy collective mode (possibly an
antibound mode above the interband gap), with large os-
cillator strength.

VI. CONCLUSIONS

In this paper we focused our analysis on the charge
collective modes in the three-band Hubbard model. We
studied both the weak-coupling and the strong-coupling
regimes. In both cases, when ¥ ~1t,;, the charge degrees
of freedom affect the low-energy properties leading to a
CTI (and phase separation) and a pairing instability. An
issue of the present work has been to elucidate the role of
the collective modes in these instabilities and to identify
the similarities and the differences between the strong-
and the weak-coupling limits. In both cases the CTI is
characterized by the divergency of x and Y, and leads
to the violation of the Landau stability criterion F§ > —1
and produces an overdamped zero-sound mode. The at-
traction leading to F§= —1 is mediated by the CT mode
which, however, has a low energy at the CTI in the
weak-coupling limit and a high energy in the strong-
coupling limit. In this latter case the strong coupling of
the CT mode to the quasiparticles overcompensates for
the high energy of the mode.

In the absence of long-range Coulomb interactions we
conclude that the excitonic mechanism for pairing, which
works at a small value of U,, works in the strong-
coupling limit as well. However, the region of momenta
in which the effective interaction is attractive is substan-
tially reduced (and is pushed towards small momentum
transfer), with respect to the corresponding weak-
coupling result. A main problem concerns the location of
the pairing instability, which occurs near (but outside)
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the phase-separation region. This criterion restricts the
optimal location in the parameter space at the boundary
of the stability region, possibly near the critical points for
phase separation, where the phase-separation boundary is
very close to the point where Y and ycr diverge.

On the other hand, the presence of a superconducting
phase will change the phase-separation boundary derived
for the normal phases and we expect a reduction of the
phase-separated region in favor of the superconducting
phase.?!

In the strong-coupling limit the effective interaction in
the Cooper channel is attractive at small ¢ in a range of
energy larger than the renormalized bandwidth. As long
as the small-q region (|g| < 1) is dominant for the pairing,
the energy scale below which pairing occurs is set by €x
(=~0.4 eV) measured from the bottom of the occupied
band. In view of the value of the Cooper coupling in the
s-wave channel, A, ~0.5,"% a large T, (a few tenths of )
can be obtained.

Notice, however, that small variations in the parameter
space lead to a strong reduction of A, mainly because
I'(k,k',w) strongly depends on ¢ =k —k'. This is be-
cause, in the strong-coupling limit, the screening of the
large bare repulsion is only effective at not too large ¢’s.

The above comments refer to the short-range model
Eq. (5). Additional remarks are in order if we include
long-range forces. An important effect of the long-range
Coulomb forces is to prevent the occurrence of phase sep-
aration when the ions are immobile. At small ¢’s the zero
sound is substituted by a plasmon mode which experi-
mentally has a three-dimensional (3D) character and en-
ergy of the order of =1 eV.?? Inside the region of nega-
tive compressibility for the short-range model, the com-
petition between phase-separation and long-range forces
would result in an incommensurate charge-density-wave
(CDW) phase or in the formation of droplets of hole-rich
and hole-poor phases. The specific sizes of possible in-
commensurate CDW’s or droplets, the effects of the cou-
pling between the CT mode and the plasmon mode, and
the anisotropy of the modes are interesting topics which
will deserve a future analysis.??

As far as pairing is concerned the inclusion of long-
range forces results in the old problem of competition be-
tween Coulomb repulsion and attraction from a high-
energy mode. The analysis of Ref. 24 suggests that, in
this case, the inclusion of self-energy and vertex correc-
tions leads to a strong reduction of T, with respect to the
naive mean-field estimates neglecting Coulomb long-
range forces. However, a quantitative estimate of this
reduction is quite difficult since it requires detailed
knowledge of V 4(q,) and a full solution of an equation
of the Eliashberg type. This analysis is beyond the scope
of this work which intended to analyze the stability of ex-
citonic pairing in the three-band Hubbard model with
respect to the large local repulsion.

Finally, we comment on the role of the CT mode and
of the zero-sound mode near the MCTI transition. The
analysis of the dynamics of the boson propagators has
shown the presence of a collective interband mode, the
CT mode, characterized by a frequency which we
identified with w,,. to stress its connection with the exci-
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tonic resonance discussed in the weak-coupling frame-
work. w.,. is finite at the CTI, while it is zero at the
MCTI transition whenever this transition is second order
(i.e., for ¥ < ¥V*). In fact, we were pointing out that near
the insulating regime (i.e., at small doping and
Ap > A§+ V), 0y equals the jump in the chemical poten-
tial 4, —u_. An important observation is that the CT
mode is present irrespective of the presence of ¥ and, for
small r,, its natural strong-coupling interpretation is in
terms of the dynamics of the MCTI transition (gap
mode). This issue has been recently addressed by Castel-
lani et al.?® The presence of this mode even in the metal-
lic region (Ay < A§+ V') can be interpreted as a precursor
effect of the MCTI transition. Both the single-particle
gap and the optical gap are controlled by w,,., which van-
ishes at the MCTI transition. The softening of a collec-
tive mode near the metal-insulator transition can be
relevant in developing non-Fermi-liquid (or almost non-
Fermi-liquid) properties near half filling. In the presence
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of a sizable ¥V, the physics of the MCTI transition is
moved at finite doping in a region, which, however, is
unaccessible because of phase separation. If long-range
forces stabilize the system to make it possible to reach
@ey =0 for ¥V > V*, the low-energy CT mode could be of
relevance for marginal behavior at finite doping possibly
via strong polaronic effects.
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