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Angular dependence of the upper critical field of superconductors
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In this paper a theory of the upper critical magnetic Beld, H, 2, of anisotropic superconductors is
discussed. This theory allows the calculation of the angular dependence of H, 2 in anisotropic systems
with arbitrary impurity content. The model includes an electron-phonon-coupling anisotropy by use
of a Fermi-surface-harmonics expansion. For simplicity, the model is restricted to the case of weak
anisotropies. The key features of the model are discussed numerically using a simple separable model
anisotropy.

I. INTRODUCTION

Anisotropy effects in superconductors have been a sub-
ject of experimental and theoretical scrutiny for almost
three decades. The most pronounced eKects have been
reported for the upper critical Geld H, g which, for sin-
gle crystals, shows a pronounced angular dependence
[as reported for instance for niobium or YBa2Cu307 —$
(Ref. 2)]; for polycrystalline samples, on the other
hand, H, (T2) shows a pronounced upward curvature
at temperatures close to the critical one (T,), and a
low-temperature enhancement of H, 2 in comparison to
isotropic systems. 3 4

Theoretical progress in the description of the angu-
lar dependence of H, q was primarily made in two direc-
tions. One branch followed the effective mass model (see,
for instance, Kogan and Clems and references therein)
which was shown by Hohenberg and Werthamer not
to be applicable to cubic superconductors. The other
branch pursued the approach to describe the anisotropy
of the upper critical Geld in terms of series expansions us-
ing a suitable set of harmonic functions which reflected
the basic symmetries of the lattice. (For instance, cubic
harmonics were used to describe the anisotropic behavior
of niobium. ~) All these various approaches had in com-
mon that the anisotropy of H, 2 was attributed (a) to
the anisotropy of the Fermi surface which results in an
anisotropic Fermi velocity, and (b) to the anisotropy in
the electron-phonon-coupling process which leads to the
building of the Cooper pairs. Impurity scattering and
Coulomb interaction were almost generally assumed to
be isotropic interactions.

The material niobium was most attractive because it
showed a rather weak anisotropy of H, 2 and it was there-
fore a welcomed object to test theoretical models. It was
also the material where most of the progress had been
achieved over the years. It started with Butler's theoret-
ical interpretation of the niobium data of Kerchner et
at. This analysis depended on extensive band-structure
calculations and put the emphasis on the anisotropy of
the Fermi velocity. The agreement with experiment was
excellent. Teichler, on the other hand, developed at the

II. GENERAL THEORY'

We introduce, according to Allen, s a complete set of
functions

(rI„(vi,); s = 1, . . . , S; o = 0, . . . , oo)

orthonormal on the energy shell of energy E:

(rl„(vi,) q, , (vg)) ~ = 6„6„
with

(2)

same time a semiclassical theory of H,2 which included
Fermi surface anisotropy and electron-phonon-coupling
anisotropy. The anisotropy of H, 2 was expressed in
terms of cubic harmonics and it proved to be quite suc-
cessful in the beginning, but later and more accurate
experiments showed less satisfying agreement.

The, so far, final step was made by Rieck and
Rieck and Scharnberg, who presented a theoretical
description of the anisotropic H, 2 for arbitrary shapes
of the Fermi surface and they allowed for additional
anisotropy in the electron-electron pairing term. (This
opened the possibility of dropping the restriction of
weak anisotropies which was genuine to all previous ap-
proaches. ) Another method has recently been published
by Langmann. His theory is in principle quite simi-
lar to the one of Rieck and Scharnberg but he treated
the anisotropy of the electron-phonon-coupling process
in a more concise way by using Fermi sufrace harmonics
(FSH) as had been introduced by Allen. s

This paper expands on Langmann's approach in an
attempt to shed some light on the role of the electron-
phonon-coupling anisotropy in the theory of anisotropic
H, 2. The main theoretical part is presented in Secs. II
and III where we use a simple separable model anisotropy
to make the mathematics more transparent. This, of
course, is restricted again to weak anisotropies, which
was certainly not the case in Langmann's original paper.
Numerical results are then discussed in Sec. IV together
with an analysis of experimental data. Finally, conclu-
sions are drawn in Sec. V.
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1
(f(k)) =

N(E)
d3k

b'(s(k) —E)f(k).

Here, s is a sheet index indicating the various disjoint
pieces of the energy shell, o is an order index, and vk is
the particle velocity in the direction of the wave vector k
on the energy shell E. In particular, if E = ez, the Fermi
energy, the energy shell is the Fermi surface and vk ——

v~(k), the anisotropic Fermi velocity. In this case we
speak of a set of Fermi surface harmonics (il„(v~(k))).

Any function f(k) can be expanded

f(k) =) il„(v)f„(E)
S)O

with

(4)

(5)

p, (E) = N, (E)/N(E), (7)

The zeroth-order function is chosen to be equal to

n.o = 1/4&. (E)

where we introduced the "partial" weight of the sth dis-
joint piece of the energy shell by

where N, (E) is the partial electronic density of states

N, (E) = de
-e. (2~)' l&&(k) I

where the first equality comes from the fact that a CGC is
zero unless s = s' = s". [The iso(») defined on different
disjoint sheets of the energy shell are orthogonal to each
other for all orders o.]

The FSH introduced here have been applied success-
fully by Daams, is Daams and Carbotte, ir Allen and
Mitrovic, is and in particular by Niel et at. is to explain
anisotropic properties in the thermodynamics of indium.

Following closely Langmann, a set of equations in
k space is found which describes in a quite general
way how rather weak anisotropies influence H,z. (The
case of pronounced anisotropies requires more elabo-
rate techniques. ) The first equation is a simple
anisotropic expansion of the standard u channel of
the Eliashberg equations describing the renormalized
normal-state Matsubara frequencies

N(E) is the the total electronic density of states. It is fur-
thermore useful to introduce Clebsh-Gordan coefficients
(CGC's)

+so, s'o', s"o" = Gs, oo' o"

Cd~ (k) = Ld~ + 7I T ) d3k'
s b(z(k')) V(k, k'; uu„—iw ) sgn(w ), (10)

with the anisotropic interaction potential

1
V(k, k';in„—iw ) = A(k, k', i~„—i~ ) —8(cu, —~a„~)p'(k,k';ice, ) + b „p(k,k')

the Matsubara frequencies w„= 7rT(2n + 1),n
0, 1, 2, . . ., the electronic density of states at the Fermi
level N(E = sF = 0), the anisotropic electron-phonon
interaction potential

with

1
y(k, i~„)=— d Q~

GH =o (k —
z q L ~ uu„)

27r

A(k, k';in„—ice ) = 2
Aci2E(k, k', 0)

+ (~n —~~)
(12)

xG~ o(k+ zq~, ice„)exp1

the anisotropic electron-phonon interaction spectral
function a E(k, k'; 0), the anisotropic Coulomb interac-
tion pseudopotential p,"(k,k'; iw, ), which is also a func-
tion of the cutoff frequency u, . Finally,

and

~r = ~e~poH. z(T). (16)

p(k, k') = vrN(0)nI )(k( VI (k )(

describes the particle scattering at randomly distributed
impurity sites of concentration nI and of the scattering
potential Vl.

The second equation determines H, 2 implicitly:

d3k'
P(k, iw„)= T) s V(k—, k'; iu„—iu )

m

xg(k', i~ )p(k', i~ ) (14)

Here, GH —o(k, iu„)= 1/[ia„—s(k)] is the normal-state
Green's function for the external magnetic field H = 0.
The integral of Eq. (15) is evaluated in a plane perpendic-
ular to the direction of the external magnetic field (i.e. ,

qz is a vector in such a plane). Equations (10), (14),
and (15) reduce in the isotropic limit to the equations
given by Schossmann and Schachinger for the isotropic
superconductor with arbitrary impurity content.

The next step involves the expansion of all k-
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dependent functions in FSH according to Eq. (4). If
we restrict ourselves to classical superconductors with
e~ &) cuD, the Debye energy, then all the integrals are
restricted to a small zone of width 2w12 around the

I

Fermi energy, and if we also assume that N(E) and
V(k, k'; ivan —imam) do not vary too much inside this zone,
we arrive at the following set of equations for each FSH
index 8 and o:

cg„(so)= w„6,os, (0) + vrT ) sgn((o ) ) gp, (0)V(so, s'0;iu„—iw ),
s'

(17)

V(so, s'o', iw„—iw ) = A(so, s'o';in„—iu ) —e(m, —Iw„I)p'(so,s'o';su, ) + 6 „p(so,s'o'), (18)

p*(so, s'o'; ~,) = p'(so, s'o'; E, E', cu, ) I z z, (19)

4'so(&~n) = /rT ) ) &s'oro" o" Vr( sosro r &4n ~m)gsro" (&(om)4'sro"'(~~m)r
g I /i /1I /fli

(20)

y„(etc ) = Vrre exp(e )erfc(e)p„(ve))
1 2

Ldn k GF
(21)

and

l~ (k)l
lv& (k) I v c1'/2

(2. = Ielpo~. 2(T). (22)

As v~(k) is the particle velocity in the plane perpen-
dicular to the external magnetic field, it is obvious that
the set of equations (17)—(22) describes the upper critical
field of an anisotropic superconductor as a function of its
orientation with respect to the direction of the external
field. An additional angular dependence of H, 2 is pro-
vided implicitly by the w„(so)because of the anisotropic
coupling potential.

In passing we would like to point out that in the limit
H, 2 ~ 0 Eqs. (17)—(22) reduce to the anisotropic T,
equations given by Allen and Mitrovic. 1s Equation (21)
was reported in similar form by Rieck, Hohenberg and
Werthamer, s and Youngner and Klemm. 21

III. APPLICATION TO A SEPARABLE MODEL
ANISOTROP Y

(a(k)), = 0, (24)

and only terms of the order (a(k)2) = (a2) are kept.
Finally, A(ken —iu ) is given by

A(iu„—iu ) = 2 dA
0 a2F(A)

O ~+~n —~n

with n F(A) the electron-phonon interaction spectral

(25)

A separable model anisotropy was introduced by
Markovitz and Kadanoff 2 for the effective electron-
electron-coupling potential of the BCS theory. It is, in
our case, of the form

A(k, k', ice„—ice ) = A(iu„—ice ) [1+a(k)] [1+a(k')],

(23)

where the anisotropy function a(k) has the property

function of the isotropic system. A similar ansatz was
used by Teichler for the Fermi velocity, but we follow
the notation used by Prohammer and Schachinger24 and
define the anisotropic Fermi velocity as

v(k) I

= (IvF I). [I + t)(k)] (26)
with the anisotropy function b(k) having the same prop-
erties as a(k).

The simplest model is found by dividing the spherical
Fermi surface into two parts on which a(k) and b(k) take
on appropriate constant values (Fig. 1). This restricts
the FSH series expansions to zeroth-order terms on each
sheet, resulting in an effective two-band model. If we
choose values for (a ) and (5 ) it is quite easy to calculate
the functions a(k) and b(k). We find (p1 = p1(0), p2 =
p2(0)):

and

a] = +g(o')p2/p1,
~2 = +g(~')P1/P2,

t 2 = —Q(b')P1/P2,

sheet 1
sheet 2

sheet 1

sheet 2. (28)

This results in the Fermi velocities

vF(k) = /

'»r = (IFFI). (&+ v'(t')pr/pl),
sheet 1

cFe (IFFI) (&
—v'(b')pr/pe),

sheet 2

(29)
for the two sheets. The + symbol in Eq. (27) reflects
the remaining ambiguity whether the electron-phonon-
coupling anisotropy is in phase with the Fermi velocity
anisotropy (plus sign on the Fermi surface sheet 1) or not
(minus sign). The zeroth-order FSH follows from Eq. (6):

g1,2 1/+pl, 2. (30)

The A(so, s'o', ken —i~m) of Eq. (18) simplifies to
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A(so, s'o';ice„—iw ) = A(s0, s'0; ice„—in~)
= ( (&(t~ —~~ ) [I + a(~) l II + a(&')l &»(vk)&"o(vk')).
= A(iu)„—i(u )gp, p, (1+a, )(1+.a, ). (31)

p (80i S 0 I Cdc) = Qpsps' p (~c)

and the impurity interaction is now described by

'y(SOs S 0 ) Qpsps'7

(32)

The Coulomb interaction pseudopotential simplifies to
I

V(s, s'; uu„—iur ) = A(ice„—ice )(1 + a, )(1 + a, )
—0(cu, —i~„i)p, *(~,) + 6

g+ Y

AT�
'

&'38)

(39)

x (1 + a, ) + psgn(cu )

(34)

which still reflects the anisotropy of the electron-phonon-
coupling process in anisotropic, sheet-dependent, renor-
malized Matsubara frequencies. The upper critical field
is determined from

4s(~~~) =~TV@. ). ).&(s, s', t~~ —t~~)
a'

xy, (i(u )P, (iu) )

with

y, (icr„)= ( srzz ezp(z )erfc(z)g,
6'F

and

on sheet 8
outside sheet s

(35)

(36)

(37)

ae i%a 5SN@k'g'::.::':: '.:;=.;;,. ~ss. rs ~se:g

immNRI ~8@5Ks i ':::-'-'::-'-.:—'"' ~e,":; .%'. :;.

Collecting all the results, we find for the renormalized
Matsubara frequencies the equation

cr„(s)= ~p, Irc„+zr) sgc(rc )A(icr —itc )
m

If we multiply Eqs. (34), (35), and (36) on both sides
by I/~p, and rename w„(s)/~p, by w„(s),etc. , those
equations become almost identical to equations given by
Prohammer and Schachinger for the weakly anisotropic
polycrystalline superconductor. The only difference ex-
ists in Eq. (36), which depends explicitly on the orien-
tation of the external magnetic field with respect to the
symmetry axis of the Fermi surface (in our model of Fig.
1, the z axis).

This striking similarity is suggestive enough to define
a polycrystalline limit of the above equations. The poly-
crystal is assumed to consist of a large number of small,
randomly oriented crystallites. It should then be pos-
sible to perform a transition from Eqs. (34)—(36) to the
results of Prohammer and Schachinger by calculating the
polycrystalline average of Eq. (36):

xp-~y, .(&~ ) = (x. -g~. , (&~-)),.i, . (4o)

Here, (. . .)»~y denotes the directional average over
the space angle 0 which parametrizes each particular
y„„g~,,(ice„)and which describes the orientation of this
particular crystallite with respect to the external mag-
netic field.

It is almost impossible to perform the average in Eq.
(40) analytically and, therefore, we would like to follow
a more argumentative path: we refIect on the fact that
y„„g~,s(jw~) is itself determined from a Fermi surface
average and, thus, Eq. (40) contains two subsequent av-

eraging procedures. Such a procedure can be understood
as an analog to two subsequent mappings which can be
substituted by one composite mapping. We write explic-
itly

(X '
g&, ('~ ))poly = (( ~ )„,.; g& )poiy (41)

and recognize that we actually perform an orientational
average over the Fermi surfaces of the various crystallites.
This results in an "effective Fermi surface" having only
the weight p, because of the factor (, in Eq. (41).

Since we use a separable model to describe the
anisotropies, this effective Fermi surface will be a sphere
and the system consists now of S spheres of weight p, :

Xp &y, (i~ ) = p ( ) ph ~,' (42)

FIG. 1. The simplest Fermi surface model describing a
separable model anisotropy ((b ) = 0.118).

This process is applied on Eq. (36) and it results in

j.
&p&&Jy s (1'/dgg ) = ~sr x exp x erfc (x)

I~.(n)l sphere

d( exp( —( ) tan
s 0 grus n

(43)
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with

,'Ie—l»H.z (IvF I),.(1+b.) (44)

Equation (43) does not contain any directional depen-
dence and corresponds to the expression used in Ref. 24.
[The authors of that paper used an ad hoc ansatz to ar-
rive at expression (43).]

IV. NUMERICAL RESULTS

A. The inhuence of the electron-phonon coupling
anisotropy

I I I
I

I I I I I I
I

I I I
I

I I I

The similarity of our Eqs. (34)—(36) to the ones used
by Prohammer and Schachinger2 allows the applications
of techniques described by those authors in detail to sim-

plify numerics significantly. We use in all our calculations
the a2E(A) of niobium measured by Arnold et at. ,

zs the
anisotropy parameters (a ) = 0.0335 and (b ) = 0.118,
and a Fermi velocity of v~ ——0.57 x 10 ms . The
anisotropy of the Fermi velocity is out of phase with the
electron —phonon coupling anisotropy according to Crab-
tree et at. , and the Fermi surface model is that of Fig.
1 with equal weights pq ——p2 ——0.5 for both sheets.

We should note in passing that our weak anisotropy
approach is only correct as long as the external mag-
netic field is parallel to the z axis. The approximation
becomes worse the more the external magnetic-field ori-
entation deviates from this direction. Rieck reported
that a full theory results in significant deviations from
the weak anisotropy approximation in such cases. But,

as we only want to study qualitative eKects, we believe
that the use of our grossly simplified theory is justified.

Figure 2 shows the temperature dependence H,z(T)
for various orientations 8 of the external magnetic field
(8 = 0, H is in the horizontal plane) in the clean limit,
t+ = 0 meV. We see a very pronounced —unrealistic—angular dependence of H,z(T) and it is most remark
able that all the H,z(T, 8) curves show a pronounced
upward curvature in the temperature region close to T, .
(Such an upward curvature was observed on niobium sin-
gle crystals; see also Fig. 12 of Ref. 3.)

Our model allows us to "switch off" either anisotropy
in setting the respective anisotropy parameter equal to
zero. Setting (b ) = 0 (no Fermi velocity anisotropy) re-
sults in a still anisotropic H,z(T, 8) as is shown in Fig. 3.
This results from the fact that y, (iw„)is still anisotropic
because of the explicit u, (n) anisotropy. (Nevertheless,
each change in (bz) results in a change of the geome-
try of the separable model anisotropy in order to keep
pi ——pg = 0.5. Our numerical results indicated that
these inHuences are of minor importance and we there-
fore refrain from an exhaustive discussion of this point. )

The most interesting feature is found by comparing
the curvature of H,2(T, 6) close to T, in both models.
This is done in Fig. 4. We see that the model with
(b ) g 0 shows an upward curvature in that region while
the model with (b ) = 0 shows the accustomed downward
curvature. (This justifies in retrospect the fitting proce-
dure employed by Weber et at. , who fitted (bz) and v~
to the high-temperature data. )

Figure 5, finally, shows the angular dependence of H, 2

for various fixed temperatures. We see that the angu-
lar dependence is most pronounced at T = 0 and be-
comes almost indistinguishable for T T, . It is inter-
esting to note that Welp et al. report a similar angu-
lar dependence for the high-temperature superconduc-

0.4

x 0.6

I I I
I

I I I
I

I I 1

I
I I I

I
I 1 I

0.2

0,4

x e= 0'

0.0
0.0 2.0 4.0 6.0 8.0 10.0

0.2

FIG. 2. The temperature dependence of the upper critical
field H, 2(T) for different orientations 8 of the external mag-
netic Geld H with respect to the horizontal plane of the Fermi
surface reperesented in Fig. 1. Clean limit model: t+ = 0
meV; the other parameters are (a ) = 0.0335, (b ) = 0.118,
and e~ = 0.57 x 10 ms . The dashed line corresponds
to the H,2(T) of a polycrystalline sample having the same
anisotropy parameters and the same Fermi velocity.

0.0
0.0 2.0 4.0 6.0 8.0

FIG. 3. The same as Fig. 2 with (b ) = 0.

1 0.0
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0.15

(a)
I I I I

i
I I I I

i
I I I I

i
I I

(b)
2.0

(a)- (b)-

*
'~

'I 1.5

e= 0'

0.10 '.*

0.05

0.5

6 0 7 0 8.0 9.0
l I I I I 5 I I I I I I k I

I

7.0 8.0 9.0
T (K)

0.0
00 20 40 60 80

T (K)
0.0 2.0 4.0 6.0 8.0

FIG. 4. The curvature of H,q(T) for 8 = 90'. (a) (b ) =
0.118 and (b) (b ) = 0. The dashed line indicates the slope
of H,z(T) at T, while the * symbols indicate the numerical
results.

tor YBasCus07 b. They used an effective mass model
for a fit to their data and indeed, our model Fermi sur-
face of Fig. 1 could be regarded as a separable model
approach to an ellipsoidal Fermi surface. (A similar
angular distribution of H, q is found for cylinder sym-
metrical Fermi surfaces, which are more likely for high-
temperature superconductors. 27) On the other hand, a
comparison with the experimental data of Sauerzopf et
aL~ proves immediately that we do not get the proper
angular dependence. Niobium shows an absolute min-

I
f

I I I
[

I 1 I [ I I f
[

I I I

0.6

0.4

2.79 K

5.58 K

FIG. 6. Same as Fig. 2 but in the almost dirty limit, t+ =
10 meV. (a) (b ) = 0.118 and (b) (b~) = 0.

irnum for the [100] direction, a local minimum for the
[110] direction, and a maximum for the [111] direction.
If we assume the z axis to be parallel to the [100] direc-
tion, the maximum should then appear at an angle of
6 = 35.26', which is obviously not the case in our model
calculation. Section IVB elaborates on this point.

We can also study the inhuence of the electron-phonon-
coupling anisotropy by adding impurities to the system
which will result in a "washing out" of this anisotropy.
Figure 6 studies the situation close to the dirty limit,
t+ = 10 meV. It compares the two systems with [Fig.
6(a)] and without [Fig. 6(b)] Fermi velocity anisotropy.
We see that the system with (b~) = 0 has an almost
negligible anisotropy of H, 2 even close to T = 0, while the
other system still shows a quite pronounced anisotropy
of H,2.

These results suggest a possibility to assess the amount
of electron-phonon-coupling anisotropy by experiment:
in starting with a high-purity single crystal we measure
the angular dependence of H, q at some low temperature
T (& T, and successively increase the impurity content.
In doing so, we smear out the electron-phonon-coupling
anisotropy and a theoretical analysis of the experimental
data will then allow us to derive the desired information
about the coupling anisotropy directly.

B. A separable model anisotropy of cubic symmetry

0.0

8.84 K

l i i s I & i i I s

80.0 60.0 40.0
9 (deg)

20.0 0.0

FIG. 5. The angular dependence of H, q(T, 8) for various
temperatures T & T, .

The model Fermi surface of Fig. 1 did not have cubic
symmetry and was, therefore, insuFicient to reproduce
the angular dependence of H,2 as observed for niobium.
Figure 7 presents a Fermi surface which is of cubic sym-
metry; it also allows us to formulate a separable model
anisotropy according to Sec. III. The model represented
in Fig. 7 has a Fermi velocity anisotropy of (b~) = O. l
which is a bit smaller than the value of 0.118 suggested
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(i oo)
I I I I I I I

i
I I I I
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x.
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0.30 I I I I I I I I I I I I

-50.0 0.0 50.0

FIG. 9. The sa
(b ) = 0.02.

e same as Fig. 8 hut now for (a ) = 0 01a = . and

b the ny e analys~s of polycrystalline H, 2 data. This value
could not be realized b'

e ecause of geometrical reasons. The
weight of both sheets is, again, 0.5.

We calculate the angular dependence of H, z for a tem-

I I I I I I I
I

I I I I
/

I

0.36

0.34

x

0.32

0.30
-50.0 0.0

6 (deg)
50.0

FIG. 7. A Ferm'mi surface of cubic symmetry. It corre-
sponds to an anisotropy parameter of (b ) = 0 1~ ~

perature of 3 K in the clean limit keepin a2 = 0
d —0 57 lo

su ts with the experimental data of Ref. 1. We see that

of H hav'
our model reproduces perfectl the 1o,2 aving all the minima and maxima t th
p es. evertheless, the anisotropy of H, 2 is still toolaces. N

finally, in an almost perfect match between theor
experiment (Fig. 9).

This result certainl doesy oes not render the analysis of
e er et al. obsolete. First of all, our cubic-symmetr

ermi surface of niobium which consists of th d' ' '
s o ree isjoint

w i e our model consists of only two. Further-
more, the external magnetic fieM "sees"e sees in most cases

o o e isjoint pieces of the real Fermi surface wh' h
results in some av

race, w ic

we will have
e average effective Fermi vel 't " hociy t at

ave to set in correspondence to the Fermi ve-

fie
locity of the one single sheet th t 'a is seen y the external

eld in our cubic-symmetry m d l Mo e . oreover, the cubic-
symmetry model always has v k hv'~, w ich certainl is
not the case in the real metal. Th' 'lla . is wi, necessarily, make

e anisotropy parameters of the simple model of Fig. 8
smaller if one wants to reprodu th b

ependence of H, p quantitatively. Thus, the anisotrop

sar tore rosary o reproduce quantitatively the observed an ul d-
pendence of H in n'o,g in niobium are in no correspondence
to the real anisotro oropy of the Fermi velocity and of the
electron-phonon coupling.

FIG. 8. ThThe angular dependence of H,2(T) for T = 3 K
and the Fermi surface model of Fi . 7. ~g. . ( ) = 0.0335 d

ms, and t = 0 meV. The open circles corres
o experimental data of a hi h- ur a

at th
a a o a igh-purity niobium single crystal

a e same temperature (Ref. 1).

V. CONCLUSION

We discussed a theory of H foor weakly anisotro ic
superconductors which allows th l l

ular a
e ca cu ation of the an-

gu ar and temperature dependenc f H fnce o,2 or arbitrary
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impurity contents. Our main results are the following:

(i) The electron-phonon-coupling anisotropy gives a
significant contribution to the overall anisotropy of H,q.
It cannot be disregarded as was done so often in the past.
Increasing the impurity content of a single crystal tends
to wash out this anisotropy and this property allows us
to set up an experimental program for a closer investi-
gation of the influence of the electron-phonon-coupling
anisotropy.

(ii) The upward curvature of H,2(T) close to T, is a
result of the Fermi velocity anisotropy. It vanishes if this
anisotropy is "shut oK"

(iii) The angular dependence of H, z reflects the gross
symmetries of the single-crystal lattice. It cannot be used
as a direct Fermi surface probe like the de Haas —van
Alphen efFect. This is a result of the remaining Fermi
surface average of Ecl. (36).

(iv) Using a separable model anisotropy allows us in
principle to reproduce the angular dependence of H, z as
long as the model reflects the gross symmetries of the
crystal lattice. The anisotropy parameters found from
such a comparison are not necessarily representative for

the situation in the real material. A realistic theoretical
analysis of the angular dependence of H, 2 would certainly
require a more realistic Fermi surface model, i.e., the
use of three disjoint Fermi surface sheets in the case of
niobium and an expansion to higher-order FSH on each
sheet as it was discussed by Butler and Allen, zs and a
directional-dependent iz2 F(A) .so

(v) The ad hoc model of Prohammer and Schachingerz4
for the upper critical field in anisotropic polycrystals is
valid in the limit of weak anisotropies. This explains the
excellent agreement between this theory and experiments
reported for polycrystalline niobium. s
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