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Vortex depinning in Josephson-junction arrays
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On the basis of a simple model we study the supercurrent-carrying capacity of a planar array of
Josephson junctions. In particular we investigate the zero-temperature vortex-depinning current i, ,
which is the largest supercurrent in an array containing one extra vortex on top of the ground-state vor-
tex superlattice induced by an external magnetic field f. In the zero-field, f =0, case our results support
the tilted-sinusoidal vortex-potential description of previous workers. However, in the fully frustrated,

f = —' case, a more careful interpretation is required. We find that on the application of a transport

current, the resulting vortex motion is not that of the extra vortex moving over a rigid field-induced vor-
tex background. Rather, a vortex belonging to the checkerboard ground-state pattern first crosses over a
junction into a neighboring "empty" plaquette. Then, the "extra" vortex moves to take its place. Our
interpretation is based on a linear stability analysis, with the onset of vortex motion being associated
with the vanishing of one eigenvalue of the stability matrix. Further applications of the method are sug-
gested.

I. INTRODUCTION

Two-dimensional arrays of Josephson-coupled super-
conductors have been a subject of considerable experi-
mental' and theoretical ' interest. Technologically
as well as scientifically, one of their most significant prop-
erties is -their supercurrent-carrying capacity. In what
follows we shall specifically investigate the largest super-
current or, equivalently, the critical current for the onset
of vortex motion in a square array containing one extra
vortex on top of the ground-state vortex superlattice in-
duced by an external magnetic field. ' '

The uniform external field, applied perpendicularly to
the array, is parametrized by a flux factor f, which is
equal to the number of fIux quanta threading through
each plaquette of the lattice. Extra vortices may be ei-
ther introduced by small deviations of the Aux factor
from zero or low-order rationals f =p/q or spontaneous-
ly created by thermal Auctuations. Their contribution to
the resistive properties of the array is due to their
response to a transport current driven through the sys-
tem. While pinned to some energetically favorable re-
gions of space, ' vortices do not give rise to a resistive
voltage across the sample. But when they begin to move
perpendicularly to the current, under the influence of the
Lorentz force, a phase slip of 2m occurs at every junction
over which a vortex crosses. The associated time-
dependent phase difference at the junction implies a volt-
age drop in the direction of the current. This constitutes
a discrete analog of flux-Aow resistance which occurs in
continuum superconductors. The critical current i, is
the current at which the vortices are depinned and hence
a finite voltage appears.

Several authors have described the current-induced de-
pinning of individual vortices in terms of a tilted vortex-
potential model. ' Based on this model, Rzchowski

et al. derived an expression for the thermally activated
voltage-current characteristic. One important parameter
that enters into this expression is the energy barrier E~
that prevents vortex motion. In the zero-field case, the
experimental value for E~ of O. 34J, where J is the
Josephson-coupling constant, is about 1.7 times the
theoretical prediction. In the fully frustrated, or f =

—,',
case, however, the experimental Ez was smaller than the
theoretical prediction by a factor of 3. Consequently, it
was suggested that in this latter case, at least, a more
complex description than the simple vortex potential
might be needed.

In this paper we present direct calculations of the
zero-temperature vortex-depinning current i, For f =. 0,
our results support the tilted vortex-potential description.
For f =

—,', however, we find that a more careful interpre-
tation is required. By studying the fluctuation modes of
the current-carrying states of the system, we identify the
mechanism for vortex motion in this latter case as a two-
step process, in which the underlying field-induced vortex
background becomes distorted as an "extra" vortex
moves along.

For carrying out our calculations, we find it useful to
introduce a type of variable that describes stationary
states of the Josephson-junction array. We call these
variables "loop currents". ' They are defined on the dual
lattice of the physical array, i.e., on individual plaquettes,
as shown in Fig. 1. The corresponding formalism is given
in Sec. II. The calculations for f =0 and —,

' are described
and their results presented in Secs. III and IV, respective-
ly. In Sec. V we show that a linear stability analysis of
the current-carrying stationary states is a simple but
powerful method for identifying the mechanism of vortex
depinning, while in Sec. VI we assess the significance of
the results and suggest possible further applications of
the method.
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FIG. 1. Loop current representation of a stationary state,

shown for a finite array of L~ XI lattice sites. The crosses
denote the Josephson junctions between the superconducting is-

lands (represented by small squares). The islands on the left and

right edges are coupled to two busbars used to inject a transport
current into the array. Also shown are mesh currents I, and I„
Aowing around the outer edges.

II. MODEL AND THE LOOP CURRENT FORMALISM

Here v„ is an integer and arises because each of the
phases 0; is defined modulo 2~. For definiteness, we
define the vorticity of a plaquette n as the value of v„ob-
tained in (3) when each y, in the sum is reduced to lie
within the range [ —m, m ], as considered by Korshunov
and Uimin. ' In analogy to the Coulomb gas representa-
tion7's's of the model (1), the variable q„=v„f is-
termed the "charge" of the plaquette n.

The ground state of the system is the configuration of
phases I 8; I which globally minimize the Hamiltonian (1).
This is one of the stationary points of &. Monte Carlo
calculations ' ' have shown that, at rational fields

f =p/q, the lowest-energy state is spatially periodic,
with a q Xq unit cell, in which vortices, or equivalently
charges, are arranged in a regular superlattice. In partic-
ular, Halsey' proposed that in the range —,

' &f & —,
' with

small q the ground states are characterized by constant
phase differences along diagonal "staircases, "which con-
sist of alternating vertical and horizontal junctions.
These correspond to diagonal lines of positive (1 f)—
charges separated by line(s) of negative ( f) charge—s,
with the total charge in each unit cell summing to zero.
Alternatively speaking, such states consist of diagonal
lines of unit and zero vorticities. Vortex excitations of
the Kosterlitz-Thouless type result from adding "extra
vortices" Av„on top of the ground-state vortex pattern

A much used, simple model for describing weakly cou-
pled arrays of point superconductors is specified by the
Hamiltonian

&=—J g cos(8; —
8~

—A;J),
(ij)

where 0, is the phase of the complex superconducting or-
der parameter at the site i and A; =(2m/4o) f ~ A dl is

proportional to the integral of the vector potential A
from site i to j, with N0 being the Aux quantum. ' The
sum in (1) runs over all pairs of weakly coupled supercon-
ductors, so that it simply represents the total of all indivi-
dual Josephson-coupling energies in the array. The
Josephson tunneling current between two sites is given by
the relation

2eI, =Jsin(8; —8J —
"A;~ ) .

In the limit where the magnetic field induced by super-
currents Aowing in the array is small compared to the
uniform external field H, the sum of the phase factors A,
around a plaquette is equal to

Ha
A,"=2m. =2m.f,

ij En 0

where the sum is taken in an anticlockwise direction and
a is the lattice constant. The sum of the gauge-invariant
phase differences y; =0;—Oj

—3, around a plaquette n

is then

g y;J = —2mf (mod2n. )

ij En

(3)

&n ~n+~~n ~ (4)

where Av„, like v„, is an integer.
To study zero-temperature properties, we minimize the

Hamiltonian (1) with respect to the independent variables

I 8; I. The Euler-Lagrange equation for this problem is

J g sin(8; —8 —A; )=0 for all i,
J

which is recognized as Kirchhoff's law of current conser-
vation applied at the lattice sites i. Consequently, sta-
tionary states of the Hamiltonian (1) can be represented
by systems of "loop currents" II„I fiowing around in

every plaquette (Fig. 1). We define the positive sense of
the loop currents as anticlockwise. They are thus related
to the phase differences on the junctions through

smfij I(ij L) I(ij p)

where the two terms on the right-hand side denote the
loop currents (in units of the single-junction critical
current i,0= 2eJ/iii) to the left and right of the link ij

It should be noted that not every arbitrary set of loop
currents I I„I constitutes a stationary state of the
model —for example, Eq. (6) shows that the difference be-
tween the two loop currents on neighboring plaquettes
must not be greater than unity in magnitude. More
specifically, for a fixed magnetic field f, since the sum of
phase diff'erences around each plaquette must satisfy the
"quantization relation" [Eq. (3)], we arrive at the follow-
ing constraint on the loop currents:
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Ip: Ib:LyI& /2 e (10)

These may equivalently be represented by two fictitious
rows of loop currents at the top and bottom of the real
array:

I(x,L ) = +L I~ /2,
I (x,0)= L IA /2 . —

For a fixed vorticity configuration [v„],Eq. (7) togeth-
er with the appropriate boundary conditions can be
solved with a multidimensional Newton-Raphson
method. ' More specifically, corrections to an initial esti-
mate [I„]of the solution are obtained by solving the fol-
lowing coupled set of linear equtions:

(12)

where

where the sum is over plaquettes neighboring to n. The
range of the arcsin function is restricted to [ —rr, ~].

The form of Eq. (7) makes it natural to solve for sta-
tionary states [I„j that correspond to specific vorticity
configurations [v„]. For a given [v„J, Eq. (7) must be
combined with appropriate boundary conditions in order
to yield unique solutions. We are primarily interested in
those boundary conditions that impose a desired net
transport current across the array. Two of such condi-
tions have been investigated.

The first of these, called twisted periodic conditions,
are useful for simulating an infinite periodic system. For
a system with a Ly XLz unit cell, these conditions are
given by

I(x +L,y) =I(x,y) L I,—,

I(x,y +L )=I(x,y)+L Ih,
where I„and I& are, respectively, the average vertical and
horizontal components of the transport current per junc-
tion. It can be seen from Eq. (7) that the boundary condi-
tions (8) will determine the loop currents only up to an
additive constant. We therefore impose an additional ar-
bitrary condition

I(x,y) =0,
unit cell

which effectively serves to fix this constant. Applications
of these conditions in determining the intrinsic critical
current I,o, which is the largest supercurrent for which a
metastable state exists, have been presented elsewhere. '

The second of the boundary conditions apply to a finite
lattice of L XL„sites, with a geometry that has been
studied by Rzchowski et al." The superconductors on
the left and right edges are coupled to two vertical bus-
bars used to inject a horizontal transport current into the
array (Fig. 1). As shown in Fig. 1, in addition to the loop
currents Aowing within the array, there are mesh
currents I, and Ib that Bow around the outer edges. To
impose a net current of I& per horizontal junction, I, and
Ib are fixed such that

fk~» ~~=2m[v&~» ~~ f—]—g arcsin[Ik~» ~~
I&—~». ~, ~],

l

(13)

in which the sums are over neighboring plaquettes to k.
The process is repeated iteratively until convergence is
reached. It turns out that the iteration can be stabilized
if a fraction A~, called the "mixing factor, " of the
correction 6I„, rather than the full value, is added to the
old estimate at each step. This is similar to the "under-
relaxation" method of Cohn et al. Values of AM be-
tween 0.3 and 0.6 are found to be satisfactory. Since each
loop current is only coupled to those belonging to neigh-
boring plaquettes, the matrix representing the linear
equation (12) is extremely sparse. In fact, for a L XL lat-
tice, the number of nonzero elements in the matrix is pro-
portional to L, compared to the total number of ele-
ments being L . We have simulated lattices of up to
64 X 64 plaquettes.

III. CURRENT-INDUCED VORTEX-DEPINNING
IN THE ZERO-FIELD CASE

We first consider a single extra vortex on a finite array
in zero magnetic field and with zero net transport
current. In this case, 3; =0 on all junctions. Then the
ground state, with all phases 0; aligned, obviously corre-
sponds to v„=0 on all plaquettes. The single-vortex state
is given by Av, =+1, where U denotes the plaquette in
which the vortex "center" is located. Figures 2(a) —2(c)
show three equivalent representations of such a state in a
12X12 array. In Fig. 2(a) the angle of the arrows mea-
sured from the y axis denotes the phase of the supercon-
ducting order parameters 0;. Figure 2(b) displays the
direction and magnitude of supercurrents Aowing on
every junction. In Fig. 2(c) the magnitudes of the loop
currents on all the plaquettes are presented as a three-
dimensional plot. Since the loop currents are defined on
the discrete dual lattice of the physical array, the lines
drawn in Fig. 2(c) are only a guide to the eye. Nonethe-
less, for a large lattice, the loop currents for f =0 vary
smoothly with distance away from the vortex center. One
can easily obtain the functional form of the loop currents
in the continuum limit as I(r) ~ —ln(r/a) for large r and
away from the edges, where r is the distance from the
vortex center. This corresponds to supercurrents circu-
lating around the vortex center that fall off as 1/r [Fig.
2(b)].

In order to check the effect of edges in the finite sys-
tem, we have investigated the size dependence of the sin-
gle vortex energy for the fields f =0, —,', and —,

' (Fig. 3).
Figure 3 shows that the expected logarithmic depen-
dence ' ' is observed right down to the smallest system
studied, thus indicating that the edge effect is not impor-
tant.

Lobb, Abraham, and Tinkham have shown that atf =0 there are two possible single-vortex stationary
states, with one being an energy minimum and the other
an energy maximum. The solution presented in Figs.
2(a) —2(c), with the vortex center coinciding with the
center of a plaquette, corresponds to the energy
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minimum. The energy maximum corresponds to the oth-
er solution for which the vortex center is positioned on
top of a junction, midway between two plaquettes. Vor-
tex motion out of one low-energy position into an
equivalent site one lattice constant away is therefore
prevented by an energy barrier Ez, which was calculated
to be 0. 199J in the limit of large lattice sizes. Rzchowski
et al. subsequently extended this picture to yield a com-
plete two-dimensional energy surface that represents a
"vortex-pinning potential" in the array. This potential
was shown to be very close to a pure sinusoid.

When a transport current Aows in a type-II supercon-

f=JX@o/c, (14)

where J is the current density. One might expect that in
the Josephson-junction array, a transport current will
have an analogous e8'ect on a vortex. This is generally
described as a tilting of the sinusoidal vortex potential
transversely to the direction of current Row."' The
zero-temperature critical current for the onset of vortex
motion, i, , is reached when the Lorentz force equals the

ductor, a magnetic-flux (or vortex) line experiences a
Lorentz force given by

c.

ls

e

(Ei)

Y X

FIG. 2. Three equivalent representations of a single-vortex state for f =0, on a 12X12 lattice. The array is coupled to two bus-

bars (not shown) on the left and right edges. (a) and (b) are after Rzchowski et al. (Ref.4). In (a) are shown the phases of the super-

conducting order parameters, in (b) the Josephson currents flowing between lattice sites, and in (c) the magnitude of loop currents on

each plaquette, the cusp corresponding to the vortex center.
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maximum restoring force of the pinning potential. From
(14) one obtains i, =eE~ /A for a sinusoidal potential, and
so i, -0.1i,o. Although this scenario is quite plausible,
it is not immediately obvious how the Lorentz force
arises in the present simple model, especially when the
magnetic effects of the circulating supercurrents have
been neglected. Nonetheless, in what follows we will
demonstrate that our numerical results are consistent
with the tilted vortex-potential description and from
them deduce i, .

Using the finite array boundary conditions (10), we
seek single-vortex states that carry a net horizontal trans-
port current. By starting at appropriate initial estimates
of the loop current configurations II„ I [Eq. (12)], we find
two solutions at each current. Their energy-current rela-
tions are shown in Figs. 4(a) and 4(b) for the 6X6 and
12X 12 lattices, respectively. In particular, the two solu-
tions at zero current, II, =0, correspond to the energy
minimum and maximum obtained by Lobb, Abraham,
and Tinkham. The figures show that at small currents
both the low- and high-energy branches rise parabolical-
ly. However, they merge at some critical value of
current, above which no solution exists.

According to Eq. (14), we anticipate that a net horizon-
tal current will exert a force on a vortex in the vertical
direction (i.e., along the y axis). The associated "tilting"
of the sinusoidal vortex potential may then be described
analytically by adding to it a component that varies
linearly with y. This results in a deviation of the energy
minima and maxima from their zero-current positions,
such that they move toward each other in pairs. Eventu-
ally, when the current reaches a critical value, the mini-
ma and maxima merge, becoming points of inAection and
thus reducing the energy barrier to zero. At higher
currents, no stationary point exists. Therefore we identi-
fy the maximum supercurrent for which a metastable

-1.9235)~
CP

LJJ

-1.9245::—
5 6

Net transport current (units of i,0)

7
x10

state exists as the vortex-depinning current i, . As shown
in Fig. 5, in the limit of large lattice sizes, i, (f =0) extra-
polates to -0.102i,o, in agreement with the rough ap-
proximation as presented above and the numerical result
of Rzchowski et al.

The main reason why we have used finite, rather than
periodic boundary conditions here is as follows. For a
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FIG. 5. Vortex-depinning current i, /i, o as a function of the
inverse lattice size, for f=0 ( o ) and f=

2 ( X ).

plG. 4. Energy per site vs net current for f =0 single-vortex
states on a (a) 6X6 and (b) 12X12 lattice.
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periodic system, summing both sides of Eq. (3) over a unit
cell readily shows that the total charge in the unit cell
must be zero, because each y; will be summed over
twice, but in opposite senses. Therefore, with periodic
boundary conditions, a vortex-antivortex pair needs to be
introduced, instead of the desired single extra vortex.

state and any of the q, =+—,
' states is far from zero.

Thus, if this maximum current can be interpreted as the
vortex-depinning current i, , just as in the f=0 case, then
we have immediately disproved the picture of vortex
motion over a rigid ground-state superlattice. In the next
section, we will demonstrate that the maximum current is

IV. VORTEX DEPINNING
IN THE FULLY FRUSTRATED CASE

At f=
—,', for which the ground state corresponds to a

checkerboard arrangement of unit and zero vortices, '
there are two distinct positions where an extra vortex
(hv=+1) may be added. This can be either at a pla-
quette with an original charge of q = —

—,
' (i.e., v =0) or

at one with q =+—,
' (i.e., vo= 1). These will lead to new

values of the charge of q, =+—,
' or +—', , respectively,

where v denotes the plaquette to which the extra vortex is
added.

For both cases, we solved the loop current equation (7)
iteratively by starting at a large number of random initial
configurations II„I. For q„=+—,', only one solution is

found at small currents. However, for q, = +—', , we found
a large number of solutions. Figures 6(a) and 6(b), respec-
tively, display the q, = +—,

' state and one of the q, = +—,'
states at zero net current. The nature of the q, =+—,

'
states may be understood as follows. For this vortex pat-
tern, Eq. (3) shows that the sum of the gauge-invariant
phase differences around the plaquette v is
gy=2n. q„=3tr. The different solutions correspond to
different ways in which this sum may be divided among
the four junctions. Neglecting finite-size effects, the state
shown in Fig. 6(b), for example, corresponds to a sym-
metric distribution such that each phase difference
around U is equal to 3m. /4. The other solutions corre-
spond to various asymmetric divisions of the total sum.

In the work of Rzchowski et al. ,
" it was assumed that

under the inhuence of a transport current Lorentz force
the extra vortex would move over the array without dis-
torting the underlying checkerboard vortex background.
Therefore, for a vortex to move from a plaquette with
zero background vorticity (v =0) to an equivalent posi-
tron two lattice constants away, it must pass over a pla-
quette with v =+1. In other words, it must go from a
q, =+—,

' state to a q„=+—', state. It was found that the

q, =—,
' state is higher in energy than the q„=—,

' state by
DE=1.28J. The above vortex motion would thus be
prevented by a barrier of this height. However,
Rzchowski et al. derived from the experimental rnea-
surements a barrier of only 0.44J, much lower than the
expected value. It was thus clear that a different model
for vortex motion should be involved. This is what we
seek to identify in the remaining of this paper.

As in the case of f =0, we solved for current-carrying
single-vortex states in f=

—,', both for q, =+—,
' and +—,'.

The energy-current relations for the solutions obtained
on a 11X9 lattice are plotted in Fig. 7. At the maximum
current for which a q, =+—,

' state exists (0. 109i,o on the
11X 9 lattice), the energy difference between the q, =+—,

'

I( I/

/s

FIG. 6. Josephson currents for f=
—,
' single-extra-vortex

states on a 11X9 lattice. (a) shows the q„=+ 2
state, while (b)

is the "symmetric" q„=+
~

state. The + sign denotes an extra
unit vorticity (b,v=+1).
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indeed i, In ou.r calculations, i, for f =
—,
' actually de-

creases with increasing lattice size (Fig. 5), and in the
~ Binfinite lattice limit, we obtain i, (f =

—, )
—(0.092+0.002)i,o.

V. STABILITY OF CURRENT-CARRYING STATES

In this section we will describe a systematic method for
finding the critical current for vortex depinning and at
the same time identifying the way in which vortex motion
takes place. The method is based on studying small angle
fiuctuations I50;I about the current-carrying stationary
states which are solutions of the Euler-Lagrange equation
(5) or, equivalently, the loop current equation (7). More
specifically, we carry out a linear stability analysis of
these stationary states' ' ' and associate the critical
current with the onset of instability. This involves
finding the eigenvalues of the stability or Hessian matrix
M, which has elements

8,'=6;+a„(59";). (18)

v 12-

the two busbars for the finite lattice considered.
Benedict' and Dang, Halasz, and Gyorffy' studied

the above problem for an infinite periodic system. Using
the Bloch's theorem, they were able to calculate the ei-
genva uenvalues of the Hessian matrix analytically in some
cases. In the present case of a finite, nonperiodic system,
however, the eigenvalues must be obtained numerically.
Since the Hessian is a very sparse matrix and is sym-
metric, this is not too difficult a task.

For every stationary state, the Hessian has at least one
zero eigenvalue which is associated with the invariance of
the Hamiltonian under global phase rotation. A station-
ary state is metastable, i.e., a local minimum, if all eigen-
values are non-negative. When a negative eigenvalue ap-
pears as a result of an increase of the current driven
through the system, the state becomes unstable to distor-
tions of the phase pattern (59; I, specified by the corre-
sponding eigenvector or Auctuation mode. Generally, to
study the onset of instability, only a few eigenvalues
closest to zero need to be considered.

Figure 8 shows the variation of the lowest eigenvalues
above zero for single-vortex states of f =0 (on a 12X12
lattice) and f=

—,
' (on a 11 X 9 lattice) as the net current is

increased. These correspond to the curves labeled AC in
Figs. 4(b) and 7. In both cases, at low currents, all the ei-
genvalues are positive. At precisely the point C, where
the maximum current is reached, there is an abrupt drop
in some of the eigenvalues, resulting in one of them
becoming zero. This confirms the onset of instability at
the maximum currents found previously.

We can interpret the fiuctuation modes in terms of the
change in the vorticity of individual plaquettes that re-
sults from the phase distortions. Suppose the pth mode is
given by I 50";I; then, a fluctuation with amplitude a„will
produce a distorted phase pattern of

(15)

M, ,
=J g cos(0; —0k —A;k ),

k

where the sum is over sites coupled to i For iWj. the off-
diagonal elements are

—J cos(g, —0 —3,") for nearest neighbors,
(17)

t

0 otherwise .

where {8,I is the configuration of the stationary state
whose stability is being investigated. From the Hamil-
tonian (1), we find that the diagonal elements are

0. 08—

0. 06—

0.04—
bO

UJ

0. 02 .—

I

0.02

f =0
I

0.04
I

0. 06
I

0.08

Net transport current (units pf j,, I,)

0.1

\

i
\

1

I

I

I

I

Equation (16) means that the diagonal element M„. is the
minus of the sum of the energies of all bonds connected
to the site i. The off-diagonal term M," given in Eq. (17)
is the energy of the bond ij if i and j are nearest neighbors
and zero otherwise. The "site" indices i should include

FIG. 8. Variation of the lowest eigenvalues of the stability
matrix with the net current. The solid curve is the lowest eigen-
value above zero, for the f =0 single-vortex state on a 12 X 12
lattice. The dashed curves are the three lowest eigenvalues
above zero for the q, = + —' state off = —', on a 11 X 9 lattice.
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FIG. 11. Current-induced vortex motion for a f=
—,
' single-

extra-vortex state. The + signs represent a vorticity of +1 (or
a charge of + 2), while the open squares have zero vorticity (or
a charge of —

z ). The arrows represent the movement of a unit

vorticity.
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of Fig. 11(b). The energy-current relation for this
configuration is plotted in Fig. 12. Comparison with Fig.
7 shows that this type of excitation has much lower ener-
gies than the previous q, = + —,

' states. The highest
current that can be reached for this vortex configuration
is 0.0292i,o. A stability analysis again shows that the
first negative eigenvalue occurs precisely at this current.
A study of the fluctuation mode responsible for this insta-
bility indicates that it corresponds to the motion of the
"extra vortex" downward by one plaquette, thus replac-
ing the displaced vortex of the checkerboard superlattice
[Fig. 11(b)]. The low value of 0.029i,o means that at the
current 0. 109i,o, when the first vortex motion [Fig. 11(a)]
takes place, the resulting configuration [Fig. 11(b)] is al-
ready unstable to the motion of the second vortex. The
combined effect of the two vortex motions is that the new
configuration reached [Fig. 11(c)] is just equivalent to the
original one, but shifted downward by two lattice con-
stants. The two-step process of vortex motion is thus re-
peated, so that effectively an "extra" vortex moves down-

ward, transverse to the transport current. This is our
picture of the resistive state.

A final remark is that while the linear stability analysis
should be valid only for small phase deviations, it is
shown that phase slips generally occur at fluctuation am-
plitudes of the order of unity. Therefore, although the in-
stability due to the appropriate fluctuation modes is in-
disputable, their interpretation as presented above de-
pends on the assumption that at large amplitudes these
fluctuations still lead to a reduction in energy compared
to the unfluctuated state.

VI. CONCLUSION

We have investigated current-induced vortex depin-
ning in a planar Josephson-junction array. The loop
current variables introduced here are a useful means of
solving for stationary states. Although the detailed dy-
namics of phase evolution cannot be obtained from the
present static model, it has been shown that a study of
the fluctuation modes provides a way of interpreting in-
stabilities in terms of the movement of vortices.

Our results show that the way in which current-
induced vortex motion occurs is diff'erent for f=0 and —,'.
While for the zero-field case the picture of a single vortex
moving over a sinusoidal pinning potential is a good
description, in the f =

—,
' case the ground-state vortex su-

perlattice is found to play an important role. In this
latter case, vortex motion is a two-step process which in-
volves a distortion of the checkerboard background.
This means that the effective energy barrier preventing
vortex motion is much lower than previously assumed, in
agreement with experimental results. In this respect the
analyses presented here may also be applied to other
values of the magnetic field. This will reveal whether the
distortion of the ground-state vortex superlattice is a gen-
eral feature at finite fields. It is expected that such distor-
tions are most likely to occur when the "vortex density"
is high (with f close to —,'), so that the interaction between
the extra vortex and superlattice becomes important.

While we have only considered single vortices, the
analyses employed may be usefully extended to study the
behavior of more complex excitations or defects. Exam-
ples of these include domain walls and multiple point de-
fects such as vortex-antivortex pairs. Furthermore, it is
of interest to examine the effect of lattice defects on vor-
tex pinning. Cohn et al. have studied such defects,
which include missing junctions or even superconducting
grains, from an otherwise regular array. It was found
that these defects act as extrinsic pinning sites, where
vortices may be "trapped. " The vortex-depinning
current is generally enhanced as a result, so that vortices
may be stable up to about 0.Si,o per junction. Our analy-
ses may contribute to an understanding of these
artificially introduced pinning effects.

FICx. 12. Energy-current relation for f =
z

single-extra-
vortex states on a 11X9 lattice. The circled curve, equivalent to
the one in Fig. 7, corresponds to the vorticity configuration of
Fig. 11(a). The plain curve corresponds to the configuration in
Fig. 1 1(b).
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