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The energy of a pointlike vortex is calculated for a layered superconductor with very weak interlayer
Josephson coupling. An energy barrier existing near the sample surface is found. Magnetization relaxa-
tion due to thermally activated penetration of pointlike vortices is considered. An initial avalanche-type
decay of magnetization is predicted.

I. INTRODUCTION

Magnetization relaxation measurements are an
effective method to investigate the Aux dynamics phe-
nomena, current-voltage characteristics, and critical
current in superconductors. ' In type-II superconduc-
tors magnetization relaxation is determined by the vor-
tices penetration, Bow, and pinning. The Aux penetration
process begins when the external magnetic field H be-
comes higher than a certain edge field H*. In the case of
a cylinder subjected to a parallel field the value of H' is
bigger than the lower critical field H„and smaller than
the thermodynamical critical field H, . The difference
between H* and H, &

depends on the interaction of the
vortices with the pinning centers and the sample surface.
In continuous superconductors the attraction of the Abri-
kosov vortices to the sample surface results in the Bean-
Livingston barrier. This barrier prevents penetration of
the Abrikosov vortices inside the sample. The value of
H* determined by the Bean-Livingston barrier depends
on the roughness of the surface. It is maximal in the case
of an ideal Oat surface. In the absence of the pinning
centers in the bulk the edge field H* is equal to the ther-
modynamical critical field H, .

Logarithmic relaxation of the magnetization M is one
of the main results of the well-known Anderson Aux-

creep model. A nonlogarithmic magnetization relaxa-
tion was considered in the vortex-glass and collective
creep (pinning) (Ref. 8) models. A considerable deviation
from the logarithmic relaxation law is observed in a lot of
experimental studies for the high-temperature supercon-
ductors. ' In particular, a pronounced maximum on
the curve of the magnetization relaxation rate is found in
Ref. 11. Experimental study' presented the evidence
that the Bean-Livingston barrier is the origin of the ir-
reversibility observed in high-quality YBa2Cu307 single
crystals near the critical temperature T, . It is em-
phasized in Ref. 15 that the Bean-Livingston barrier is
especially effective for the high-temperature supercon-
ductors. A crossover from the bulk pinning to the sur-
face pinning is observed and discussed in detail in Ref.

16. The considerable deviation from the logarithmic de-
cay of the magnetization is one of the consequences of the
specific quasi-two-dimensional nature of superconductivi-
ty in the high-temperature superconductors.

The most prominent high-temperature superconduc-
tors and, in particular, the Bi- and Tl-based compounds,
consist of a periodic stack of the two-dimensional CuO
layers (ab planes) where the superconductivity presum-
ably resides. These materials are extremely anisotropic
and, in particular, the density of the superconducting
current in the direction perpendicular to the layers (c
direction) is much less than in the ab planes. The
discovery of the layered anisotropic high-T, supercon-
ductors stimulated many theoretical studies of layered su-
perconductors with weak interlayer Josephson coupling.
In particular, the specific pointlike (or pancake) vortices
were introduced and investigated. ' ' Each of these
pointlike vortices is residing only in one of the supercon-
ducting layers. The self-energy of an isolated pointlike
vortex is proportional to ln(L /g), where L is the charac-
teristic size of the sample in the ab plane and g=g, t, is
the coherence length in the ab plane. Thus, the self-
energy of an isolated pointlike vortex diverges when
L /g —+ oo and it cannot exist in the bulk of a macroscopic
sample.

Interaction of a pointlike vortex with the sample sur-
face as well as for the Abrikosov vortex consists of repul-
sion and attraction. The repulsion results from the in-
teraction with the Meissner screening current. The at-
traction results from the increase of the superconducting
current density of the pointlike vortex caused by the sam-
ple surface. The correlation between these two interac-
tions is determined by the external magnetic field H. At
a certain value of H=H, the competition of attraction
and repulsion can lead to a stable state localized near the
sample surface. The existence of this stable state affects
the Aux penetration process and, in particular, the mag-
netization relaxation.

In this paper we study the process of the pointlike vor-
tices penetration into a layered superconductor. We
show that this process results in a specific thermally ac-
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tivated mechanism of magnetization relaxation, if the
external magnetic field H is from the interval
H„&H&H'. We use for calculations the Lawrence-
Doniach model' in the limit of very weak interlayer
Josephson coupling. We consider the case characteristic
for the extremely anisotropic high-temperature supercon-
ductors, i.e., g«k, d «A, , g, «d, where X=A,,b is the
London penetration depth in the ab plane, d is the dis-
tance between the layers, and g, is the coherence length
in the c direction.

We consider here, as an illustration, the magnetization
relaxation for the following problem. A semi-infinite lay-
ered superconductor is cooled down to a certain tempera-
ture T below the critical temperature in a zero magnetic
field. Then, a magnetic field H parallel to the sample sur-
face and perpendicular to the superconducting layers is
instantaneously turned on and kept constant. In this case
the outline of the scenario of thermally activated mag-
netization relaxation is as follows. The energy of a single
pointlike vortex G, has a minimum G, which is de-
tached by an energy barrier G from the surface. When
the external magnetic field H exceeds a certain value
H, =H, &, the minimum energy G becomes negative. It
results in a thermally activated penetration of the point-
like vortices inside the sample, where they reside in the
vicinity of the energy minimum. The rate of the pointlike
vortices penetration inside the sample depends exponen-
tially on the ratio of Gg /k~ T, where k~ is the Boltzmann
constant. The contribution of the pointlike vortices to
the magnetization 5M is proportional to the number of
them and leads to the decay of the magnetization. The
interaction of the incoming pointlike vortex with the
pointlike vortices residing in the sample affects the value
of G . The shift of the energy barrier 6G due to this in-
teraction is negative and proportional to the number of
the pointlike vortices in the sample. As a result, the mag-
netization relaxation rate increases with the decrease of
the magnetization and it leads to the avalanche-type ini-
tial magnetization relaxation.

The paper is organized according to the outline of the
scenario of thermally activated magnetization relaxation.
In Sec. II, we calculate the energy of a single pointlike
vortex G, near the surface of a semi-infinite layered su-
perconductor. In Sec. III, we consider the contribution
6M to the magnetization resulting from the pointlike vor-
tices residing in the vicinity of the energy minimum G
In Sec. IV, we study the diffusion of the pointlike vortices
nucleating near the sample surface and we calculate the
thermally activated How of these vortices inside the bulk.
In Sec. V, we consider the dependence of the shift of the
energy barrier 6G on the density of the pointlike vor-
tices residing in the sample. In Sec. VI, we combine the
results obtained in the previous sections, derive and solve
the magnetization relaxation equation. In Sec. VII, we
summarize the overall conclusions.

II. POINTI. INK VORTEX ENERGY
NEAR THE SAMPLE SURFACE

We calculate first the energy G, of a single pointlike
vortex residing in one of the superconducting layers near

+ Jd r(H —B)
8~

(2.1)

where n is the number of the layer, P„ is the phase of the
order parameter in the nth layer, A = ( A„, A ) is the vec-
tor potential, B=V X A is the magnetic field, and
V = ( V„,V~) is the gradient in the layers plane.

Variation of Eq. (2.1) with respect to the vector poten-
tial A results in the generalized London equation. Inside
the superconductor it has the following form

@o
V A= +5(z nd) A—— VP„2- (2.2)

Solving Eq. (2.2) we can find the magnetic field B and en-

ergy G for any configuration of vortices residing in the
sample.

Let us now consider a single pointlike vortex near the
sample surface. In this case the magnetic field B(r) may
be written as

B(r)=Hexp ——+b(r) . (2.3)

Here the first term represents the magnetic field penetra-
tion into the sample in the absence of vortices. The decay
of this field is due to the Meissner screening current. The
magnetic field b(r) results from the pointlike vortex, and
can be calculated by means of Eq. (2.2) and the method of
images. It means that, to the pointlike vortex located at
(x,y), we add an image pointlike antivortex located at
(
—x,y) and take for b(r) the sum of the field induced by

the vortex and antivortex. The field b(r) automatically
vanishes on the sample surface and the boundary condi-
tion B(o,y, z)=H is satisfied. Using Eqs. (2. 1)—(2.3) we
calculate the energy of a single pointlike vortex. Finally,

the sample surface. We use for calculations the
Lawrence-Doniach model' in the limit of very weak in-
terlayer Josephson coupling, i.e., we neglect the super-
conducting current in the c direction. In this case, the
superconducting layers are coupled only electromagneti-
cally via the magnetic field existing between the layers.
This approach is valid, when the space scale of the phe-
nomena under consideration is less than the Josephson
length A.J =dg, &/g, . We take into account only the elec-
tromagnetic coupling between the superconducting lay-
ers. It means that the space scale of the phenomena un-
der consideration is determined by the penetration depth
A, . Thus we assume that A, & A,J. This assumption is valid,
for example, for the Bi- and Tl-based high-temperature
superconductors.

Consider a semi-infinite layered superconductor sub-
jected to a magnetic field H parallel to the surface and
perpendicular to the layers. Suppose that the z axis is
parallel to H and the x axis is perpendicular to the sur-
face. The free-energy functional F for an infinite set of
electromagnetically coupled parallel superconducting lay-
ers then has the form' '

'2
2e
C
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the de pendence of G„on x has the form
'2

G, = 0 2x
Hd ep ———1din +

4m

x)g. (2.4)

Ho =e 0

4+A,
(2.5)
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d ' '"' " 6
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where J is the surface current density in the layer with
n =0 at the position of the pointlike vortex, and

Jdx . (3.5)

y y [J(U)+J(a)]
n k

(3.6)

Combination of Eqs. (3.6) and (3.4) results in the formula
determining the value of J as

X X I FL,"'k+FL."k]C'o. k
(3.7)

where FL"„'k is the Lorentz force resulting from the kth
vortex in the nth layer, and FL'„'k is the Lorentz force re-
sulting from the kth antivortex in the nth layer. Integra-
tion of both sides of Eq. (3.7) over x from x =0 to oo

leads to an expression determining the value of I:

y y [G(U)( ~ )+ G(a)( ~ )]
n k

(3.8)

Here Gk'„'( ~ ) is the energy of interaction between the
pointlike vortex residing in the layer n =0 at x ~ ~ and
the kth pointlike vortex residing in the nth layer, and
G(",„'(~ ) the energy of interaction between the pointlike
vortex residing in the layer n =0 at x ~ ao and the kth
pointlike antivortex residing in the nth layer. It is con-
venient to rewrite Eq. (3.8) in the following way:

Note that as well as I the value of J is the same in each of
the layers.

We use the method of images to find the surface
current density J. It follows from this method that inside
the sample J is a sum of the current densities induced by
the pointlike vortices J„'k' and their images (antivortices)

(a)Jnk~'e ~

vortices when q =1, and G is the energy of the interac-
tion of a pointlike vortex and pointlike antivortex when
q= —1:

p=[(x, —x~) +(y, —y~) ]'~, z=z, —z~, (3.14)

(x„y„z,) and (xz,yz, zz) are the coordinates of the in-
teracting pointlike vortices (antivortices).

We calculate first the value of G, (x) for x, l «x.
According to the method of images for each pointlike
vortex with coordinates (x,yk„) there is a pointlike an-
tivortex with coordinates (

—x,yk„). Finally, it leads to
the following expression for G) (x ):

2 (x+x ) +(y —
yko)

(x —x ) +(y —y„())

No dgln
k

G, (x)=

(3.15)
For x, l «x, Eq. (3.15) reads

2
+0 x

G, (x)= dx
27TX k x +gk 0

(3.16)

G(=
2

No de
27TA,

(3.18)

In the limit x~ ~ the main contribution in the sum in
Eq. (3.16) comes from the interval, where k»l. It al-
lows one to substitute the sum in Eq. (3.16) by the in-
tegral. Finally, we obtain the value of G) (x) in the form

2

G, = dNx dk . (3.17)2vrA, —~ x N +(k+Nuk())

It follows from Eq. (3.17) that G) = G) ( ~ ) is given by the
formula

I= [G, +G~],
0

(3.9)
An analogous calculation for G2 results in

G2= ——'G, .
2 (3.19)

where

G) = g I
Gko'( ~ )+Gko'( ~ )1

k

(3.10)

We now combine Eqs. (2.9), (3.1), (3.9), (3.18), and (3.19)
to calculate the magnetization 5M resulting from the
pointlike vortices residing in the sample. Finally, we find

is the energy of interaction with the pointlike vortices
and antivortices residing in the layer with n =0, and

@0 4 A,6M= Xln 08A " e. (3.20)

G~= & JIG)' (~)+Gk.'(~)]
n&0 k

(3.11)

2
No

G = —2qd ln +, z=O, g«p, (3.12)

2d' ~'0
P

Iz I

z&0, k «p . (3.13)

Here G is the energy of the interaction of two pointlike

is the energy of interaction with the pointlike vortices
and antivortices residing in the layers with n&0

We calculate the sums given by Eqs. (3.10) and (3.11)
using the following formulas:

Note that Eq. (3.20) does not depend on the distribution
function f(u). The accuracy of Eq. (3.20) is of the order
of l/L « 1, where L is the characteristic size of the sam-
ple in the superconducting layers plane. It means that
Eq. (3.20) is an exact formula for any macroscopic sam-
ple.

Thus it follows from Eq. (3.20) that in order to find the
magnetization relaxation equation we have to know the
rate of X. To calculate it we treat the diffusion of the
pointlike vortices in the stripe 0 & x & x .

IV. DIFFUSION EQUATION
FOR POINTLIKE VORTICES

We consider here, as an illustration, the magnetization
relaxation for the following problem. A semi-infinite lay-
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ered superconductor is cooled down to a certain tempera-
ture T below the critical temperature in a zero magnetic
field. Then, a magnetic field H parallel to the sample sur-
face is instantaneously turned on. This process results in
the initial magnetization Mo, which is equal to

Mo= — H .1

4m
(4.1)

We suppose also that the superconducting layers are per-
pendicular to H and the field is from the interval
H, &H &H'. In this case there is only one mechanism
of the magnetization M relaxation, i.e., the thermally ac-
tivated penetration of the pointlike vortices into the sam-
ple. It follows from Eq. (3.20) that the rate of this relaxa-
tion process is determined by the rate of N, which is
equal to the pointlike vortices Aow j inside each of the su-
perconducting layers:

dN
d]

=j (4.2)

Gg
p ~exp «1.

kBT
(4.3)

This strong inequality allows one to determine j by means
of a quasistationary diffusion equation. It means that the
pointlike vortices How j has the form

We consider now the diffusion of the pointlike vortices in
the stripe 0&x &xg to find the value of the How j. The
magnetic fIux penetrates into the bulk through the sam-
ple surface. It means that the pointlike vortices nucleate
in the superconducting layers at x =0. We consider here
the case when the energy of a single pointlike vortex
G„(0)=G, (g) ))ks T. At the same time the minimum of
G„ is localized on the line x =x in each of the supercon-
ducting layers. If the external magnetic field H is from
the interval H)Hi, the value of G is negative. Thus,
for H )H, a Aow of the pointlike vortices towards
x =x exists in each of the superconducting layers. This
How is determined by the probability p of the thermally
activated penetration of the pointlike vortices in the re-
gion x =x . The value ofp depends exponentially on the
ratio of the energy barrier G and kB T and in the case
when Gg ))kB T we have

The inequality kB T «G results in zero pointlike vor-
tices density at x =x . The solution of Eq. (4.4) matching
this boundary condition has the form:

G, (x ) xg G, (x')
n(x)= exp — ' f 'exp ' dx'.

D ksT x
(4.6)

The inequality G„(0)=G„(g)))ks T allows one to esti-
mate the value of n (0) as

y„G„(0)
n(0) = exp

ksT
(4.7)

where r„ is a numerical factor of the order of 1. Using
Eq. (4.6) and the boundary condition (4.7) we find the
pointlike vortices Aow j and the rate of N in the form

i /2

d

2
4~X ~o
40

G
X exp

B
(4.8)

Here r is a numerical factor of the order of 1, Mo is the
absolute value of the initial magnetization

and

1Mo= H,
4m

(4.9)

'T0
PnC

(4.10)

is the characteristic time constant appearing in the
theory of nonequilibrium superconductivity.

The combination of Eqs. (3.20) and (4.8) determines the
magnetization relaxation due to the thermally activated
penetration of the pointlike vortices inside the sample.
To find the dependence N(t) and thus 5M, we have to
take into account that the interaction of the incoming
pointlike vortex with the pointlike vortices residing in the
sample results in a shift of the energy barrier 5G . Thus
to find the final form of the equation determining the
magnetization relaxation we have to calculate 5G as a
function of 6M.

an aGj=—D —pn
BX BX

(4.4)
V. ENERGY BARRIER SHIFT
FOR POINTLIKE VORTICES

c p„gp=r„
0

(4.5)

where r„ is a numerical factor of the order of 1, and p„ is
the resistivity in the normal state.

Here n(x) is the density of the pointlike vortices in the
superconducting layers, D is the diffusion coefficient, and

p is the mobility of the pointlike vortices. The connec-
tion between D and p is given by the Einstein relation,
and thus D =kB T„. We use here the value of p calculat-
ed in the viscous Aux-fiow model. It follows from this
model that for the pointlike vortices How the mobility is
given by the formula

Gg =5Gi+&62 (5.1)

The interaction of the incoming pointlike vortex with
the pointlike vortices residing in the vicinity of the ener-

gy minimum at x =x determines the value of 6G . The
calculation of 5Gg is similar to the calculation of 6M (see
Sec. III). The interaction of the incoming pointlike vor-
tex with the pointlike vortices and antivortices residing in
the same superconducting layer increases the energy bar-
rier by a certain amount 6G, . The interaction of the in-
coming pointlike vortex with the pointlike vortices and
antivortices residing in the superconducting layers above
and below decreases the energy barrier by a certain
amount 6G2. The total energy barrier shift is equal to



R. Cx. MENTS AND E. B. SNAPERO

Using Eqs. (3.12) and (3.13) the expression for 6G, can be
written in the form

y and y, are numerical factors of the order of 1.
The solution of Eq. (6.1) has the form

5G, = ~'o Xm Xg

~ x.+ (y —
yko)

(5.2) M =Mo —1+a ln (6.4)

It follows from Eq. (5.2) that 5G& is an oscillating func-
tion of y. The energy barrier shift 5G, has a minimum if

~y
—yk, ~

-I )x (5.3)

NodN56—
A, H

(5.4)

The characteristic value of this minimum is of the order
of

Thus the thermally activated pointlike vortices penetra-
tion into the sample led to a specific initial avalanche-
type dependence of the magnetization on time. The
characteristic time of the magnetization decay ~ strongly
(exponentially) depends on the energy barrier and the
temperature. The dirnensionless amplitude a of the mag-
netization relaxation is proportional to the temperature
and logarithmically depends on the applied magnetic
field.

The dependence given by Eq. (6.4) is valid until
Using Eqs. (3.12) and (3.13) the expression for 5G2 can be
written in the form 5M =o.Moln (Mo, (6.5)

No

4nA,

d2 dg exp —
/n f—

xg, ™-g
k x'+(y —yk. )' (5.5)

No
5G~ = —y

4nA,

Nd
H

(5.6)

where y is a numerical factor of the order of 1. Com-
paring Eqs. (5.4) and (5.6) we see that the main term in
the energy barrier shift 5G is determined by 5G2. Using
Eq. (3.20) the value of 5G can be written as the following
function of 5M:

2
5M +o

d ) 4nA. H
g 2~M, 4~X e, (5.7)

VI. MAGNETIZATION RELAXATION

Combining Eqs. (3.20), (4.8), and (5.7) we find the equa-
tion determining the magnetization relaxation in the
form

dM a 5M=—exp
dt w aMo

(6.1)

The main contribution to the value of 5G2 results from
the interaction with the pointlike vortices and antivor-
tices located in different superconducting layers at the
coordinates (x,yk„), where ~y

—
yk„~ &x . It follows

from Eq. (5.5) that the total number of sufficient terms in
the sums over k and n is of the order of Nx A. /d and the
value of 5G2 is equal to

3

300 0.7
S

a = ln(500H ),T
300

(6.7)

where the temperature T is given in K and the magnetic
field H is given in T. Substituting in Eqs. (6.6) and (6.7),
T=25 K and H=0. 04 T, we find ~=30 s and a=0.25.
These numbers seem to be reasonable for the experimen-
tal observation of the main peculiarities of the magnetiza-
tion relaxation due to the thermally activated penetration
of the pointlike vortices.

VII. SUMMARY

and the density of vortices N is less than a certain critical
value N, -A, '. When iV becomes of the order of N, the
Abrikosov vortices self-assemble from the pointlike vor-
tices and then penetrate inside the bulk. It follows from
Eqs. (3.20) and (6.4) that a noticeable increase of N starts
when t —+w.

The penetration of the Abrikosov vortices inside the
bulk changes the time dependence of the magnetization
decay to the regular logarithmic law. The latter leads to
the magnetization relaxation rate decreasing in time.
Thus at t=~ the magnetization relaxation rate has a
maximum.

To estimate the values of the characteristic time con-
stant ~ and the dimensionless amplitude of the magneti-
zation relaxation o. we use y =y, =1 and the data ob-
tained for a monocrystal Bi2Sr2CaCuzO8. ' X=3X10
cm, (=g,&=1.5X IO cm, d=1.5X10 7 cm, p„=10
Acm. Using Eqs. (2.6), (6.2), and (6.3) we find that if
T ((T, and H + H )

=0.013 T, then
1/2

w= 10
T

(6.6)
300

vo

2 1/2

d Wo

Gg
P

kaT 4 A, 4m', H
V (6.2)

(6.3)

To summarize, we have shown that in an external mag-
netic field higher than Ho the energy of a pointlike vortex
G, has a minimum G detached from the sample surface
by an energy barrier G . The value of G becomes nega-
tive in magnetic field higher than H& -H„. We have cal-
culated the time dependence of the magnetization relaxa-
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tion due to the thermally activated penetration of point-
like vortices inside the sample. We have shown that this
process results in an avalanche-type initial decay of the
magnetization and a specific maximum in the rnagnetiza-
tion relaxation rate at a certain moment of time t=~.
The value of ~ exponentially depends on the ratio of the
energy barrier G~ and kz T.
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