PHYSICAL REVIEW B

VOLUME 47, NUMBER 6

1 FEBRUARY 1993-11

Single-hole spectral density in an antiferromagnetic background
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The dynamical spectral function of a single hole moving in a two-dimensional antiferromagnet
is calculated on clusters of up to 26 sites. Quasiparticle peaks in the spectral function show up
unambiguously at the bottom of the continuum. In some limited region of k space vague structures
in the spectral density might be reminiscent of excited string levels. Our data for the Z factor of
the t-J model are in excellent agreement with the self-consistent Born approximation.

The discovery of superconductivity in copper-oxide-
based materials by Bednorz and Miiller! has initiated
an enormous theoretical effort on strongly correlated
fermions in two dimensions (2D). The interplay between
strong correlations and low dimensionality is a fascinat-
ing issue. Nevertheless, it is still not clear whether a
Fermi-liquid-like picture, with electron-like quasiparticles
(QP), applies in this case. In particular, it has been sug-
gested that the breakdown of the QP picture (which is
well es;:ablished in one dimension) might also take place
in 2D.

In this paper, we address the question of Fermi-liquid-
like behavior in the case of a single hole moving in a
classical (Néel) or quantum antiferromagnetic (AF) back-
ground. The single-hole spectral function and density
of states are calculated by exactly diagonalizing small
clusters of the t-J, and t-J Hamiltonians by a Lanc-
zos algorithm. Clusters of square geometry are chosen
with N = 16, 18, 20, and 26 sites. This is the first
attempt of finite size scaling of dynamical correlations
for spin-fermion models.? It extends previous work of fi-
nite size scaling for the ground state (GS) energies of the
Heisenberg* and the ¢-J models.?

In standard notations the Hamiltonian is

H=J.Y SiSie+3JLY (SFSh-+STSh)
i,& i,e

—t > (el sciveo +He). )

i,&0

The sum over i, € is restricted to nearest neighbor bonds
along £ and ¢ on a 2D square lattice. We have explic-
itly separated the longitudinal (J,) and transverse (J.)
antiferromagnetic couplings, and shall consider two im-
portant cases: (i) the Ising limit J, = 0 (no quantum
spin fluctuations) and (ii) the isotropic case J, = J,.
The existence of a coherent propagation of the single
hole in the classical or quantum AF backgrounds is very
controversial. Two scenarios have been proposed: (i) a
conventional picture based on the Fermi liquid theory

4

which basically assumes the QP nature of the low en-
ergy excitations, and (ii) a more exotic picture where,
like in 1D, spin and charge are deconfined. While the
self-consistent Born approximation® (SCBA) predicts QP
peaks with a dispersion proportional to J, in a Luttinger
liquid® or a “marginal” Fermi liquid,” on the other
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FIG. 1. Density of state of a single hole in the classical

Néel state. Here and in Fig. 2, the spurious “fast oscillations”
occurring at high energies are due to the finite number of
Lanczos steps used. All energies are measured in units of ¢.
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hand, there are overdamped QP excitations which have
vanishing QP weight (Zyx = 0) at low energies. Early nu-
merical calculations of the single-hole spectral function
on 16-site® and 20-site clusters® have given partial indi-
cations in favor of QP peaks which seem also to exist at
|
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finite hole density.!%1! However, as will be seen below,
for such small clusters finite-size effects are still rather
large, and more conclusive results can be reached com-
paring clusters of different sizes.

The single-hole spectral function is defined by

Aro(w) = | (INHK) | cxo | TY) |2 6(w + EY — EN-1(K)). @)

Here | U}) is the GS at half-filling (N spins on N sites)
which can be either, the classical Néel GS (Ising limit)
or the quantum Heisenberg GS (isotropic case), and E}’
is the corresponding energy. The set {UN~1(k)} is that
of one hole eigenstates (N—1 spins), with correspond-
ing energies EXY~!(k). In the numerical results below
a small € = 0.02 gives a small width to the 6 func-
tions. Note that, for symmetric k points in the Bril-
louin zone (BZ) like k = 0, Qo, etc., due to selection
rules the manifold {¥~1(k)} is in fact restricted to the
most symmetric irreducible representation of the point
group (like s wave). For N — oo, long range AF or-
der implies a doubling of the unit cell and, in particular,
E{~1(k+ Qo) = EY "'(k) [Qo = (m,7)]. In the ther-
modynamic limit, while most of the § functions lead to a
continuum, a true § peak persisting at the bottom of the
spectrum will be the signature of a QP excitation. Its rel-
ative amplitude (that should remain finite when N — o0)
is simply given by the matrix element of the hole opera-
tor between the lowest exact one-hole eigenstate (m = 0)
and the initial half-filled GS,12

Z=7) 1(¥0, (k) |ewo | L) . ®3)

Physically, Zy corresponds to the relative spectral weight
(between 0 and 1) located in the low energy peak. Alter-
natively, it can be seen as the discontinuity in the occupa-
tion number np, o = (T3 (k)| 3, cf, ,¢p,0|¥0 5 (k)) in
the one-hole GS at p = k.13 It should be noted that, in-
creasing N from 16 to 26, the GS momentum k* changes
discontinuously although we expect the momentum of a
hole in an antiferromagnet to be (7/2,7/2). The 16-, 18-,
20-, and 26-site clusters have GS momenta k* (7 /2, 7/2),
(m,m/3), (47 /5,27 /5), and (97/13,77/13), respectively.
Apart from the 16-site cluster the GS momenta are not
located exactly on the Fermi surface (FS). On the other
hand the largest 18-, 20-, and 26-site clusters no longer
show extra hidden symmetry that could have biased the
results of the 16-site cluster.

Since clusters of different sizes have different sets of
discrete momenta it is convenient to define the single-hole
density of state (per spin) as N,(w) = & 3y Ako(w).
Due to the sum over k the hole density is expected to
have a weak size dependence. Note that it fulfills the
sum rule 3 [ dw Ny(w) = 1.

The spectral densities (2) are calculated directly by a
continued-fraction expansion (truncated after ~ 300 iter-
ations) based on the Lanczos algorithm.!4 Handling the
26-site cluster (with 5.2 million configurations compared
to only 6435 for N = 16) is a technically difficult step

[
which requires ~ 6 Gbytes of disk space.

The hole density of states N,(w) of the t-J, model
is shown in Fig. 1. First, we observe a QP band (see
below) at the bottom of the spectrum whose amplitude
increases slightly with system size. It is important to
notice that this amplitude seems to saturate when the
system size N reaches a characteristic size N, ~ 6 J /3
which corresponds to the spatial extension of the hole
wave function.!® A similar scaling behavior was actu-
ally found for the GS energy.® Secondly, the hole den-
sity shows a large uniform incoherent background which
decreases with increasing J,. This can be attributed to
the motion of the hole along retraceable paths!® which
preserve the initial Néel order. A third feature is of par-
ticular interest: a broad structure develops with increas-
ing size and increasing J, just above the QP band. It
is tempting to associate this maximum with an excited
state of the hole in a confining “string” potential, the
existence of which was pointed out by Shraiman and
Siggial® and investigated by numerical calculations.l?+5
Strictly speaking, one would then expect a series of dis-
crete levels.15:% This picture is in fact not completely cor-
rect since there are special processes where the hole hops
around the plaquette one and a half times.!® This enables
the hole to propagate coherently (along the diagonal of
the plaquette) and gives a finite lifetime to the excited
localized levels, in agreement with the broad feature at
w =~ —1.2. It is interesting to notice that the GS energy
shows roughly a J2/2 behavior,!7% compatible with the
string scenario.

Let us turn now to the isotropic case, i.e., J, = J,.
Figure 2 shows the evolution of the spectral density with
increasing system size. We observe first that the band at
the bottom of the spectrum [located between the smallest
arrows in Figs. 2(c) and 2(d)] is robust when N increases
so that we can interpret it as a QP band as for J; = 0.
The largest arrow on Fig. 2 indicates a spurious peak in
the continuum of the spectral function Ax, for k = 0
which broadens and eventually disappears for the 26-site
cluster. We stress that a finite-size analysis is crucial
here in order to be able to distinguish between genuine
features of the spectral density and spurious finite size
effects. Indeed, we observe that, in general, all sharp
features (apart from the coherent band) existing for the
smaller cluster evolve into a continuum with increasing N
(e.g., the peaks located around w ~ 2.2 in Fig. 2). Since
the spin-flip term J, allows a complete delocalization of
the hole, the broad structures that might be reminiscent
of string levels become (i) of very small amplitude (com-
pared to the QP peak) and (ii) are only restricted to
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FIG. 2. Density of state of a single hole in the Heisenberg
antiferromagnet.

momenta close to (w/2,m/2).

The bandwidth W is defined by the dispersion of the
quasiparticle peaks. This definition only makes sense if
Z\ is finite, as our results indicate it to be. The band-
width versus J is shown in Fig. 3. The data for the largest
systems confirm the linear behavior at small J first ob-
tained by perturbative calculations® and in early numeri-
cal work.® An expression like W ~ 2.275 J+a, a ~ 0.093,
gives a good fit of the N = 20 data for 0.1 < J < 0.5.
The linear dependence of the bandwidth on J reflects
the large quasiparticle mass enhancement (by a factor
~ 4t/J) due to the dressing of the hole propagator by
spin fluctuations.

We now discuss the behavior of the QP weight Z.
Generally Zy has a maximum at k ~ (7, 0) and minimum
at k = 0 although the bottom of the band is located
at different k points for J, = 0 (k* = 0 and Q) or
Ji =J, [k* ~ (7/2,7/2)]. Also we observe that weight
is transferred from higher energies to the coherent band
(i.e., Zx increases) when J, increases (independently of
J1) as shown in Figs. 4(a) and 4(b).

We define now the average weight over the BZ, (Zx) =
ﬁ >k Zx. This quantity is meaningful even in the ther-
modynamic limit but should not be considered as an ap-
proximation to the weight at the FS. This quantity is
clearly not very sensitive to the change of grids of recip-
rocal vectors for increasing size and we expect a smooth
behavior with size that allows a precise comparison with
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FIG. 3. Coherent bandwidth of the t-J model vs J for
various sizes.

the existing theoretical fit.> The average weights together
with the weights at the bottom of the coherent band ver-
sus 1/N are shown in Fig. 4(c). In the t-J, model both
Zyx=0 and (Zi) versus 1/N exhibit very nice scaling be-
haviors (as for the GS energy®) with an inflection point

at a characteristic size N, ~ 6 J; 2/ 15 and the beginning
of a saturation for N > N,. Clearly, finite size correc-
tions become smaller than (or at most of the order of)
~ N-! for N >> 1. The larger J,, the smaller the size
of the hole wave function, and the sooner convergence is
found. We believe that the N = 26 data that we can fit
(for 0.2 < J, < 0.75) according to Zyx—o ~ 0.545J-859
[Fig. 4(a)] give accurate estimations (and probably exact
lower bounds since Zj grows with size) of the weights in
the thermodynamic limit, apparently down to J, = 0.3.
Note that Zy of the ¢t-J, model increases when one goes
up the band so that (Zi) < Zx—o [Fig. 4(a)] although
the J dependence is very similar over the whole BZ. The
scaling behavior of the Z factor of the t-J model [Fig.
4(c)] is not as smooth as for the Ising case since Zy is no
longer a monotonic function of the system size.!® How-
ever, apart from the large change between N = 16 and
N = 18 the data seem to be weakly size dependent for
N >18.

Our data agree well with the numerical solution?® of
the integral equation for the self-energy within SCBA,$
as is shown in Fig. 4(b). Indeed, SCBA predicts many
features found in our numerical work: (i) the same behav-
ior of Zy with momentum k and (ii) the same behavior
of the form a J” at small J for the relative QP weight
Zx. In particular, at the bottom of the band k = k*,
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FIG. 4. (a) Quasiparticle weights Zi(J) at the bottom (k = 0, dashed lines) of the band or averaged over the BZ ({)x,
dot-dashed lines), as indicated by the arrows, for the t-J, model. (b) Quasiparticle weights Zi(J) at the top (k = k*, dotted
lines) and bottom (k = 0, dashed lines) of the band or averaged over the BZ ({ )k, dot-dashed lines), as indicated by the arrows,
for the t-J model. The symbols corresponding to each size are as indicated in the figure. In each case, thin lines connect the
numerical points as a guide to the eye. The thicker lines (dotted, dashed, and dot-dashed) correspond to the self-consistent
Born approximation (data taken from Ref. 20) for each case (k = k*, k = 0, and ()x). (c) Zx vs 1/N in the t-J and t-J,
models.
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our fit of the 20-site cluster data [Fig. 4(b)], a ~ 0.622
and v ~ 0.598 is in good agreement with a ~ 0.63 and
v ~ 0.667 in the Born approximation.?® The agreement
is even better [see Fig. 4(b)] for the average over the BZ.
Also in agreement is the special role played by the center
of the zone k = 0 for which v > 2 (i.e., Zx vanishes more
rapidly with vanishing J at this k point). Nevertheless,
the magnitude of Zx—o obtained in the numerical cal-
culation is almost 5 to 10 times smaller as seen in Fig.
4(b).

In a recent paper Sorella!® reported that quantum
Monte Carlo (QMC) data for the Hubbard model sug-
gest that Zy. — 0 when N — oo in disagreement with
the present work. We note that Sorella did not really
calculate Zy directly but rather an upper bound of Zy in
a slightly spin polarized state. Hence it may well be that
the scaling behavior of this quantity with size is not at
all characteristic of the scaling behavior of Zy itself. Also
systematic errors in Sorella’s extrapolation procedure are
likely to be rather large.

Clearly the single-hole problem (vanishing hole con-
centration for N — o00) is a very special case, and the
present work does not directly apply to the high-T, cop-
per oxides! at finite hole density. Furthermore, it is well
established that doping easily destroys the AF order. Ex-
act diagonalizations of the ¢-J model have indeed shown
that for 10% doping the hole pockets at (xw/2,+m/2)

are already lost.!! We also note that the peculiar feature
Zy << 1 at the top of the band for small J and vanishing
hole doping is probably unrelated to any possible break-
down of Fermi liquid behavior, as it occurs at rather high
excitation energy.

In conclusion, we have reported here exact cluster cal-
culations of the single-hole spectral density in Ising and
Heisenberg antiferromagnets. Special emphasis was put
on the finite size scaling behaviors of the spectra, QP
weights, etc. In general, a reasonably good convergence
is achieved in the largest cluster (26 sites) which gives
credibility to exact diagonalization studies. The finite-
size analysis is necessary to systematically distinguish
between genuine features of the model (like QP peaks)
and spurious peaks. Quasiparticle behaviors are found
in t-J, and ¢-J models. This agrees with a recent spin-
wave calculation.?! Structures that might have to do with
string levels are shown to be almost completely wiped out
by hole delocalization processes except for large exchange
J or J, and for momenta close to the band minimum.

The numerical calculations were done on the CRAY-2
of Centre de Calcul Vectoriel pour la Recherche (CCVR),
Palaiseau, France. Support from CCVR is greatly appre-
ciated. Laboratoire de Physique des Solides and Labora-
toire de Physique Quantique are laboratoires associés au
CNRS.
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