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The total energies and magnetic properties of ideally ordered bcc Fe-Cr compounds and random
substitutional disordered bcc Fez Cr alloys are calculated using spin-polarized, self-consistent
linear-mufBn-tin-orbital-based methods. Calculated total energies are almost degenerate for mag-
netic and nonmagnetic states in FeCr3, which is favorable for the Invar effect. Comparison with the
results for complete disorder and with the total energies of the pure elements, lead to the conclusion
that disordered states in the form of clusters, are stable at most concentrations. The effect of order
is also crucial for the FeCr composition, where the CsC1 structure gives ferromagnetic Cr moments,
in contrast to the antiferromagnetic configurations in most other cases.

I. INTRODUCTION

Iron and chromium are constituents of many impor-
tant magnetic materials. As pure element the former is
a strong ferromagnet (FM), the latter a weak noncom-
mensurate antiferromagnet (AF) and both are in the bcc
structure. Alloys composed of the two, contain many
interesting magnetic systems, and the degree of local
ordering seems to influence the properties. In recent
years many experiments have pointed out the similar-
ities between certain properties in Fe-Cr alloys and the
better-known Invar anomalies in Fe-Ni Invar systems, de-
spite the difFerent (fcc and bcc) crystal structures. It
was found that in the range of 75—95% of Cr the al-
loy has vanishing thermal expansion coefficients as an
Invar alloy. It is generally agreed that the Invar proper-
ties are due to the closeness of and interplay between
magnetic (M) and nonmagnetic (NM) ground states.
The Weiss model assumes thermal excitations between
two electronic configurations of iron atoms (the AF and
FM ) that have almost the same energy but different vol-
umes. Band theorys confirmed that the total energies of
NM and FM configurations are almost degenerate near
the Invar composition in the FeNi system. The most
extraordinary Invar feature is the vanishing thermal ex-
pansion coefBcient o, in a wide temperature range. It
is believed that the magnetic contribution to a is nega-
tive and compensates for the normally positive n that is
due to lattice vibrations. Also the bulk modulus shows
anomalous behavior such as a hardening with increased
temperature. The vivid variation of elastic properties
with pressure, temperature, and magnetic field, is char-
acteristic for several Invar systems.

The magnetic phase diagram in Fe-Cr is FM up to
about 80% of Cr where the average moment decreases

linearly as a function of Cr composition and is close to
a Slater-Pauling curve. The regions where the FM and
AF regimes overlap have been studied by different tech-
niques, but the magnetic behavior in this composition
range is not completely clarified. Experimental determi-
nation of the extent of antiferromagnetism is reported
in Ref. 5. This transition region (at around 80% of Cr)
between FM and AF regimes is characterized by the col-
lapse of the total magnetic moment and of the Curie tem-
perature. In this region the anomalous behavior of the
specific heat coincides with the Invar behavior. More-
over, a large number of experimental works have pointed
out that for the Fe-Cr system the local magnetic prop-
erties are not only concentration dependent but depend
strongly on the environment and on the method of prepa-
ration.

The structural phase diagram of FeCr alloys has been
studied extensively and shows a miscibility gap indicat-
ing a decomposition in nonhomogeneous Fe-rich and Cr-
rich components at low temperature. For 440'C & T &
830'C in the equiatomic region there is formation of a
nonferromagnetic o phase with a unit cell of tetragonal
symmetry, but there are no indications that this or other
ordered structures are stable at lower temperature. A
miscibility gap has been found experimentally at a tem-
perature T, 500'C (Refs. 7 and 8), and the coherent
line has been calculated and analyzed below the solu-
bility limit. Heat treatment can inHuence the chemical
arrangements of atoms and short-range order effects (due
to clustering) seem to affect strongly the magnetic and
structural properties.

Theoretically, several studies of the pure elements
have been done using local-spin-density (LSD) electronic-
structure calculations. The results can explain many ex-
perimental findings but also led to some famous pitfalls
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of the present form of LSD approximation, namely, to
the question of the most stable structure of Fe and to
the stability of the AF structure in Cr.

For some compositions ofbcc Fe~ ~Cr alloys the elec-
tronic structure has been studied by coherent-potential
approximation (CPA) calculations 0 rr and Cr impuri-
ties in Fe have been studied by the Green's-function
method. The calculations on the bcc Fe-based FM al-
loys of Hasegawa and Kanamori furnished a basic un-
derstanding of the behavior of the density of states (DOS)
as a function of composition within a simple single band
model. Pair potentials up to the third neighbor and their
variation with Cr impurity concentration have been cal-
culated using a generalized perturbation method. rs

In order to study the manifold of properties in the
Fe-Cr system we analyze, in this work, the ground-state
properties of hypothetical ordered and completely disor-
dered systems in the whole concentration range. As a
part of this we also study the Invar problems, such as in-
stability between different magnetic states. The compar-
ison between the electronic and ground-state properties
of the two phases (ordered and disordered) will provide
a better understanding of the complex structural proper-
ties. The electronic structures are calculated for pure el-
ements and of several concentrations of the Fe-Cr system
both as ordered compounds by supercell linear-mufBn-
tin-orbital (LMTO) calculations and as disordered alloys
by an approximate LMTO method for random occupa-
tion of the lattice sites.

The organization of the remainder of the paper is as
follows. In Sec. II we outline the methods of calcula-
tion for ordered and disordered structures. The ground-
state properties of pure Fe, Cr, and Fe-Cr and the forma-
tion energies of the ordered systems are presented in Sec.
III, together with a comparison between different calcu-
lations for the energy of the disordered alloy. Section IV
presents results on the magnetic and electronic proper-
ties of Fe and Cr in the Fe-Cr system as a function of
composition and pressure. Section V compares the elec-
tronic band structure for the ordered supercell and the
disordered phases as a function of composition. In Sec.
VI we conclude, giving a summary of our results. As will
be shown, many results are consistent with experiments,
while other results indicate that the degree of short-range
order determines the magnetic properties.

II. METHOD OF CALCULATION

A. Ordered structures

The electronic structures for various supercells are cal-
culated using the self-consistent LMTO method. r4 rs The
LSD approximation of Refs. 16 and 17 for the exchange-
correlation potential of electrons is used (except for a
test case on pure Cr). The basis contains up to l = 3
terms in tails and three-center terms. Overlap correc-
tions, relativistic terms except for spin-orbit coupling,
and relaxed-core functions are all included. The density-
of-state (DOS) functions are calculated using the tetra-
hedron integration method with about 500/N k-points,
where N is the number of atoms per unit cell. The

where v~(U) are independent many-body-cluster interac-
tions and g are multisite correlation functions. These
correlation functions are defined as

1
CTP1OP2 ' OP

~ p,
(2)

where crp,. takes the value +1 or —1 depending on the
occupancy of site p, N~ is the total number of p-type
clusters, and the sum is over all p-type clusters in the lat-
tice. The expansion is useful if it converges rapidly, i.e.,
if the potentials diminish rapidly with the complexity of
the clusters. Here we consider for the bcc lattice a cluster
expansion with an irregular tetrahedron as the maximum
cluster size. ' This cluster expansion requires the cal-
culation of six stoichiometric high-symmetry compounds
with the bcc, B2, B32, and DOs structure types. The
maximum cluster is an irregular tetrahedron formed by
four nearest-neighbor (NN) pairs and two next-nearest-
neighbor (NNN) pairs. The subclusters are the empty
(n = 0), the point (n = 1), an the NN pair (n = 2), the
NNN pair (n = 3), the irregular triangle formed by two
NN pairs, and one NNN pair (n = 4). For the tetra-
hedron approximation, the cluster interaction energies
v~(V) are obtained simply by inversion of Eq. (1) and
are given by

v~(V) = ) ((~) BE (V).

At equilibrium [i.e. , at the volume that minimizes
AE~(V) of Eq. (1)] the excess energy simply gives the
formation enthalpy for each ordered structure LH .

method of calculation is the same as has been used for
other Invar systems. The ground-state properties are
obtained from total-energy calculations. For the spin-
polarized case we do not calculate the total energy of
the system for constrained values of the magnetic mo-
ment, but at each fixed lattice parameter we let the
self-consistency develop freely to its energy minimum.
The total energy of the non-magnetic (NM) and mag-
netic (M) states is minimized at each composition with
respect to the lattice parameter. A least-squares fit of
the Birch typers is used to obtain the total energy as a
function of volume. The variation of the pressure and
the bulk modulus with volume can be obtained using the
following equations: P(V) = (Bp/Ba) [(VD/V) 0 —1] and

B(V) = Bp(VD/V) 0, where we have chosen the special
case BQ ——4 because we found that sensitive variations of
Ba do not much influence the stability of the predicted
values for VD and B0

The calculated energies of ordered phases are used in
the Connolly-Williams~a (CW) method in order to de-
scribe disordered states via an expansion of total en-
ergies in volume-dependent many-body cluster interac-
tions. Similarly to Ising-like models, the excess energies
of each ordered configuration (cr) can be written as a
cluster expansion,

AE (V) = ) (~v~(V),
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The formation energies are of the order of a few mRy
per atom, and their calculation require accurate self-
consistent methods. Moreover, for each unit cell, we take
care to use similar integration techniques and consistent
minimization procedures in order to avoid errors due to
difFerent approaches or different potentials. As Connolly
and Williams 0 have shown, for a random solid solution
the pair and higher-order many-body correlation func-
tions are expressed as products of the point correlations,
and we have that (~~" = (xi;, —xc,)"&, where n~ is the
number of sites in the p cluster, and x, (i=Fe,Cr) are
the relative concentrations of Fe and Cr atoms. Defined
similarly to Eq. (1), the excess energy for the disordered
alloy is then given by

)max

The heat of formation for a random solid solution at
a given z is defined as the minimum values of Eq. (4)
with respect to the volume. The ordering energy E,
of each compound is then calculated as the difference
of the heat of formation for the ordered compound and
the random solid solution at the same composition. The
CW method have been applied to several semiconduc-
tor and noble-metal-based alloys in order to study the
temperature-composition phase diagram. Moreover, the
role of chemical (volume- and composition-independent)
and volume-dependent elastic interactions on the phase
diagrams have been studied separately. 2s A generaliza-
tion of the CW method to free energies containing vibra-
tional entropies has been recently presented, but more
developments are necessary in order to produce accurate
phase diagrams.

B. Substitutional disordered systems

For calculating the electronic structure for substitu-
tionally disordered systems we have developed a simple
method that is based on the standard LMTO technique.
The basic idea is to calculate the local electronic struc-
ture (LES) for one pure site A, which is surrounded by an
effective medium that is a concentration average over all
sites. The Bloch sum of energy-independent muffin-tin
orbitals may be written as a one-center expansion

L/

where the usual notations are used. i4 is The function f
depends normally on the potential of each site in the or-
dered lattice. In the case of disorder f~ is averaged over
all sites so that fi = cA f&+ + c~ f& +,where the sum
of all concentrations cA + c~ + = 1. The structure
constant S" is unchanged, since the lattice is the same
with or without disorder, as long as the Wigner-Seitz ra-
dius is chosen to be the same for all sites. The function
f contains combinations of R~(—l —1)/Ri( —l —1) and

R~(l)/R~(l) and make the "tail" part of the band prob-
lem an "efFective medium property. " Here Ri(D) is the
amplitude of the l-radial wave function at the Wigner-

Seitz (WS) sphere S evaluated at the energy for which
the logarithmic derivative is D. R~(D) is the correspond-
ing property for a concentration averaged wave function.
The approximations lead to an assumption of complete
disorder, i.e. , one atom is surrounded by sites that have
averaged scattering properties. This means that no ef-
fects of clustering or shell structures are taken into ac-
count. The charge density has the contribution from its
own site and a tail contribution from the outside. i4 is In
the present case with disorder, this implies that a pure
A (or B.. .) site receives tails from the "averaged" site.
Disorder modifies the normal band structure both in the
eigenvalue problem via the new two- and three-center
terms that enter from Eq. (5), and in the tail decompo-
sitions of the wave function into one-center expansions.
This is repeated for the local electronic structure of A
and B sites. In the present method (contrary to the CPA
method) we introduce lifetime effects or band-broadening
effects in a second step as a perturbation, so that a broad-
ening parameter Ee with the dimension of energy is cal-
culated due to the fluctuation of the potential in the tail
region:

r ~R,~(E~, r)
~

AV(r)d r.

Here the sum over q is over the sites other than the one
at the origin, B is the radial wave function, n~L is the
local character, and b, V(r) is the difference of the local
potential compared to the average potential. The pa-
rameter Ac is used in a Gaussian broadening function of
each band. An additional thermal broadening of 5 mRy
is used for all the studied cases. Other aspects of the elec-
tronic structure method are the same as in our LMTO
method for ordered periodic lattices. i5 Self-consistency,
including relativistic core states, are carried out; f states
are included as well as the combined correction term for
the sphere overlap. The Madelung energy is calculated
using a nonoverlaping sphere geometry. 5

The method leads to very simple and rapid calcula-
tions. If the alloy contains N number of constituents
one needs only to perform N LMTO band calcula-
tions, each one as with one atom per unit cell. The
Fermi energy is determined by filling the sum of par-
tial DOS functions with the number of available elec-
trons. This is done at each iteration until convergence.
The scaling properties of the band problem is there-
fore very advantageous compared to the supercell ap-
proach. Instead for LMTO matrices of rank M9 (M
atoms per unit cell) the averaged-band problem consid-
ers matrices of rank 9 solved N times. The present
method has been tested and applied to various al-
loy systems. Calculated DOS functions for Cu& ~Ni
(Ref. 25) and Agi ~Pd~ compare very well with photo-
emission measurements 6 and CPA calculations. ~ In the
studies of the Fe~ ~Cr~ systems we will compare with the
results of the supercell calculations, which are restricted
to x=0, 0.25, 0.50, 0.75, and 1.0. Here the advantage is
that identical procedures have been employed as much
as possible in the two approaches, and total energies and
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TABLE I. Comparison between equilibrium values of lattice constant, bulk moduli, and mag-
netic moment for bcc Fe and Cr calculated using LSD and PW approximation by different methods.
VWN stands for LSD Vosko, Wilk, and Nusair parametrization (Ref. 52), GL and vBH for the Gun-
narsons-Lunqvlst and von Barth —Hedin LSD form (Refs. 16 and 53), and PW for the Perdew-Wang
gradient-corrected LSD functional.

Element

Fe

Method

LMTO (1 atom/cell, l = 3)
LMTO (2 atoms/cell, l = 2)

LAPW
FLAPW b

FLAPW b

LMTO '
FLAPW ~

Expt.

VWN
GL

VWN
VWN
vBH
PW
PW

a(a.u. )

5.25
5.29
5.21
5.21
5.24
5.47
5.44
5.40

B (Mbar)

2.30
2.36
2.66
2.72
2.29
1.70
1.82
1.72

M (p,~)
2.26
2.15
2.08
2.18
2.07
2.30
2.127
2.12

Cr

LMTO (2 atoms/cell, l = 2)
LMTO (2 atoms/cell, l = 2)

LAPW '
LAPW '
APW ~

Expt.

GL
PW

VWN
vBH
vBH

5.36
5.56
5.28
5.27
5.38
5.44

2.51
1.46
2.65
2.86
2.54
1.90

0.00
1.20
0.70
0.67
0.00
0.59

Reference 32.
Reference 54.

'Reference 28.

Reference 55.
'Reference 38.
Reference 39.

other sensitive quantities can be compared. However, in
the interpretation of the results it has to be remembered
that the disorder calculations refer to the limit of extreme
disorder, in which no clusters appear.

III. GROUND-STATE PROPERTIES AND HEAT
OF FORMATION OF Fe-Cr COMPOUNDS

A. Pure Fe and Cr

For pure Fe and Cr several LSD calculations using dif-
ferent methods are avalaible, and we compare our calcu-
lations with previous results obtained by other works in
Table I. We find that different methods, different func-
tional forms of the exchange-correlation potential, differ-
ent numbers of atoms per unit cell, difFerent choices of
basis (if f states are included or not), and the type of
constraint imposed [i.e. , if the fixed-spin-moment (FSM)

technique is used] can give slightly different results. For
iron, LSD predicts a NM fcc ground-state instead of a
FM bcc, and for bcc Cr we find (using the CsC1 struc-
ture with two atoms per cell and without FSM) that at
equilibrium the NM and AF states coexist (see Table II
and Fig. 1). The total-energy difference between the M
and NM phase for these systems is a delicate quantity to
calculate and different methods give different values. For
iron the energy difference between the minima of FM-bcc
and NM-fcc total energies found by many authors2s si s2

varies from 2 to 6 mRyd/atom. In the LSD approxi-
mation the cohesive energy for bcc iron is found to be
E, h = —0.48 Ry and is higher than the experimental
value E«h = —0.32 Ry. For 3d transition metals Bagno,
Jepsen, and Gunnarsson have shown that gradient cor-
rections [in particular the Perdew-Wangs s (PW) ver-
sion] improve the total energies. Subsequent works2s (see
Table I) have shown that the PW potential leads to an

TABLE II. Calculated ground-state properties of FM- and NM-ordered Fe-Cr compounds. AE
are the total-energy differences per atom between the NM and FM minima, and AH are the
enthalpies of formation for FM Fe-Cr compounds.

Composition

Fe2
Fe3Cr
FeCr
FeCr
FeCr3

Cr2

Structure

B2
D03
B2
B32
D03
B2

+NM

(a.u.)
5.18
5.23
5.28
5.27
5.32
5.36

FM
(a.u. )
5.29
5.29
5.30
5.31
5.34
5.36

BNM
(Mbar)

3.00
3.15
2.46
2.88
2.76
2.83

BFM
(Mbar)

2.36
2.33
2.69
2.66
2.57
2.51

AE
(mRy)

22.7
13.4
4.1
7.5
0.7

—0.2

AH
(mRy)

0.0
2.13
11.62
3.4
6.06
0.0
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FIG. 1. Total energy and local magnetic moment as a
function of lattice parameter for bcc Cr. The solid lines are
calculated using LSD approximation, while the dashed lines
are calculated using the Perdew-Wang gradient-corrections to
LSD. The total-energy curves are displaced in energy so that
the AF coincides.

overestimation of the lattice constants and compressibili-
ties in 4d and 5d transition metals (TM's). Moreover, us-
ing the PW potential, even if we obtain the right ground
state for iron, the computed structural energy difference
between the bcc FM and fcc NM phase is of about 14
mRy, and is three times larger than the experimental
results. ~9

In pure Cr difFerent calculations give sometimes quali-
tatively different results, since there is a delicate balance
between NM and AF configurations. We find almost de-
generate AF and NM states, but with the balance slightly
turned to the nonmagnetic state when LSDA is used.
Kublerss found also near degenerate states but with the
AF state lowest. Skrivers7 obtained an AF configura-
tion, but did not compare total energies. Chen, Singh,
and Krakauerss found the AF configuration stable over
the NM configuration with about 4 mRy/atom, while
Moruzzi and Marcusss report a FSM calculation, where
the NM configuration is stable over the AF configura-
tion (which is present only at large volume) with about
4 mRy/atom. Moreover, they indicate that a correct
separation of the NM and AF states, using FSM, can im-

prove the equilibrium properties in Cr. All these results
are based on the assumption of a commensurate AF spin
state, contrary to the real near commensurate spin wave
in Cr.4o The scattered results using different methods and
potentials lead to the conclusion that total-energy differ-
ences smaller than about 1 mRy/atom are too small for
a quantitative description of the physical properties.

As shown in Fig. 1, our calculated total-energy dif-

ference between the AF and NM states (in the two-atom
CsCl-type unit cell) is lower than 1 mRy at various lat-
tice constants. For the AF curve the derived bulk mod-
ulus is about 30% higher than the experimental value,
and we find a cohesive energy of E, h = —0.382 Ry
while the experimental value is E, h = —0.301 Ry. In
Fig. 1 are shown also the calculated total energy and lo-
cal moment on Cr using PW functional for the exhange-
correlation potential. The calculated equilibrium prop-
erties are given in Table I. Analogously to the FM pure
elements (Fe,Co,Ni), gradient correction to LSD stabi-
lizes the magnetic phases of Cr with respect to the NM
pure elements, increasing the local moments on Cr2 and
shifting the lattice minimum to higher values. However,
gradient corrections take away the near degeneracy of
NM and AF states in Invar systems. 4i Here for Cr, the
PW functional fails in predicting the local magnetic mo-
ment that is found to be larger than the experimental
result, and the theoretical lattice constant is also larger
than the experimental one. Similar results have been
found recently for Cr (Ref. 30) using a full-potential
method. These systems seem to be good candidates for
testing new potentials because of the required closeness
of NM and M states.

B. Total energies and Invar systems

For the bcc lattice we have calculated the electronic
structure of the NM and M phases for the ordered
Fe2,Cr2, and FeCr with the B2 and the B32 structure
and FeCrs and FesCr with the DOs structure. The lat-
ter structure has three inequivalent sites, and the lat-
tice is of high symmetry and has a Brillouin zone of a
fcc lattice. For each type of structure the atoms of Fe
and Cr are chosen to have the same muKn-tin radius.
The equilibrium lattice constants and bulk moduli of the
NM and M states and the separation of total energy (in
mRy/atom) of the calculated minima for each ordered
phases are listed in Table II. The total energies of the
NM and M phases are shown in Fig. 2 for the five com-
positions as a function of the lattice parameter. At each
composition the magnetic state is the equilibrium state,
and in good agreement with experiment our calculation
predicts an increase of the lattice parameter as a function
of Cr content. The difference in total energy between
the calculated NM and M phases decreases monotoni-
cally with Cr composition and becomes almost zero in
the Cr-rich region (see Table II). Experimental analysis
of the temperature dependence of the saturation magne-
tization and thermal expansion of Fei ~Cr~ has revealed
anomalies similar to Invar type material in the range of 2:
between 0.75 —0.94.i These experiments show that Invar
anomalies are not only bound to a fixed structure (fcc)
but can be present in other structures with different types
of magnetic order. 4~

Our total-energy results confirm the possible Invar be-
havior of ordered Cr-rich systems, since we find nearly
degenerate M and NM states for FeCr3 and pure Cr. The
differences in equilibrium volumes decrease as 2: goes to
one. This difference is too small to give an Invar effect in
Crq, while for FeCrs the conditions are similar but per-
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haps less evident than in the fcc FesNi system. is Invar
properties that are calculated in the two-state model
vary sensitively with the exact shape of the total-energy
curves of the M and NM states, and this fact makes a
quantitative determination uncertain. However, qualita-
tively the conditions for Envar behavior are clearly iden-
tified. For the bcc structure we find the Invar composi-
tion (at which the total-energy separation is small, but
with a separation of volumes s) around 6.5 e/atom, dif-
ferently from fcc Invars where the Invar anomalies are
observed at around 8.5 e/atom for FM alloys4s and 7.5

e/atoms for AF alloys. 44 4s The iron-rich alloy FesCr is
found to be FM stable with a larger energy separation
between NM and M states AE than in FeCr. For FeCr
we studied the B2 and B32 structure and find that the
equilibrium and magnetic properties of the two phases
difFer quite substantially; the obtained energy difference
between the two structures of the same composition is 8
mRy/atom and 9.4 mRy/atom, for FM and NM phases,
respectively. This suggests an instability of the most or-
dered B2 structure. Moreover, the total energies of NM
B2 FeCr are difficult to stabilize because the Fermi level
is positioned in the middle of a large peak of the density
of states (DOS) (see Fig. 6).

25-
20—
15-
10—

0 Fe2
I

20—

15—

10—

L

/

gP
0 — 0

0

CD 4

CC 2—

0-
CD

16—
CD

12—

FeC
B2

0

FeCr3
5.1 5.2 5.4 5.5

Lattice constant (Ci. U. )

FIG. 2. Calculated total energies vs lattice constant of the
NM (dashed line) and M (solid line) phases for ordered bcc
Fe2, Fe3Cr, FeCr, and FeCr3 compounds. In the bcc lattice
the B2 and the H32 structure type have been considered for
FeCr, while FeCr3 and Fe3Cr retain the D03 type structure.
The solid and dashed lines are Birch equations of state fitted
to the calculated points.

C. Energies of formation and cluster interactions

In Table II are shown the calculated formation energies
for all the studied FM Fe-Cr compounds. The stoichio-
metric compounds are metastable with positive energies
of formation in agreement with experimental findings for
which no ordered structures are found at low tempera-
ture. Ferromagnetism afFects strongly not only the equi-
librium properties of the system but also the calculated
heat of formation stabilizing the magnetic phase in the
Fe-rich part, and shifting to higher total energy the B2
phase with respect to the B32 for the equiatomic compo-
sitions. As described in Sec. II, we compute from Eq. (3)
the volume-dependent many-body interactions potentials
for the NM and FM alloys using a tetrahedron cluster ex-
pansion. Our results indicate poor convergence for the
tetrahedron cluster expansion because the interaction V5,
associated with the irregular triangle, is of the same or-
der of the NN-pair interaction; moreover Vs shows quite
high dispersion, while all the other higher-order cluster
interactions vary slowly as a function of volume. The
pair interactions Vs, V4, and the tetrahedron interac-
tions Vs, are —5.8, 1.2, 0.3 (mRy/atom), respectively. For
the paramagnetic alloys the value of V3, V4, and V6 are,
respectively, —1.3, 1.7, and 0.5 mRy/atom and do not
change with lattice parameter, while V5 vary from 0.8 to
—2 mRy/atom when the lattice changes from 5.29 to 5.36
a.u. These results indicate that for NM Fe-Cr system it
is necessary to go beyond the tetrahedron cluster expan-
sion. Aware of these limitations we present here only a
restricted study.

The enthalpy of the NM and M phases of the ordered
Fe-Cr compounds are shown in Fig. 3. The calculated
energies of formation for the disordered random alloys
are positive. This means that the alloys are most stable
as clusters of pure Fe and Cr. The pure elements have
difFerent lattice constants at equilibrium, which implies
that there should be internal strains within rather large
clusters to relax the local volume within each cluster to
its equilibrium value. Or, if the clusters are small, the
local relaxation is not possible and the lattice constant
is the same everywhere. The enthalpy calculated at the
same averaged lattice constant is only 1—2 mRy higher
than in the former case. However, the energy due to
cluster boundaries should be added. This has not been
calculated and it cannot be concluded if the clusters are
large or small. On the other hand it is noted that the dif-
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is smaller but still of the correct magnitude as our calcu-
lated values of about 5 mRy at 50-50 composition for M
disordered alloys and 10 mRy for NM disordered alloys.
The calculated variation of the lattice constant with com-
position for the disordered NM and FM Fei Cr does
not follow a Vegard rule. The calculated lattice constant
are shifted above the Vegard lattice in the iron rich region
(60—100% Fe) and below it in the Cr-rich region.

IV. MAGNETIC AND ELECTRONIC
PROPERTIES

A. Magnetic moments and hyperfine interactions

0:~

0.00 0.25 0.50

composition of Fe (%)

0.75 1.00

FIG. 3. Enthalpy of formation as a function of iron com-
position for Fe-Cr system at zero temperature. The energy
of formation for a random solution for FM alloys (solid line)
and NM alloys (dashed line) obtained using the tetrahedron
cluster expansion, are compared to the energies of the FM or-
dered compounds (open boxes) and to the NM ( solid boxes)
ordered compounds. We consider as zero-energy reference the
ground-state of pure Fe and Cr.

ference energy between M and NM states for a structure
of clusters, is too large to explain the Invar effect in the
Fep sCrp s concentration range. Therefore, at this con-
centration it can be concluded that large clusters (where
the energies due to boundaries is negligible) are unlikely.
These findings are in fair agreement with experiments,
since a miscibility gap has been found in the FeCr sys-
tem. In reality it seems that the clusters do not consist
of absolutely pure Fe or Cr, but contains some fraction of
the other element. In the temperature range 500—800 K,
corresponding to about 4 mRy, miscibility is found. This

In 3d transition metals and alloys the knowledge of the
magnitude of the local moments and their pressure de-
pendence is important because they are directly related
to the bulk properties of the materials. The Fe mag-
netism in the bcc structure is more stable (i.e. , depends
less on volume and electronic concentration variations)
than in fcc structure. In Fig. 4 are shown the calcu-
lated local moments at different lattice constants and for
different compositions. These calculations show that for
the ordered phases the effects due to volume variations
are less important than the effects due to variations of
coordination number. In agreement with the magnetic
phase diagram we find that bcc Fe~Cri ~ is FM up to
about 75% of Cr. As a function of volume we do not
observe magnetic transition in the ordered system and
no AF ordering is found in bcc Fe~Cri ~ on the Fe site,
while the noncontinuous variations of the Cr moment as
a function of composition is quite remarkable. For Fe3Cr
one Fe atom retains the same value of the moment as in
pure iron, while the other two sites of Fe feel strongly
the presence of the Cr neighbor that aligns a magnetic
moment antiparallel to iron. For x = 0.5 ferromagnetic
order is obtained as a result of a density of state ef-
fect in the B2 structure, while for the B32 structure

2.4- -2.4

Kl

C
8

o 0.8-

g o.o-

9

-t.6

-0.0

FIG. 4. Calculated local
moments on Fe sites (full cir-
cles) and Cr sites (open circles)
as a function of lattice constant
for ordered Fe-Cr compounds .
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Cr looses its moment and for other concentrations AF
order is obtained. The FM ground-state in the B2 struc-
ture is understood from the NM electronic DOS, where
a large peak in the DOS at Ey favors Stoner magnetism
(Fig. 6). In ordered FeCrs compound we find a tendency
to form an antiferromagnetic state. This concerns the
Cr site, which is most distant from the Fe site, while the
Cr adjacent to Fe are polarized FM and develop a larger
moment. The magnetic Gruneisen parameter & of lo-
cal moment of iron for pure Fe, Fe3Cr, FeCr, and FeCr3
are 0.02, 0.04 (0.022), 0.031, and 0.057 (& "~),), respec-
tively. The larger values near Invar compositions reflect
the instability of magnetic moments. Our results show
that nonequivalent Fe and Cr sites in the bcc structure
have difFerent magnetic properties, and short-range order
therefore becomes important. The local moments on Fe
and Cr sites and their s, p, d decomposition are reported
in Table III. For a different environment the partial mo-
ments of s and p symmetry are aligned antiparallel to the
3d local moment.

Table III summarizes the results for the calculated hy-
perflne fields Hhf at the sites of Fe and Cr, while Fig. 5
shows the variation of Hhg versus the lattice parameter
for the di6'erent FM ordered structure. Hi, f is propor-
tional to the electronic spin density at the nucleus. The

main contribution to the core spin-density magnetization
comes from the large negative values of the 2s electrons
and from the positive values of 3s electrons. The values
of Hhf follow in general the trends for the local moments
as is known for pure elements. For pure Fe, the core 8
orbitals are polarized by the localized 3d spin density, to
give a large negative spin density on the nucleus, which
dominates the smaller spin density from the 4s valence.
But the latter states hybridize with neighboring states
and therefore give sensitive variations of Hi,~. The pre-
cise proportionality between local moments and Hhf is
lost, as is seen for FesCr at large volumes. Another ob-
servation is that different sites have quite different Hhp
values, especially Cr sites. This is difficult to reconcile
with the experimental findings [and of CPA (Ref. 47)j,
which show one continuous Hhg value for each element,
varying with concentration. Again one is obliged to con-
clude that real materials consist of quite large domains of
rather pure Fe or Cr composition, so that one Hhg value
dominates the signal from each domain. However, some
FeCr hybridization should exist, since the Hgg variations
cannot be explained only from volume variations of the
Hhf of the pure elements. In other words, the domains
cannot be too large. This picture is consistent with that
deduced from the total-energy results.

TABLE III. Magnetic properties of ordered Fe-Cr compounds. Here p„p,„, and pq are the
partial spin moment, pt, q is total moment (in ps units ) for iron and cromium atom, and Hqr is the
total hyperfine field at the nucleus. The 1s, 28, and 38 orbital core hyperfine fields contributions
(in kG units) are reported too. All the listed data are calculated at the equilibrium lattice constant
except for Cr, where we have chosen a=5.45 a.u.

Fe
(B2)

Fey

Fe3Cr
(D03)

Feq

FeCr
(B2)

FeCr
(B32)

FeCr3
(DO3)

p
d

Total

—0.007
—0.044
2.223
2.186

0.011
—0.015
2.267
2.270

0.002
—0.015
1.721
1.713

0.007
0.004
1.082
1.102

0.006
0.000
1.695
1.709

0.004
0.007
0.950
0.966

~hf
Total core

18
2s
3s

—320.5
—300.8
—21.6
—608.5
329.3

—200.8
—307.8
—22.2
—616.2
330.6

Fe3Cr
(DOs)

—188.
—232.6
—17.1
—471.2
255.7

FeCr
(B2)

—82.9
—145.1
—11.3
—300.5
166.7

FeCr
(B32)

—158.2
—229.4

1713
—463.4
251.3

FeCr3
(DO3)

—91.3
—127.2
—10.1
—263
145.9

(B2)

Cr

S

p
d

Total

—0.019
—0.045
—0.387
—0.443

—0.003
—0.023
0.706
0.684

—0.007
—0.010
0.083
0.072

0.003
—0.022
—0.164
—0.158

—0.001
—0.066
0.427
0.420

0.002
0.000
0.179
0.178

~hf
Total core

18
2s
38

—94.9
52.2
2 9

67.5
—18.2

—105.8
—87.0

343
—148.6

64.9

—59.3
—9.5
—0.6
—21.8
12.9

46.4
21
1.2

31.4
—11.6

—57.8
—53.1

2 03
—89.6
38.8

—7.8
—22.7
—0.9
—35.6
13.8
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FIG. 5. Calculated hyper-
fine fields Hf on Fe sites (full
circles) and Cr site (open cir-
cles) as a function of lattice con-
stant for ordered Fe-Cr com-
pounds .

B. Density of states and speci6c heat

The strong magnetism of certain ferromagnetic mate-
rials has been explained by MalozemofF, Williams, and
Moruzzi4s by the presence of the Fermi level in a mini-
mum of the DOS of either the majority or minority spin.
Similar predictions have been reported from rigid-bandio
theory although this theory is very simplified.

Our band-structure calculations of ordered NM Fe-Cr
systems exhibit a constant number of d electrons on the
Fe and Cr site. This constancy is valid only for the lo-
calized 3d electrons and not for s and p electrons, and
has been reported for several other bcc Fe- and Co-based
compounds. 4s In NM Fe-Cr the Fermi energy lies on the
higher peak of Fe d DOS and on a minor peak or a valley
of the Cr d DOS. There is an exception for B2 FeCr (un-
stable), where the Fermi level is positioned in the middle
of a large peak not only of Fe but also of Cr. Figure 6
shows the partial DOS of Fe and Cr for ordered FeCr
with B2 and B3-2-type structures and for a disordered
bcc NM FeCr alloy. At this composition the shape of
the DOS near the Fermi level is strongly related to local
coordination.

In Fig. 7 are shown the spin-polarized partial DOS
for Fe and Cr atoms for the studied FM ordered Fe-Cr
compounds at their equilibrium lattice. Partial DOS of
the same type of atoms of nonequivalent sites have been
added together in order to visualize better the Fe and Cr
contributions to the DOS. Qualitatively our calculated
local DOS shows an increase of the number of states at
the Fermi level when Cr is added. Not only the lattice but
also the magnetic interactions and the local coordination
influence strongly the shape of the DOS.

It has been observed that electronic specific heat t,i

values are peaked near the Invar concentrations. This is
the case for several fcc (FeNi, etc.) Invars as well as for
bcc FeCr systems, and it is noted that this is not really
an Invar efI'ect, but is rather an eEect associated with
spin-glass behavior. 4~ In the limit of low temperature,

C,i(T) = s kzTN(E~)(1+ A,~+ A, ), where the A's are
enhancements due to electron-phonon coupling and spin
fluctuations, respectively. The DOS at Ez, N(E~), is
not particularly peaked in the Invar region. The lattice
softening that occur due to the Invar efFect is at large T
and rather modest and cannot explain a drastic increase
of A,~. For the enhancement due to spins we can, in anal-

ogy with the calculation of A,~, write A, = N(E~)I2/K
where I is a coupling matrix element and K is a "force
constant" d E/dH~, i.e. , the second derivative of the to-
tal energy with respect to a magnetic field. 4s For para-
magnetic materials K is large, since it costs a large energy
to induce a change in magnetization. In an Invar system,
the M and NM ground states are close in energy and it
is easy to pass from one to another. The denominator
K is small, making A, large, and we can qualitatively
understand the enhancement of C,i as an effect due to
the near degeneracy of M and NM states, as is one of the
conditions for Invar behavior.

V. ELECTRONIC STRUCTURE
IN DISORDERED Feq ~Cr~ SOLID SOLUTION

A. Total energies of paramagnetic random alloys

For comparisons of total energies in the disordered case
we discard those of magnetic calculations. The reason be-
ing that the magnetic moment of Cr is lost due to the as-
sumption of complete disorder. In reality, different local
environments allow for spatial fluctuations of the mag-
netic moments, favoring AF. Energies due to this and
due to domain walls are not controlled in the approxima-
tion of complete disorder. However, we have calculated
the electronic structure and the total energy of para-
magnetic random solution using our self-consistent LES-
LMTO method. For the stoichiometric compositions we
use as starting potential the converged potential of the
ordered supercell calculation. The disordered phases are
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In Table IV are reported the total and t-decomposed
charges (in units of electron) of Fe and Cr for the different
ordered structure and for the respective random solution.
These results indicate that the total and partial charges
are very similar in the ordered and disordered environ-
ment. Therefore, for NM system, the state of order plays
no role for the charge properties and the charges scale
with composition quite linearly. On the other hand, the
band dispersions and Fermi-level properties can change
drastically, and are related more to local coordination
than to composition. The DOS for the B32 structure
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FIG. 6. Site-decomposed densities of states of Fe (solid
line) and of Cr (dashed line) in ordered FeCr with B32 and B2
lattice type, and in disordered bcc FeCr. The lattice constant
is 5.3 (a.u. )
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found to be more stable than the ordered ones except
near the Invar composition. The Madelung ordering en-
ergy for FeCrs and FesCr in the DOs structure ls 7.4 and
8.1 mRy, respectively, while the Madelung ordering en-
ergy for FeCr in the B2 and B32 structure amounts to
14.5 and 2 may, respectively. The small Madelung en-
ergy of B32 reBects its stability over the B2 structure.
In analogy with results obtained using the approximated
CW method and the energy cluster expansion, the heat
of mi~ing for the NM random solution calculated using
our LES-LMTO method is positive. With respect 'to the
NM-ordered structure we found that in the Cr-rich re-
gion the ordered phase is more stable than the disordered
one, and the equilibrium lattice is shifted to higher values
for the disordered phase. At zero temperature, the to-
tal energy variation as a function of lattice parameter is
shown in Fig. 8 for NM Fe2sCr75 and FesoCrw. The dis-
ordered phases are compared with the respective ordered
superstructure (DOs for FeCrs, B2 and B32 for FeCr).
The calculated equilibrium lattice constant, bulk moduli
are, respectively, 5.28,5.34 (a.u. ) and 3.3,2.75 Mbar for
the Fe5oCr5o and Fe~5Cr75 alloys. There is a very lit-
tle shift to larger lattice equilibrium for the disordered
phase; however, the accuracy of the total-energy calcula-
tion is lower than for the ordered supercell. We remind
here that the total-energy calculations for random solid
solution do not take into account the short-range order
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FIG. 7. Spin-polarized density of states in ordered FM
Fe3Cr, FeCr, FeCr3 at their respective equilibrium minima.
Site-decomposed densities of states of Fe are in solid line and
for Cr are in dashed line.
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TABLE IV. Calculated values of total charges Q, (in electrons) and partial charges decom-
posed in s-, p-, d-angular momentum components on Fe and Cr sites for all NM ordered and
disordered Fe-Cr system. The charges are multiplied with the concentration in order to allow for a
direct comparison between ordered and disordered cases.

State Composition Structure Q, Q„Qq
Fe

Q~
Cr

ORD

Cry
FeCr3
FeCr
FeCr
Fe3Cr

Fey

B2
D03
B2
B32
D03
B2

0.17 0.23 1.65 2.06
0.34 0.42 3.30 4.10
0.33 0.43 3.28 4.08
0.49 0.61 4.92 6.07
0.63 0.77 6.52 8.00

0.61 0.79 4.53
0.45 0.57 3.37
0.29 0.36 2.21
0.29 0.36 2.23
0.14 0.17 1.10

6.00
4 44
2.90
2.92
1.43

DIS
Fe25Cr75
Fe5pCr5p

e75Cr25

bcc
bcc
bcc

0.15 0.16 1.69 2.01
0.31 0.35 3.33 4.02
0.47 0.56 4.94 6.02

0.46
0.31
0.15

0.60
0.39
0.18

3.38
2.25
1.13

4.49
2.98
1.48

(Fig. 6) and for the disordered phase are very similar.
The large peak of the DOS of Cr that is found at E~ in
the B2 is shifted to larger energy in the B32 and in the
disordered BCC environment, while the Fe DOS at E~
remains large in the three structures and is important for
the magnetic stability. This indicates that the presence
of the large peak of Cr at E~ in the B2 is really an effect
due to ordering and that changing the number of neigh-
bors or introducing some substitutional disorder affects

strongly the electronic structure of Cr and much less the
band dispersion of Fe. In agreement with these findings
total-energy calculations show also that NM B32 phase
is more stable than B2 and has an energy comparable to
the energy of the disordered phase of FeCr (see Fig. 8).

The spin-resolved partial DOS projected on Fe and
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FIG. 8. (a) Total energies vs lattice constant for the NM
state for ordered (full circles and solid line) FeCrs in the DOs
structure and bcc disordered (open boxes and dashed line)
Fe7sCr2s. (b) Total energies vs lattice constant for the NM
state for ordered FeCr in the B2 (full circle and solid line) and
B32 structure (full boxes and solid line) and bcc disordered
(open boxes and dashed line) FesoCrso.
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FIG. 9. Spin-resolved densities of states for disordered
Fe75Cr25, Fe5pCr5p, and Feq5Cr75 alloys. Site-decomposed
densities of states of Fe are in solid line and for Cr are in
dashed line.



3266 E. G. MORONI AND T. JARI.BORG 47

Cr atoms are presented in Fig. 9 for disordered Fe25Cr75,
FeMCrM and Fe7sCr2s. In agreement with previous CPA
results, our calculations indicate that the Fermi level is
positioned in a valley between the bonding-antibonding
minority spin DOS. This feature has proved to lead to
an almost linear dependence of the average moment as
a function of composition in the iron-rich region because
electrons are added to the majority spin states without
infiuencing the minority spin. A collapse of the mag-
netic moment occurs near the Invar region. Compar-
ing at the same composition the projected DOS for the
disordered alloys (Fig. 9) and for the respective ordered
phases (Fig. 7) we see that near the Fermi energy all
fine structures of the DOS (especially for Cr atoms) are
washed out. For the disordered Fe2sCr75 alloy (in the In-
var region) the large peak of Fe and Cr at the Fermi level
present in the ordered structure is completely washed
out, and this drastic reduction confirms the picture that
the real material (characterized by a huge specific heat)
is not a random solution but shows rather some orderered
phase. Furthemore, the DOS shows that the splitting be-
tween the centers of the majority d bands of Fe and Cr
are smaller than for the minority spin levels, indicating a
localization of the majority electrons, while the minority
states see a much stronger disorder. Similar eKects are
present in Fei ~Vz, in the Fe& ~Co~ system, M as well
as in Invar Fe65Ni35.

VI. CONCLUSION

We have presented a systematic investigations of the
total energy and magnetic properties of Fei Cr or-
dered and disordered alloys in the I SD approximation.
The use of band-structure calculations for ordered and
completely disordered systems, together with cluster ex-
pansion technique, have permitted a general study of M
and NM properties of the Fe-Cr system. The results con-
firm two experimental findings. First, the calculations
show that a high degree of segregation takes place in
the Fe-Cr system, although one cannot directly indicate
which type of clusters or domains are formed. Second,
near the Fe25Cr75 compositions the total energy of M
and NM conFigurations are almost degenerate and favor-
able for Invar properties. A direct comparison between
experience and theory is not always possible because of
the short-range order effects that are not taken into ac-
count in the theory. However, the comparison between
completely disordered and ordered structure have per-
mitted to analyze what properties are most sensitive to
the change of order.
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