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Spin-dynamics study of the classical ferromagnetic XYchain in a random field
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The classical one-dimensional XY model in a symmetry-breaking Gaussian-distributed random mag-
netic field was studied using an ultrafast, vectorized spin-dynamics program on a Cray Y-MP. We calcu-
lated the time and space-displaced spin-spin correlation functions, which was then Fourier-transformed
to get the neutron-scattering law S(q, co). We see a clear change of the different contributions when the
random field is switched on. At low temperatures the random field induces significant increases in the
soliton density.

I. INTRODUCTION

The behavior of (pseudo-)one-dimensional systems has
proven to be rich and varied, and there is extensive litera-
ture detailing studies of different aspects of this behavior.
In particular, there has been great interest in the study of
magnetic chains subject to symmetry-breaking fields for
several reasons. This was due in part because of the
beautiful experimental results' for quasi-one-
dimensional systems and in part due to detailed theoreti-
cal predictions ' obtained by mapping an easy-plane
spin chain onto the sine-Gordon model. Particular em-
phasis was placed on understanding the inelastic
neutron-scattering data which showed spin-wave and
two-spin-wave excitations as well as central peaks which
had soliton and/or two-spin-wave origins. This work
prompted detailed computer-simulation studies of simple
models of soliton-bearing magnetic chains. " ' Ques-
tions have also been raised about the effects of other in-
teractions of linear-chain behavior. ' For example, En-
doh et al. have examined spin Auctuations in a random
chainlike magnetic system and de Groot et al. ' have
looked at the behavior of a magnetic-chain compound
with alternating exchange. Theoretical work by Jose
probed static and dynamic properties of a random ex-
change Heisenberg chain model. We wish to study the
effect of randomness on soliton behavior in magnetic
chains. In order to compare directly with the corre-
sponding properties of a pure system, we simulated the
xy chain in a random magnetic field distributed about
some nonzero value; as the field distribution becomes nar-
row, the model approaches the XY chain in a uniform
field for which we have extensive data. The Hamiltonian
of the XYchain in a random magnetic field is given by

N N&„=—J g (S; S +, +SOS(+, ) —g h;S,"

where the S, are three-dimensional classical vectors of
unit length and J is the exchange-coupling constant. The
exchange anisotropy makes it energetically favorable for

the spins to lie in the xy plane. h; =gp&H; is an external
magnetic field in the x direction; the magnetic field at
each site is frozen and is characterized by a Gaussian dis-
tribution function

1p(h;)= exp
(2m.o )'

(h, —h)2

2' (2)

where h is the average magnetic field and the variance o.

gives the width of the distribution.
In Sec. II of this paper, we briefly describe the simula-

tional method used, and in Sec. III we present the results
of our simulations.

II. METHOD

A standard importance-sampling Monte Carlo tech-
nique was used to generate equilibrium spin
configurations for a given chain length of N=20000 sites
with a periodic boundary. Spin updates were performed
using a two-sublattice decomposition and a vectorized al-
gorithm on a Cray Y-MP8/832. The first 3000 Monte
Carlo steps (MCS)/site were always discarded to ensure
that the system had reached equilibrium, and then ten
spin configurations, each separated by 200 MCS/site,
were chosen as starting configurations for the spin-
dynamics calculation. (The separation by 200 MCS/site
ensured that the configurations were uncorrelated. )

The random field h; was calculated from Gaussian-
distributed random numbers g; with zero mean and unit
variance by the transformation

h; =o.g, +h,
where h is the mean value of the field and o. is the width
of the field distribution. The Gaussian-distributed ran-
dom numbers g; were produced with the Box-Muller
method. This method uses two random numbers x& and
x2 from a uniform distribution in the interval [O, lj to
produce two Gaussian-distributed random numbers g;
and YJ2'
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q, = ( —2 lnx, )
' cos(2m.x z ),

g2=( —21nx& )'~ sin(2vrx2) .
(4)

The random numbers g& and gz are independent and
have unit variance. This method is exact and fast (be-
cause it uses fewer calls to the random-number generator)
as compared with the common method of summing up 12
random numbers. Figure 1 shows a comparison of the
theoretical distribution function p (h;) with the measured
distribution for o =0.10. The figure also shows the
theoretical distribution functions for the different values
of o. we used. Note that, starting with o. =0.15, a sub-
stantial percentage of the lattice sites experiences a mag-
netic field parallel to the negative x axis. We used
different seeds for the random-number generator RANF
for the part of the program which generated the
random-field configuration and for the Monte Carlo part,
so that we could vary the sequence of random numbers in
both parts of the program independently. Data were gen-
erated for two different realizations of the random field
and four different sequences of random numbers for the
Monte Carlo part, so that all results represent averages
over eight different runs. This totals 80 different starting
configurations for the time integration.

The equation of motion for each spin in the xy model
is16

S,. =S, X[J(S,"+, +S,.",)e„+J(Sf+,+Sf, )e +h;e„],

where e„and e are unit vectors in the x and y directions.
The coupled nonlinear equations of motion were integrat-
ed using a vectorized, high-speed fourth-order predictor-
corrector method and a time-integration interval
6=0.01/J. Since the algorithm is not self-starting, the
first few time steps were integrated using a fourth-order
Runge-Kutta method. Each initial configuration was in-
tegrated out to time t,„=100/J.

p(6, )
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FICx. 1. Theoretical probability distribution p(h;) as a func-
tion of h; for different values of o. as indicated and the mean
value h =0.1J. The area under the curves is normalized to uni-
ty. The data points represent a histogram from a realization of
the random field with N=20000 spins and o. =0.10.

From the results of the time integration for each start-
ing configuration, we calculated the time- and space-
dependent spin-spin correlation functions. The correla-
tion functions were averaged over the ten starting
configurations for each run and then used as input for the
last step of the program, which performed a double
Fourier transform to yield the scattering law Sk(q, co). To
reduce cutoff effects, we introduced a Gaussian spatial
and temporal resolution function

exp I
—

—,
' [(r5r ) + ( t5t ) ]] .

The spatial cutoff parameter was set to 5r =0.015, and
the temporal cutoff parameter was chosen 5t=0.02J.
(More details of the algorithm and testing can be found in
Ref. 18.)

The fact that we have to use a resolution function pro-
duces a very close correspondence between our results
and real experimental neutron-scattering data, where the
resolution function of the spectrometer has to be taken
into account.

III. RESULTS

We concentrated our simulations on two different tern-
peratures kz-T=0. 2J and 0.3J. The first temperature en-
sures a sufriciently high density of spin waves, so that
two-spin-wave processes are clearly visible, while the soli-
ton density for the uniform-field model can be neglected.
The second, higher-temperature allows an identification
of a soliton contribution in addition to the two-spin-wave
contributions, but it is still low enough to avoid the
broadening of all structures which occurs at higher tem-
peratures. For higher temperatures the identification of
the different structures becomes more and more difticult.

The first question which we wished to answer was how
the random field inAuences the soliton density. We ex-
pect the number of solitons to increase as a result of the
random field, and because there is no standard operator
whose thermal average gives the soliton density, the only
way to determine the soliton density is to count the soli-
tons. In Fig. 2 we show a plot of the phase of the spins in
the xy plane. A soliton can be identified by a jump of the
phase of +2~, and in this plot four solitons can be
identified. In Fig. 2 single spins cannot be identified, but
in an enlargement the phases of individual spins are visi-
ble, showing that a soliton is a smooth jump in phase.
The difference in phase angle between nearest-neighbor
spins, however, is small compared to 2~. The soliton
density was determined automatically from plots such as
Fig. 2. In Fig. 3 we show how the soliton density in-
creases with increasing width of the random-field distri-
bution. For the lowest temperature, the soliton density
increases by a factor of 10 over the range of distribution
widths which we studied. For the highest temperature
k~ T=0.4J, no increase can be observed, but this is prob-
ably an artifact of our method for measuring the soliton
density. If the fluctuations due to spin waves become too
large, our method of detecting solitons no longer works;
it is then impossible to tell the difference between a large
spin-wave Auctuation and two solitons which are close to
each other. Solitons can only be identified properly if the
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FIG. 4. Neutron-scattering law S,(q, co) as a function of co.

The temperature kz T=0.2J, the mean value of the field

h =0.1J, and the wave vector qa =m/8. The value of o. is as in-

dicated.
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FIG. 2. In plane phase of the spins along the chain.
kz T=O. 3J and o.=0.05J. Four solitons can be seen.

typical fiuctuations due to spin waves are less than about
2n/3.

The neutron-scattering law with polarization along the
chain axis S,(q, co) is expected to show single spin-wave
excitations, and indeed the results of the simulation show
a clear single peak for each q value. Figure 4 shows our
results for S,(q, co) for krT=0. 2J and qa=nl8 as a
function of co. With increasing width o., the peaks
broaden and shift to a slightly lower position, thus indi-
cating a softening of the dispersion relation. In addition,

with increasing width of the random-Aeld distribution,
the peak becomes slightly asymmetric. The same type of
asymmetry has also been observed for the anisotropic
Heisenberg model. (The data for the anisotropic
Heisenberg model suggest that this structure is actually a
separate multi-spin-wave contribution in the left shoulder
of the spin-wave peak whose intensity scales with the, in-
tensity of the spin-wave peak. )

From the positions of the spin-wave peaks in the z and

y polarizations, we determine the dispersion relations,
which are shown in Fig. 5 for k&T=0.2J and 0.4J. A
softening of the dispersion with increasing temperature
can be observed. The thick line is the dispersion for the
sine-Gordon model, and medium line is the result for the
harmonic approximation, which is

co(q) =&(2+h )[2+h —2 cos( qa ) ]

for the xy model. This form of the dispersion relation

1000
(u(q)

2. 0

100

1, 0

10

0.0
n/2

1

0, 0 0. 1 0.2

FIG. 3. Soliton density as a function of the width o. of the
random field. The temperatures from bottom to top are
0.2J/k~, 0.3J/k~, and 0.4J/k~.

FIG. 5. Dispersion relation co(q). The thick line is the result
for the sine-Gordon theory, and the medium line is the result
for the harmonic approximation from Eq. (7). The thin lines are
fits to the data with a parametrized version of Eq. (7). The mag-
netic field is h =0.1Jand the width o.=0.
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FIG. 8. neutron-scattering law S ( co

The temperature k T=O.
„q,co) as a function of co.
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plane), very sharp central peaks develop with increasing
width of the distribution. The polarization along the
chain axis (out of plane) shows the least change with in-
creasing width.
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