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Solitonlike excitations with frequencies in the gap of a linear spectrum are considered for a diatomic
chain with small mass difference. It is shown that these excitations represent themselves as a complicat-
ed combination of solitons of the acoustic and quasioptical branches of the spectrum. The evolution of
these solutions is studied in the phase plane and analytical expressions are obtained. The situation is

general for systems having two interacting fields with the same nonlinearity but with different dispersion
signs.

I. INTRODUCTION

At the present time, one-dimensional anharmonic elas-
tic chains have become a classical object with which to
study nonlinear systems and, in particular, soliton dy-
namics. ' As a rule, nonlinear waves of acoustic type in
such a system are described in the framework of usual or
modified Boussinesq or Korteweg —de Vries equations.
The waves of quasioptical type are described by nonlinear
Klein-Gordon equations with different nonlinear terms.
In recent years interest in the theory of elastic soliton has
shifted to the study of more realistic and complicated
nonlinear elastic systems. The simplest and the most nat-
ural generalization of homogeneous elastic chain is a dia-
tomic nonlinear chain with periodically arranged atoms
of two different masses. The phonon spectrum of this
system consists of two branches (acoustic and optical)
and, in some sense, possesses properties of systems of
both types. There are many examples of real diatomic
systems. One of them is a two-component system of
hydrogen-bonded dimers (a well-known example of
such a system is ice). For these systems it appeared to be
possible to explain by means of a solitonic approach such
properties as energy transport, dielectric polarization,
and protonconductivity. Another interesting application
of the nonlinear dynamics of a diatomic chain may be a
one-dimensional two-component quasiperiodic lattice,
which has a singular continuum spectrum with gaps.
The solution for the diatomic chain may contain some
features of soliton solutions in quasiperiodic systems. (Re-
sults of Ref. 10 on soliton propagation in disordered
media allow one to conclude that they may be also ob-
served in quasiperiodic media. ) From the point of view of
mathematical physics, the interest in soliton dynamics in
a diatomic chain is stimulated by the following fact: It is
well known that the condition of existence of two-
parameter solitons (which will be considered in this pa-

per) for a fixed sign of the nonlinearity is related to the
sign of a linear wave dispersion. In the case of a diatomic
chain, in the gap of the phonon spectrum there exist to-
gether (when the mass difference is small) two branches of
the spectrum with opposite dispersion signs correspond-
ing to interacting acoustic and quasioptical phonons.
Thus, the answer to the question concerning the charac-
ter of such combined two-component solitons is not evi-
dent in this frequency region. In Ref. 11 in the frame-
work of the nonlinear Schrodinger equation, dynaminal
two-parameter solitons of the simplest kind in a one-
dimensional diatomic chain were considered. Below, we
will show that in the frequency region near the phonon
spectrum gap, solitons may have more complicated char-
acter.

II. FORMULATION OF THE PROBLEM
AND DISPERSION RELATION OF LINEAR WAVES

We consider a one-dimensional periodic diatomic chain
with atoms of masses M and m (M )m) and anharmonic
potential of nearest-neighbor interactions. For simplicity
we choose the even interparticle potential

U(u„—u„,)= (u„—u„, ) +—(u„—u„, )

where u„ is the nth-atom displacement from its equilibri-
um position. The corresponding equation of motion for
the nth particle has the form

Qnm„+A(2u„—u„+&—u„&)+C(u„—u„&)" dt2

+C(u„—u„+, ) =0 . (2)

We take the constants A and C to be positive, the latter
sign meaning that we have nonlinearity of a "hard" char-
acter and that all the frequencies of vibrations increase
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with increasing amplitudes.
Let us introduce the following notation for the dis-

placements of atoms of different masses:

u„=U„, m„=m for n =2s,
u„=m„, m„=M for n =2s+1, (3)

+C(u„—w„+&) =0, (4)

LUM + A(2w„—v„,—u„+, )+C(tv„—u„, )
dt2

+C(tu„—v„+, ) =0 .

First of all, let us brieAy analyze the well-known linear
limit of these equations. The dispersion relation of linear
waves of the kind

(v„,w„)=(uo, tuo)cos(kn rot )—
has two branches:

m+M 1+ [m +M +2mM cos(2k)]'
mM mM

(6)

where the plus sign corresponds to the low-frequency
acoustic branch and the minus sign to the optical branch
(see Fig. 1). It is well known that the possible existence
and the character of soliton excitations are determined by
the dispersion relation of the system. Usually, for a fixed
sign of the anharmonic term, the existence of the dynami-
cal envelope soliton is determined by the sign of the
linear wave dispersion D=d co/dk . In particular, for
hard nonlinearity (C )0), the dispersion should be nega-
tive (D &0). In the case of a diatomic chain, D & 0 for the
whole lower acoustic branch and for the upper branch for
small values of the wave number k & ko. The region of co

and k in which solitons can exist for hard nonlinearity is
shown as dashed one in Fig. 1. The most interesting part

kp n/2 k

FIG. 1. Linear wave spectrum (1) acoustic g branch, (2)
quasioptical f branch.

and write the equations of motion for atoms with odd and
even indices,

d Un 3m + A(2u„—w„+,—tv„, )+C(u„—tu„, )
dt

of the spectrum is in the vicinity of the maximum value
of k (at k =m /2 —a., with a « 1) where those two
branches with opposite signs of dispersion are close to
each other. The lower branch has the asymptotic form
cu~, ~=co, —2Air /(m+M) and ends at the point
ru, =t 2A /M. At the vicinity of this point, heavy parti-
cles oscillate with higher amplitudes than those of light
ones [vc/wo =Ma. /(M —m)] and, at a =rr/2, light parti-
cles are at rest (w0=0) and the heavy ones oscillate with
opposite phases. The asymptotic behavior of the upper
branch at k=m. /2 is co~&~=roz+2Air /(M —m), where
c02 =2 A /m & co]. In this case, the heavy particles essen-
tially do not move, while the light atoms vibrate with op-
posite phases. In the limit M=m, the form of Eq. (6)
reduces to co& 2

——2A(1+Ir)/m and the gap in the spec-
trum disappears.

III. CLASSIFICATION OF SOLITON EXCITATIONS
IN NONLINEAR EVOLUTIONAL SYSTEMS

It is well-known that solitonlike excitations in non-
linear systems ' ' may be of the following main types:
topological sohtons (e.g., kinks in the sine-Gordon equa-
tion), one-parameter dynamical solitons (solitons of
Korteweg —de Vries and Boussinesq equations), and
dynaminal two-parameter solitons [appearing, e.g., in the
nonlinear Schrodinger equation (NSE)]. In our case there
are no topological solitons due to the absence of degen-
eracy of the main state and one-parameter solitons are
the limiting case of dynamical two-parameter solitons of
the general type. Their structure depends essentially on
the character of a linear wave dispersion and the type of
nonlinearity. The simplest situation appears in the case
of cubic anharmonicity in the dynamical equation, which
corresponds to the natural interactions of elementary ex-
citations in the system: interaction of the "density-
density" type (in our case, we mean phonon-phonon pair
interaction). It is well known [3,14] that spatially homo-
geneous nonlinear waves are modulationally unstable
when the condition (3 co/Bk )r)co/Ba &0, where ro, k, and
a are the frequency, wave number, and amplitude of the
nonlinear wave, is satisfied. In the case of a hard non-
linearity (r)ru/r)a )0), a homogeneous wave is unstable
for negative dispersion and this instability leads to soliton
creation. When the sign in the criterion is changed,
homogeneous nonlinear waves become stable; however,
the existence of "dark" solitons then becomes possible.
In the first case, we deal with attractive phonons, which
form localized many-phonon bound states. In the second
example, phonons are repulsive and their coherent
motion with an inhomogeneous density is stable. In this
case, dark solitons represent bubbles with lower density
of phonons in the phonon condensate. To illustrate this
we present some results for a one-atomic chain when all
the masses in Eq. (2) are equal. In this case the linear
spectrum has one branch with negative dispersion.

Soliton solutions for small-amplitude excitations can be
easily obtained with the help of an asymptotic ap-
proach, ' according to which we can look for a solution
as a Fourier expansion in the periodic phase of the wave,
and the amplitude is represented as a power series. In
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this approach the amplitude of a soliton or, equivalently,
the difference between parameters of nonlinear and linear
waves (or the deviation of the frequency from a linear
dispersion relation for fixed wave number) can be chosen
as a small parameter of the power expansion.

For a one-atomic chain in the continuum limit (k —+0),
Eq. (2) is reduced in the dimensionless variables
x=y/&12, t=r&m/122, and u =UV'a/36C to the
form (in this notation the lattice constants are set equal to
unity)

2
Uvv v Uvv Uvvvv (7)

In the linear limit, Eq. (7) possesses wave solutions with
the dispersion relation co =co (k) =k k(D—& 0). In or-
der to find soliton solutions [with frequencies co) co(k)
corresponding to the dashed region in Fig. 1], let us
represent them in the form

U(y, r)= g 'f„(y —Vr)cos(nd)+P„(y —Vr)sin(nd),
n=1

where

s=n

s=n

c =co —co (k),
and the primes mean summing over unity. The value c. is
the expansion parameter: E (&co(k). If in addition we ex-
pand the velocity V in a power series in c in the vicinity
of the group velocity for a given k, it is easy to obtain the
soliton solution to an accuracy of any power of c.. The
main approximation gives the standard soliton form

2+2E cos( ky —cor)

k cosh[E(y —Vr)l&~D~~]
(9)

mwff+4Aw+ Aw +16Cw =0 . (10)

If the deviation of the soliton frequency from the upper
edge of the spectrum of linear waves, co =&42/m, is
small, so is the soliton amplitude, and the stationary soli-

It is obvious that, as the value k decreases, the region of
applicability of Eq. (9) and the region of existence of
small-amplitude solitons become narrower.

In a diatomic chain in the long-wave limit when
A, &(2a the soliton has qualitatively the same form as that
in a one-atomic chain but with an average mass. An ap-
proximate solution for it in the framework of nonlinear
Schrodinger equation has been given in Ref. 11.

For k =~, i.e., near the Brillouin-zone edge, it is also
possible to use long-wave approximation for a wave of
opposite-phase vibrations of the nearest-neighbor atoms.
if we introduce opposite-phase displacements
w„=( —1)"u„,then in the continuum limit for a function
w(x), we obtain

ton solutions can be easily determined by use of the fol-
lowing expansion:

/3 C E sin( cot )

cosh I 2E(x —x 0 ) ]
(12)

where xo is arbitrary parameter describing the soliton-
center position. The solution (12) describes localized (in
the length b,x —I /2e) opposite-phase, small-amplitude
nonlinear vibrations. Since Eq. (10) is invariant with
respect to transformations x~(x —Vt)/[1+ V ] and
t~(t+ Vx )/[1+ V ]'~, it is easy to construct a
propagating-soliton solution,

E,sin(cot —kx )
w =&2A/3C, , (13)

sinh[2e, (x —Vt)/[1+ V ]'

where V= —k /co, and E, =(co —co +k )/co . This
solution represents localized, almost-opposite-phase vi-
brations propagating with the group velocity of a linear
wave with the same value of the wave number k.

The expression (13) for small-amplitude solitons
remains valid only for small values of c. With increasing
frequency, the effects of discretization increase. This
rnanifests itself in the appearance of soliton-energy
dependence on its center position (analogous to the
Peierls potential for dislocations). If in Eq. (12) we make
the transformation x —xo~n —xo and calculate the en-
ergy summing over all integer values of n, then in the
main approximation in parameter c,, we obtain

2
du„E—= g + (u„—u„))

2 dt 2
T 2

w(n) +co w (n)
dt

=—
2 X

-=(4A /3C)E[1+(2m. /s)cos(2vrxo)exp( —m /2E)] .

(14)

As usual, the energy is proportional to the small parame-
ter c, but contains an exponentially small term, periodical-
ly changing with the soliton-center position. We should
note that the situation when the center is placed between
two neighboring atoms (xo =

—,') corresponds to the energy
minimum, and the energy has a maximum when the soli-
ton center is situated on the atom.

If the frequency increases further, the soliton becomes
localized in several interatomic distances and long-wave
approximation is no longer valid. Nevertheless, as it was
shown in Ref. 16, dynamical solitons of type (11) (but lo-
calized in several atoms) exist in the region of large fre-
quencies co))~ . In this limit, the value c. is not a small
parameter and a Fourier expansion in harmonics of the
main frequency co is not related to the smallness of some
physical parameter. The amplitude decrease with in-

w(x, t ) = g' sin(neet ) g' E'f„,(Ex ),
n=1 s=n

where the small expansion parameter E = [(co/co )—I]'~ &(1. The main order of this expansion has the
following solution:
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—4(co/co ) a„+(2a„+a„+,+a„,)

X [1+2(a„+,+a„,+a„+a„a„+,
+a„a„,—a„,a„+,)] =0 . (15)

The numerical solution of such a system gives two types
of localized solitonlike states, which differ by the soliton-
center displacement by half the interatomic distance.
The solution in which practically two atoms vibrate with
the same amplitude has the minimum energy, which is in
agreement with the long-wave case. The maximum ener-

gy corresponds to a state with amplitude localization in
one atom. In the limit of large amplitude this solution
was obtained in Ref. 16. For co))co the atoms ampli-
tudes are the following: a„=(cu/co )b„, where ho=—0.53,
b+& =—0.28, 6+2 —10, and b+& —10 . In the solution
of the first type' two central atoms vibrate with ampli-
tude ao &

=—0.47co/co, and the amplitudes of their neigh-
bors are a, =az-——ao/9 «ao. Of course, the smallness
of the amplitude u„«a gives the limit for the soliton fre-
quency growth (co —co ) & co . Nevertheless, high-
frequency, strongly localized excitations are observed in
numerical simulations (see Ref. 18).

Finally, we would like to discuss nonlinear vibrations
near the Brillouin-zone edge (k —=w) with the opposite
sign of nonlinearity —"soft" nonlinearity (C &0). In this
case, Eq. (10) is not localized and vanishes at infinity.
However, there are localized states of different types. If
we use expansion (11) for vibrations with frequency
(co & co ) and introduce the small parameter
s= [1—co /~ ]'~, we can easily obtain the inhomogene-
ous solution, which in the main approximation may be
written as follows:

w =—a&A /3 c~tanh[&2m(x —xo)]sin(cot ) . (16)

Such a solution in the theory of solitons is usually called
a dark soliton. It represents a localized decrease of densi-
ty of opposite-phase phonons, localized in the region
l =—1/K near point xo. A dark soliton can be considered
as a hole in the phonon condensate with a finite density,
~-"/31 C I.

IV. QUALITATIVE ANALYSIS OF SOLITONS
IN DIATOMIC CHAIN NEAR THE GAP

OF PHONON SPECTRUM

To our mind, the most interesting case is the behavior
of solitons in a diatomic chain near the Brillouin-zone
edge in the gap of the phonon spectrum with cu-co, , co2,
where two interacting branches with opposite signs of
dispersion are close to each other. Near the value
k =vr/2, either heavy (lower branch) or light (upper

creasing harmonic number n is determined only by the
numerical value (1/n ) . If we introduce the amplitude of
the opposite-phase atom displacement for the main har-
monic,

u„-=&82 /3C (
—I )"a„sin(cot ),

we obtain for a„ the following system of difference equa-
tions:

branch) atoms vibrate almost with opposite phases and
the long-wave approximation may be used for these
opposite-phase vibrations.

Let us introduce normalized displacements for an arbi-
trary particle

u2, =( —1)'u(2s, t)&4A/3C

w2, +, = (
—1)'w(2s+ 1, t )&4A /3C

(17)

1 BU BW 4+ +u+ —u(u +3w ) —0,
3

1 Bw
co', Bt'

BU +w+ —w(w +3u )=0 .
4 2 2

Bx 3

(18)

Below we consider the simplest case of stationary small-
amplitude solitons. For the small parameter of expansion
it is convenient to choose the value s =(co —co, )/co, . If
the atomic masses are close, i.e., (M —m ) «m, then
co& =co2 and the parameter c. remains small everywhere in-
side and near the gap of linear spectrum. Let us
represent the periodic in time with the frequency co solu-
tions as an expansion in Fourier series

u f f~
W g

sin(tot )+ sin(3cut ), (19)

where f,g-s, fz,g~-E . To the lowest-order s approxi-
mation for the amplitude of the main harmonic, we ob-
tain the system of ordinary differential equations of the
first order,

d ==g(5+(g'+3f')),
dX

dg
dX

=« t (f'+3—g'»—,

(20)

(21)

wh«e &=I —~ /cuf, @=1—co /co& (for co)tu&, we have
5= —s and p=((M —m )/M —ms2/M).

Equations (20) and (21) describe the dynamics of Ham-
iltonian system with one degree of freedom and the fol-
lowing integral of motion:

6=2pf +25g +(f +6f g +g ) . (22)

Its existence allows one to integrate the system exactly.
But first it is useful to use the methods of qualitative
analysis of dynamical systems and consider possible solu-
tions of the system, (20) and (21), in the phase plane (g,f).
Attention should be paid to separatrixes, which corre-
spond to soliton solutions of different kinds. The phase
portrait of the system depends on the signs and on the
values of the parameters 5 and p, which change with in-
creasing co. As co increases, a number of subsequent bi-
furcations in phase plane take place.

(a) For co&a~„both parameters p and 5 are positive
and the only fixed point in the phase plane is the center at

and let us change the discrete argument n by the continu-
um coordinate x, expanding the functions v and w in Tay-
lor series. For wave numbers k=n/2, it appears to be
enough to leave only the first space derivative; Eqs. (4)
and (5) in this case are reduced to the following system of
partial differential equations:
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g =f=0. In this case the separatrixes and, subsequently,
soliton solutions are absent.

(b) At co=co„ the first bifurcation occurs: The center is
split and for the frequency range in co& &co&coz, where
5&0 and p)0, the system possesses a saddle point at
g=f =0 and two centers at points f=0, g=+v'I5I.
The phase portrait for this case is sketched in Fig. 2(a)
and the corresponding functions f(x) and g(x) in Fig.
2(b). Note that in Fig. 2(b) only the solid curve for the
field g(x), i.e., for heavy atoms, has the standard soliton
form. This is reasonable, since for k=+./2 the lower
branch of the spectrum corresponds to opposite-phase vi-
brations of particles with mass M, while the light ones are
stationary. The soliton can be considered as bound vibra-
tions of the lower branch of the spectrum. In this case,
they are accompanied by localized light-atom vibrations,
i.e., a soliton of the lower branch localizes phonons of the
upper branch.

(c) At co=co2, the parameter p changes its sign and the
second bifurcation occurs: the singular point (g =0,
f=0) splits into a center at the point (f=0, g=0) and
two new saddle points (g=0, f=+&I@I). In the fre-
quency region

co2 (cd (ci)+ —+2coic02/[3coi F2)

the phase portrait has the form presented in Fig. 3(a).
Now separatrixes of two types [Sand C in Fig. 3(b)] exist.
The S soliton again is the bound phonon state of the
lower branch but now it is accompanied by vibrations of
light atoms with finite amplitude at infinite density.
Close to the frequency m=cu2, the amplitude of the g field
exceeds the amplitude of the f field and thus the S soliton
can be considered as a soliton of the lower branch. The C
soliton has a different form. For co —co&«co2 —co„ the
amplitude of the f field is essentially larger than that for

f C S

FIG. 3. The phase portrait and field distribution in soliton
for co, &co &co~.

the g field and, in this sense, this is a soliton of the upper
branch. In this latter case, the envelope for light-atom
vibrations [dashed line in Fig. 3(b)] has the form of a
kink. This result is in complete agreement with the
analysis of the dynamics of a one-atomic anharmonic
chain. ' Indeed, in this case, for the upper branch of the
spectrum, the dispersion Bco/Bk is positive, which implies
the existence of dark solitons.

(d) Finally, at frequency co=co~, at which the last bifur-
cation occurs, each of the saddle points
(g =0,f=+&lpl ) splits into the center and two new sad-
dle points. For co) co, the positions of these new saddle
points are still determined by the parameter p and four
additional saddle points are situated at

(23)

FIG. 2. The phase portrait and field distribution in soliton
for co, &co&co2.

The corresponding phase portrait is sketched in Fig. 4(a).
An analysis shows that for co) co~ four different types of
separatrixes, S, C, S, and C, coexist. The separatrixes
of S and C type are continuously derived from ones con-
sidered for the previous case and the lines S* and *Ccor-
respond to new solitons. The main feature of the latter
appears to be the fact that now none of the field vanishes
at infinity. In addition, the principal field difference be-
tween S and C solitons disappears; they differ only quali-
tatively by the amplitude of the field at the soliton center.
Thus, a symmetry between the g and f fields arises: In S
and C solitons, the soliton of the g field is accompanied
by the kink of the f field and, in S* and C* solitons the
soliton for f fields is accompanied by the kink of the g
field.

We should also note that, while all the other distinct
frequencies cu„co2 were characteristics of the linear spec-
trum, the appearance of the frequency co, is essentially a
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principal difference between S and C solitons disappears
and so neither field vanishes at infinity.

V. EXACT SOLITON SOLUTIONS OF EQUATIONS
OF LATTICE VIBRATIONS NEAR THE GAP

OF PHONON SPECTRUM

(a)

The most remarkable property of the system of Eqs.
(20) and (21) for diatomic lattice vibrations is that it is
completely integrable. This allows to obtain the analyti-
cal expression for envelopes of solitons, the forms of
which have been predicted in Sec. IV. Indeed, by making
the transformation g =zf in Eqs. (20) and (21) and taking
into account the value of the integral of motion (22), it is
easy to obtain the equation for the function z(x),

dz =+[(p+5z ) +G(z +6z +1)]'~ (25)

The value G can be found, for example, from the bound-
ary conditions for functions f and g at x =+~. With
that, the function f(x) is calculated to be

(b)

FIG. 4. The phase portrait and field distribution in soliton
for co) co~.

f =
[
—p —5z+[(p+5z )

1

z +6z +1
+G(z +6z +1)]'i ]

(26)
nonlinear effect. As the frequency and the vibration am-
plitude increase, the interaction of g and f fields becomes
increasingly important and the change of their charac-
teristics due to the interaction with one another takes
place. If we rewrite the system, (20) and (21), in the form
of the equations d g/dx =f%(g,f ) for the g field,
then the interaction of g and f fields will lead to the ap-
pearance in the function + the additional term
3f ( I

5
I

—
I p f ), which d—escribes the interaction of the

lower branch of phonons with the upper branch. Taking
into consideration that the characteristic amplitude of
light-atom vibrations f—~ I@I, we obtain, for the g field,
the approximate equation z = ' p/I5lcoth(~pl5lx ), (27)

In the general case, the solutions of Eq. (26) are expressed
in terms of elliptic integrals. However, it is not difficult
to find the function z(x) for some particular values of G,
corresponding to separatrixes in phase portraits of the
system [see Figs. 2(a), 3(a), and 4(a)]. Localized soliton
solutions corresponding to these values are expressed in
terms of elementary functions.

(a) For co, &co&cui, the phase portrait is sketched in
Fig. 2(a). The envelopes of the fields f(x) and g(x) tend
to zero at x =+~, which gives us the following expres-
sion for the function z(x):

d g =2I@I( I5I —
3I pl )g+(315I+7ls I

)g' —3g ' . (24) while functions f(x) and g(x) can be written in the fol-
lowing form:

When the amplitude of the f field (which is related to the
upper branch of the spectrum) increases the edge of lower
zone is displaced and this becomes more sufficient at
m =co* than the nonlinear growth of the frequency of the

g field soliton.
Finally, we should note that when the sign of non-

linearity is changed (C~ —C) the sequence of bifurca-
tions becomes in some sense inverse. For cu )m2, soliton
solutions are absent. In the gap co, & co & co2, envelope sol-
itons of opposite-phase vibrations of light atoms, i.e.,
bound phonon states of the upper branch of vibrations
are present. For co & co &, the soliton still represents a
bound state of phonons of the upper branch but it is ac-
companied by opposite-phase vibrations of heavy atoms
(lower-branch phonons) not vanishing at infinity. As in

the previous case, at co=co**=&2coico2/[3co2 —coi]2 2 1/2

the last bifurcation occurs after which (for co &co„) the

2( l5lz' —p)
z +6z +1 (28)

z ——+ 2
sinh(yx )

1
[Ipl+I5lz +fzl(a z +p )' ],

z +6z +1
f2—

(29)

(30)

where

~'=151'—I@I', 0'=2IPI(15I —3lp, l), y=P/a . (31)

These forms are presented in Fig. 2(b). The maximum
value of the g field is v'2 5I.

(b) F«co~ &co&co„, the f soliton does not vanish at
infinity. The boundary conditions g=0, f =+V'lp,

l

lxl=+~ give the value of the integral of motion
G = —

I pl'. The integration of Eq. (25) gives
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Taking different signs for the functions z(x) and f(x),
one can obtain the solutions, corresponding to S and C
separatrixes, and those symmetric to them
( —g(x), f(x—)). In the limit case x —++ oo (z~0), the f
field tends to the value +&I@I,while the g field vanishes.
It is not difficult also to find the maximum value of the
function g(x):

g' ..= I~ I+a

ments themselves but not their spatial derivatives, then
for relative displacements %'= w —

U and displacements of
the centers of mass of the elementary cell
@= (Mw +mu ) /(M+ m), we obtain the following simple
system of equations:

2M 8 'Il+43% + A +4C% '
M +I (jt2 X

(c) For co & co„neither solution has zero boundary con-
ditions. The integral of motion for these solutions has
the value

+(M —m) =0,
at2

(
)8@ M —m 84 ~8@

M+m ()~2

(37)

(38)

G =-,'( I51'+ i@I'—6 &
I lp I

) (32)

a= —(3I5 —Ip ), P=, y=a/P . (35)
3I& —

Ipl
'

The four types of the solutions (separatrixes C, C*, S,
and S*) differ by different forms of the function z(x) as
well as by different signs in the expression for f . The
solutions C and S correspond to the first value of z(x),
with that for x ~0, f(x)~0, and

g'=g', „=I5I+a=g'( —~ ) .

The second value of z(x) corresponds to C* and S" soli-
tons. In this case, at x ~0, g(x)~0, and

f'=f', „=pl+ap'&f'(

It is necessary to note that the solutions f(x ) and g (x)
with opposite signs in fact describe the same atom dis-
placements in the chain, since atoms with sites n and
n +2 vibrate with opposite phases.

VI. OPTICAL HIGH-FREQUENCY SOLITONS

Finally, we study one more case allowing long-wave
approximation: nonlinear vibrations with frequencies
near the upper edge of the spectrum co-=co . In a one-
atomic chain, in this region envelope solitons of the form
(12) or dark solitons of the form (16) exist, depending on
the nonlinearity sign. In a diatomic chain we start with a
system of difference equations (4) and (5), making the fol-
lowing expansions:

BU 1 BU
U =v(x)+ „+— +n+1 ox 2 2

Bw 1 82w
w„+, =w(x) + — + .

Bx 2

(36)

If we limit our calculations by the second spatial deriva-
tives and nonlinear terms, containing only the displace-

Having integrated the equation for the function z(x) we
obtain the solution in the following form,

P coth(yx ),' '= Pt. h(y ), (33)

f'=, , ( I p I+ lnlz'+a Iz' —P'I ),1

z +6z +1
where

'II =&8 A /3 C E sin(cot )

cosh(ex(M+m )/&Mm )
(40)

The difference in atoms masses manifest themselves in the
magnitude of the localization region of a soliton. For
equal soliton amplitudes in one-atomic and diatomic
chains, the ratio of their localization lengths is equal to

I/10=&M/m (2 —&M/m ) .

As M increases this ratio at first grows and then vanishes
at M —+~.

In the case of soft nonlinearity (C (0), the form for
dark solitons (16) changes as follows:

+=&4~ /3I Cl E sin(cot )tanh
M m

2Mm
(42)

where the small parameter c. is defined as
2/ 2 ]1/2

The moving solutions with small k and, consequently,
small velocities can be easily obtained from expressions
(40) and (42) with the help of the transformations
x ~(x —Vt )/[1+ V ]' and t ~(t+ Vx )/[1+ V ]'

VII. CONCLUSIONS

The main result of this paper is the consideration of all
kinds of solitonic excitation with frequencies in the re-
gion of the gap in the spectrum of linear waves for a dia-

Since at co —=m the ratio of amplitude vibrations is
U/w —= —M/m, then the inequality N ((qi (at co=co
we have 4=0) is satisfied and the last term in Eq. (38)
can be neglected in comparison with the second. As a re-
sult, v e come to the following equation for the relative
displacements:

2Mm 8 %' + 4AMm B %' +4+ ++4C+ 0 (39)M+m Bt (M+m ) Bx

This equation coincides with Eq. (10) at M=m and may
be reduced to the equation for optical-mode vibrations
obtained in Ref. 11 by means of a special ansatz.

To solve Eq. (39), we use the asymptotic expansions
(ll) and obtain the solutions analogous to (12) and (16).
In the case of a hard nonlinearity (C & 0), the solution for
high-frequency envelope solitons in the main approxima-
tion in the small parameter E= [cir /coM1]'~ has the form
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tomic chain. For small mass difference, this gap separat-
ing the acoustic and quasioptical spectral regions be-
comes narrow and phonons of different branches strongly
interact with one another. The fact that the gap region is
narrow allowed us to obtain, in the long-wave approxi-
mation, rather simple equations for chain dynamics,
which are valid in the region of frequencies close to the
gap. These equations were studied qualitatively and for
them the approximate soliton solutions were obtained
analytically. If the frequency of localized exitations
changes, their structure undergoes a sequence of bifurca-
tions. As the frequency increases, envelope solitons
formed by phonons of the lower branch appear at the
edge of the lower zone boundary. If the lower edge of the
upper branch is reached, this soliton is transformed to a
more complicated structure: a combination of an ordi-
nary soliton of the lower branch and a dark soliton of the
upper branch of the spectrum. When we further increase
the frequency, the next bifurcation occurs and the com-
bined soliton from solitons with nonvanishing boundary

conditions of one branch and dark solitons of another
branch is formed. This situation is general for physical
systems described by two nonlinear interacting fields,
which are characterized by the same nonlinearity but
with different dispersion signs. The results obtained may
be generalized to the case of more complicated nonlinear
elastic systems. In particular, if an elementary cell con-
tains more than two atoms with two different masses,
then the number of quasioptical branches and the gaps in
the spectrum increase. However, near every gap the for-
malism of this paper can be applied and the combined
solitons of phonons of neighboring branches can be con-
structed. The general structure of the soliton solution
will be the same. If we take rather large number of first
steps of Fibonacci sequence as an elementary cell, then
the complicated one-dimensional chain obtained can be
considered as an approximate model of quasicrystals. In
this approach, the soliton solution obtained here de-
scribes approximately solitons of quasicrystals with fre-
quencies near the main gaps of their phonon spectrum.
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