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The nonspherical nature of the donor wave function is taken into account for the derivation of
electron-phonon rates in Li-O-doped Si. It is also found that the nonzero dilatational part of the aniso-
tropic (longitudinal) phonon-electron scattering cross section is capable of explaining the thermal con-
ductivity beyond its maximum, both for Si and Ge doped with shallow donors.

I. INTRODUCTION

Recently we have developed a theory' for the use of an-
isotropic form factor in the phonon-electron relaxation
rate, 7,. ;h, in semiconductors with shallow donors and
showed that it can improve the theoretical explanation of
the low-temperature phonon-transport data’? in some
cases, e.8., As-doped Ge. This improvement was a conse-
quence of the increase in the cutoff frequency for 7. gh.
The theory revealed that the contribution due to the dila-
tation part of the deformation potential matrix to 7. ph is
not zero. Calculations for its explicit effect on phonon
conductivity, however, were not performed. There was
still some overestimation in the phonon conductivity re-
sults beyond 7=6 K and various possibilities, which
could be responsible for this, were discussed qualitatively.

In an attempt to explore the cause for this discrepancy,
we first extend our theory to higher temperatures and al-
most unexpectedly achieve a satisfactory explanation of
phonon transport in As-doped Ge from 7 =30 to 100 K.
In order to observe the effect of anisotropy elsewhere, we
have picked up the case of the Li-O donor in Si for which
the chemical shift 4A=7.7 meV, corresponding to the
resonance frequency w,=1.17X10!* Hz. This value is
higher than the cutoff frequency (=3. 67>< 10?2 Hz)
defined by ga*=1 in the isotropic model; a*, equal to
17.16 A in Si with shallow donors, is the effective Bohr
radius. Anisotropy of the form factor, as mentioned ear-
lier, increases the cutoff frequency and so our theory
might show some effects in this case also. Even though
the anisotropy of the donor wave function in this case is
not as large as in the case of n-type Ge; still, due to the
nonavailability of experimental data of « for a system
with larger anisotropy, we are left with no other choice.
In Sec. II, we derive the expressions for 7, r}h for n-type
Si. In Sec. III, the theory is applied to Li-O-doped Si as
well as As-doped Ge and the results are discussed with an
emphasis towards the role of E; on phonon conductivity
at higher temperatures. Possible reasons for the remain-
ing discrepancy around the conductivity peak have also
been pointed out.

II. THEORY

Phonon-electron relaxation rates: All expressions of
To. r:h for As-doped Ge can be found in Ref. 1 and there-
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fore only the case of Li-O donors in Si will be presented
here. Li-O donors in Si’, as any other group-V donors,
have T, site symmetry. The sixfold donor ground state,
due to valley-orbit interaction, split up into 1s( A4,) sing-
let and 1s(E +T,) fivefold degenerate states. The corre-
sponding wave function is written as*

6
Y, (r)= 3 alFi(r)®i(r) . (1)
i=1

The values of a/ and the hydrogenlike envelope function
F/(r) can be found in Ref. 4. ®/(r) is the Bloch function
in the jth minimum of the conduction band. According
to Cheung and Barrie,’ the electron-phonon matrix ele-
ment is found to be
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Here all terms have the same meaning as Ref. 1. 6] ,(g)
is_the anisotropic form factor. The values of the dyad
(k%) for different j in Si are given in Table I. The
values of a and b can be calculated by the method given
in Ref. 6. Also some relations between the deformation
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TABLE L. Values of £/'%" for different jinsilicon.

1 0 O
(]/c\ll)j(\(l))z(ie(Z)l?(Z))z 0 0 0
0O 0 O
0O 0 O
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0O 0 1
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potential matrices A ,{m(q,k), which would be useful for
the calculations of 7, ;h, have been derived to be as fol-
lows:

A4,(q,A)= Ad(q,A)

 ( 1
00 q’ ‘/5

(@A) + Ady(qA)+ 12 Al (M),
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Adopting the same procedure as given in Refs. 1 and
7-9, we obtain the following expressions for the phonon-
electron relaxation rates corresponding to various pro-
cesses.

(i) Elastic scattering off the singlet 1s( 4, ) state:
Now?
Tl(el,0)=—=12
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(ii) Elastic scattering off the 1s(E + T, ) state:
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(iii) Inelastic scattering from the 1s(E + T,) states to the 1s( 4,) state:
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(iv) Thermally assisted phonon absorption from the 1s( 4,
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In all the above equations N, and N, are the density of
electrons in the 1s(A4,) and 1s(E +T,) states, respec-
tively, where

No=fo(T)N,, N,=fo(T)exp(—4A/kpT)N,, ,
fo(T)=[1+5exp(—4A/kzT)] " .
Combining Egs. (4)-(7), we get

Toan=Taa' (el,0)+ 750 (el,5)+7; (inel) +75,1(ab) . (8)

In expression (7), a singularity occurs at resonance,
where fiw,; =4A. A level width could be added with
(fiwg, —4A) in the denominator to remove this singulari-
ty. Kowk® has, however, used the more sophisticated
Green’s-function technique to provide the following ex-
pression of 7_;'(ab):

Noow fiw
Tq]‘(resonance)z > qu 1—exp |— ot |
PUX kBT
5
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(9)

Therefore, to avoid singularity near resonance we

should replace Eq. (7) by (9). In Egs. (4), (5), and (9), T

and I, are the level width of the 1s(4,) and 1s(E +T,)

states, respectively. Following Kowk® we can write
(neglecting splitting of the fivefold degenerate state)
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and the total level width I' is
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III. RESULTS AND DISCUSSION

Table II provides all the parameters used for the calcu-
lations of phonon conductivity given by'°

k=x;(02)+ 3 {K,(01)+k,(12)}, (11)
t=tlt2
where
" kBT]3
K)\nm 67T2ng( nm ) %
/T (A, x)x%eX( 2 11a)
X R *e*—1)"°d 1
fen/TTc x)x*e*(e )" %dx (11a
and
o M =rg )
+ry M)+l M) . (11b)

All expressions for various relaxation rates and their pa-
rameters, phonon velocities, limits of integrals, etc., can
be found in Refs. 1 and 10. For Ge, 7,. [}h(k) are reported
in Ref. 1 while for Si, they are given in the theory section
of this paper. The values of a and b are calculated from
Eq. (6) of Ref. 1 for which the required values of m;, m,,
and the ionization energies are available in Refs. 1 and
11.

Figures 1 and 2 show the comparison between the best
fit obtained from our theory with that of the isotropic
model.”!! In the case of As-doped Ge, the required
values of E; = —4.0 and —9.0 eV for the two samples are
not far from the values reported earlier.'>!* During the
calculations it was observed that the choice of E; was
very difficult and even a little experimental error in the

TABLE II. Values of the parameters used in the calculation of phonon conductivity.

Sample N,, in cm™3 L. in cm 4A in MeV e, in eV E,; in eV
Ge-1 2.1X10' 0.276 4.10 17.25 —4.0
Ge-2 1.1x10" 0.241 3.90 17.3 —9.0
Si-1 2.5x 10 0.22 7.7 10.20 +5.0
Si-2 7.5X%10' 0.23 7.7 9.23 +5.0
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FIG. 1. Phonon conductivity obtained by the present calcula-
tions, the Suzuki and Mikoshiba (SM) (Ref. 7) theory and the
experiment for As-doped Ge (a) Ge-1, (b) Ge-2. The solid line
shows the present calculation; the dashed line is for the SM
theory with E, =15.13 and 14.70 eV for samples Ge-1 and Ge-
2, respectively, with a *=36.69 A.
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FIG. 2. Phonon conductivity obtained by the present calcula-
tions, the Fortier and Suzuki (FS) (Ref. 11) theory, and the ex-
periment for Li-O-doped Si (a) Si-1, (b) Si-2. The solid line
shows the present calculation; the dashed line is for the FS
theory with E, =10.36 and 9.47 eV for samples Si-1 and Si-2, re-
spectively, with a *=17.16 A.
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FIG. 3. Phonon-conductivity fitting obtained using the Hol-
land model (Ref. 10) with the experimental value for Si contain-
ing oxygen ~5X10'7 cm®.
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phonon conductivity data caused a considerable amount
of variation in its value. Therefore, considering the possi-
ble errors involved in the experimental data of the pho-
non conductivity and donor concentration, we can say
that (Fig. 1) the present theory works remarkably well in
case of As-doped Ge, particularly in between temperature
limits 30-100 K and 2-5 K.

Experimental data for phonon conductivity of Li-O
donors in Si has been provided by Fortier et al.'?> This
case is much more complicated than As-doped Ge be-
cause oxygen centers having concentration =~5X 10! ¢cm3
act as point defects to introduce extra phonon scattering.
According to our estimate, the phonon-point defect pa-
rameter, by fitting the phonon conductivity data of the
sample Si-I (Fig. 3) which contains oxygen but no Li, is
found to be = 8.0X 10~ sec?. Using this parameter, the
phonon conductivity of samples doped with Li-O was ad-
justed. Figure 2 shows that the best fits are obtained for
E;=+5 eV, while most of the works!>16 report its value
to be =—5 eV. It is interesting that in their theory,
Cheung and Barrie® also had to take its value +11 eV in
an attempt to explain the shift in the donor energy levels
with temperature. The exact choice of the parameters E;
and E, in this case cannot be taken too seriously as pho-
non scattering by boundary is also very effective up to
T~10 K. In fact, Figs. 4 and 5 show that 7, ), and 7,
become effective only after o~ 10'> Hz. Consequently, a
little variation in 75! or an introduction of any other
scattering process, effective for phonons with frequency
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FIG. 4. Relaxation rates of the incoming longitudinal phonon as a function of angular frequency  in Ge-1 at 7=20 K with
E,=17.7eV. (a) The solid line is for E; = —5 eV and the dashed line is for E; = —8 eV. For elastic process; — --— is for boundary
scattering; — -— is for the point defect scattering, (b) absorption process.
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FIG. 5. Relaxation rates of the incoming longitudinal pho-
non as a function of angular frequency o in Si-1 at T=15 K.

and —-— represent 7~ !(el) from the present calculations
with E;=5 and —6 eV, respectively, and E, =11eV. —--—is
from the SM theory 7~ '(el) with E,=11 eV. — — — is for
point defect, — ---— is for the boundary scattering.

<10'2 Hz (e.g., phonon scattering due to the hopping
process”), will immediately affect the parameters. The
positive value of E; would, however, still be required for
the final adjustment.

It is to be noted from Figs. 1 and 2 that the anisotropy
of the form factor allows a larger thermal resistance at
higher temperatures not only via an increase in the cutoff

frequency, but also through the effect of the dilatation de-
formation potential on the phonon-electron interaction.
Figures 4 and 5 make it clear that the dilatational part of
the deformation potential, which can scatter longitudinal
phonons only, plays a role which is much more important
than anticipated by earlier works”®%!> as well as in our
previous paper.!

Figures 1 and 2 reveal that the discrepancy between
theory and experiment still exists around the phonon
conductivity maxima in both Ge and Si samples. A pos-
sible explanation through the added phonon point defect
scattering due to doping or the frequency-dependent de-
formation potentials, as suggested in our previous paper,’
is now discluded as it would largely disturb the fitting at
higher temperatures. The variation of 4A with N, (see
Table II) as observed through Raman scattering'® in As-
doped Ge also could not improve the theoretical results
much. Similarly, an assumed splitting of even 0.3 meV
of the triplet due to internal stress in As-doped Ge did
not work. A larger splitting, in the presence of internal
stress, seems to be improbable. Moreover, this conjec-
ture!®2° is neither in line with the experimental studies of
impurity states in unstressed As-doped Ge (Ref. 21) or
Li-O-doped Si (Ref. 3) nor does it get support from the
observations of phonon conductivity vs stress data.??
Further, the phonon resonances?>2* by localized impurity
states usually occur at higher frequencies. The answer to
this discrepancy may probably come from any of the fol-
lowing possibilities.

(i) The larger anisotropy of the donor wave function
due to the strain field caused by the mismatch of impuri-
ty.

(ii) The interference effect between two types of phonon
scatterings, e.g., the mass defect and electron phonon in
this case, also needs careful investigation. Kumar and
Ansari®®> have shown considerable effects of interference
in between phonon scattering by dislocations and mass
defect in plastically deformed LiF.

(iii) The existence of donor pairs,?® due to some unin-
tentional compensation, may give a weak but extra peak
in 7, plh vs w at a somewhat lower frequency in Figs. 4 and
5. This may also very well account for the above-
mentioned discrepancy in the present work.
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