
PHYSICAL REVIEW B VOLUME 47, NUMBER 6 1 FEBRUARY 1993-II

Dilatation part of the phonon-electron interaction and phonon conductivity
of lightly doped silicon and germanium
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The nonspherical nature of the donor wave function is taken into account for the derivation of
electron-phonon rates in Li-0-doped Si. It is also found that the nonzero dilatational part of the aniso-
tropic (longitudinal) phonon-electron scattering cross section is capable of explaining the thermal con-
ductivity beyond its maximum, both for Si and Ge doped with shallow donors.

I. INTRODUCTION

Recently we have developed a theory' for the use of an-
isotropic form factor in the phonon-electron relaxation
rate, 7 ph in semiconductors with shallow donors and
showed that it can improve the theoretical explanation of
the low-temperature phonon-transport data in some
cases, e.g. , As-doped Ge. This improvement was a conse-
quence of the increase in the cutoff frequency for T ph.
The theory revealed that the contribution due to the dila-
tation part of the deformation potential matrix to ~ ph is
not zero. Calculations for its explicit efFect on phonon
conductivity, however, were not performed. There was
still some overestimation in the phonon conductivity re-
sults beyond T=6 K and various possibilities, which
could be responsible for this, were discussed qualitatively.

In an attempt to explore the cause for this discrepancy,
we first extend our theory to higher temperatures and al-
most unexpectedly achieve a satisfactory explanation of
phonon transport in As-doped Ge from T =30 to 100 K.
In order to observe the effect of anisotropy elsewhere, we
have picked up the case of the Li-O donor in Si for which
the chemical shift 46=7.7 meV, corresponding to the
resonance frequency cu„=1.17X10' Hz. This value is
higher than the cutoff frequency ( =3.67 X 10' Hz)
defined by qa*=1 in the isotropic model; a*, equal to
17.16 A in Si with shallow donors, is the effective Bohr
radius. Anisotropy of the form factor, as mentioned ear-
lier, increases the cutoff frequency and so our theory
might show some effects in this case also. Even though
the anisotropy of the donor wave function in this case is
not as large as in the case of n-type Ge; still, due to the
nonavailability of experimental data of K for a system
with larger anisotropy, we are left with no other choice.
In Sec. II, we derive the expressions for ~, 'h for n-type
Si. In Sec. III, the theory is applied to Li-0-doped Si as
well as As-doped Ge and the results are discussed with an
emphasis towards the role of Ed on phonon conductivity
at higher temperatures. Possible reasons for the remain-
ing discrepancy around the conductivity peak have also
been pointed out.
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Here all terms have the same meaning as Ref. 1. 9~„„(q)
is the anisotropic form factor. The values of the dyad
(lt'J'k'~') for different j in Si are given in Table I. The
values of a and b can be calculated by the method given
in Ref. 6. Also some relations between the deformation

~(j)~(j)TABLE I. Values of k k for di6'erent j in silicon.
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fore only the case of Li-0 donors in Si will be presented
here. Li-0 donors in Si, as any other group-V donors,
have Td site symmetry. The sixfold donor ground state,
due to valley-orbit interaction, split up into ls( A, ) sing-
let and ls(E+ T~) fivefold degenerate states. The corre-
sponding wave function is written as

6

V, (r)= g aIF'(r)@'(r) .
j=1

The values of a~ and the hydrogenlike envelope function
FJ(r) can be found in Ref. 4. C&J(r) is the Bloch function
in the jth minimum of the conduction band. According
to Cheung and Barrie, the electron-phonon matrix ele-
ment is found to be

II. THEORY

Phonon-electron relaxation rates: All expressions of
7 ph for As-doped Ge can be found in Ref. 1 and there-
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potential matrices A~ „(q,A, ), which would be useful for
the calculations of v ph have been derived to be as fol-
lows:

1
A»(q, A, )= Boo(q, A, ) — —Ao, (q, A, ),

2

A 22(q, A )+ 3 ~(q, k)+ g oi (q, g),
2

AJ33(q A)=AJOO(q A)+ —A~oi(q A) V3/2AJ02(q A, )
1
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A~~~(q A, )= ALOD(q X)+ —A~oi(q A)+&3/2AJ02(q A)
1

2

A J25(q, A, ) =0,

2~3~(q, k) =0,

2~3~(q, A, )=0,

A J~~(q, i, ) =0 .

Adopting the same procedure as given in Refs. 1 and
7—9, we obtain the following expressions for the phonon-
electron relaxation rates corresponding to various pro-
cesses.

(i) Elastic scattering off the singlet ls( A, ) state:
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(ii) Elastic scattering off the Is(E + T2) state:
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(iii) Inelastic scattering from the Is (E+ T2) states to the Is( A, ) state:
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(iv) Thermally assisted phonon absorption from the Is ( 3 i ) to Is (E + T2 ) states:
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+ ((M)~ )') {—'((M$'~')') +—', ((M(2"')') j
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In all the above equations No and N, are the density of
electrons in the ls( A, ) and ls(E+ T2) states, respec-
tively, where

No =fo( T)N,„, N& =fo( T)exp( 4b, /k—z T)N,„,
fo( T)= [ 1+5 exp( —4b, /k~ T) ]

Combining Eqs. (4)—(7), we get

7 &h 'r&g (e1,0)+rq~'(e1, 5)+rq~'(inel)+rq~'(ab)

and the total level width I is
3

I=r,+r = 1

4~p
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exp(46/k~ T ) 1—
(10c)

In expression (7), a singularity occurs at resonance,
where Ace~&=46. A level width could be added with
(Ace &

—4h) in the denominator to remove this singulari-
ty. Kowk has, however, used the more sophisticated
Green's-function technique to provide the following ex-
pression of r z'(ab):

III. RESULTS AND DISCUSSION

Table II provides all the parameters used for the calcu-
lations of phonon conductivity given by'
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Therefore, to avoid singularity near resonance we
should replace Eq. (7) by (9). In Eqs. (4), (5), and (9), I o
and I are the level width of the Is(A&) and ls(E+Tz)
states, respectively. Following Kowk we can write
(neglecting splitting of the fivefold degenerate state)

3
4A

r, '(A, )=r~'+r, '+r, ph(A, )

+r~'(A, )+rU'(A, ) . (1 lb)

All expressions for various relaxation rates and their pa-
rameters, phonon velocities, limits of integrals, etc. , can
be found in Refs. 1 and 10. For Ge, r, ~h(A, ) are reported
in Ref. 1 while for Si, they are given in the theory section
of this paper. The values of a and b are calculated from
Eq. (6) of Ref. 1 for which the required values of m&, m„
and the ionization energies are available in Refs. 1 and
11.

Figures 1 and 2 show the comparison between the best
fit obtained from our theory with that of the isotropic
model. '" In the case of As-doped Ge, the required
values of Ed = —4.0 and —9.0 eV for the two samples are
not far from the values reported earlier. ' ' During the
calculations it was observed that the choice of Ed was
very dificult and even a little experimental error in the

TABLE II. Values of the parameters used in the calculation of phonon conductivity.

Sample

Ge-1
Ge-2
Si-1
Si-2

N, in cm

2. 1X 10'
1.1X10'
2.5X 10'
7.5X 10'

L, incm

0.276
0.241
0.22
0.23

4b in MeV

4.10
3.90
7.7
7.7

e„ in eV

17.25
17.3
10.20
9.23

Ed in eV

—4.0
—9.0
+5.0
+5.0
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FIG. 1. Phonon conductivity obtained by the present calcula-
tions, the Suzuki and Mikoshiba (SM) (Ref. 7) theory and the
experiment for As-doped Ge (a) Ge-1, (b) Ge-2. The solid line
shows the present calculation; the dashed line is for the SM
theory with E„=15.13 and 14.70 eV for samples Ge-1 and Ge-
2, respectively, with a *=36.69 A.

FIG. 2. Phonon conductivity obtained by the present calcula-
tions, the Fortier and Suzuki (FS) (Ref. 11) theory, and the ex-
periment for Li-0-doped Si (a) Si-1, (b) Si-2. The solid line
shows the present calculation; the dashed line is for the FS
theory with E„=10.36 and 9.47 eV for samples Si-1 and Si-2, re-
spectively, with a *= 17.16 A.
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FIG. 3. Phononon-conductivity fitting obtained usin h H
del (Ref. 10) with the experimental value for Si contain-

ing oxygen =5X10' cm'.
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