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The subject of space curves finds many applicatons in physics such as optical fibers, magnetic spin
chains, and vortex filaments in a fluid. We show that the time evolution of a space curve is associated
with a geometric phase. Using the concept of Fermi-Walker parallel transport, we show that this phase
arises because of the path dependence of the rotation of the natural Frenet-Serret triad as one moves
along the curve. We employ Lamb's formalism for space-curve dynamics to derive an expression for the
anholonomy density and the geometric phase for a general time evolution. This anholonomy manifests
itself as a gauge potential with a monopolelike structure in the space of the tangent vector to the space
curve. Our classical approach is amenable to a quantum generalization, which can prove useful in appli-
cations. We study the application of our constructive formalism to ferromagnetic and antiferromagnetic
(classical) spin chains by first presenting certain classes of exact, physically interesting solutions to these
nonlinear dynamical systems and then computing the corresponding geometric phases.

I. INTRODUCTION

Berry' has shown that when a quantum system in an
eigenstate is evolved by adiabatically varying the parame-
ters in its Hamiltonian around a circuit, it acquires a
geometrical phase factor (or anholonomy ) in addition to
the familiar dynamical one. Subsequently, Aharanov and
Anandan have generalized this concept by removing the
assumption of adiabaticity and further defining the
geometric phase as one associated with a closed circuit in
the projective Hilbert space corresponding to the evolu-
tion of any normalized state, not necessarily the eigen-
state. Thus, the underlying parameter space plays no
fundamental role in their discussion, although it can be
regarded as a special case when the closed circuit arises
from adiabatic evolution of parameters. More recently, a
further generalization to noncyclic evolution in the pro-
jective Hilbert space has been given by Samuel and Bhan-
dari who show that the natural way to obtain the phase
corresponding to an open circuit in this space is to
"close" the evolution with a geodesic.

The phenomenon of a geometric phase can arise in a
purely classical context, without appealing to quantum-
mechanical concepts. Using a single-mode twisted opti-
cal fiber, Tomita and Chiao have shown at a classical
level that the measured angle of rotation of the linearly
polarized light in the fiber is a measure of Berry's phase.
Kugler and Shtrikman have observed that the geometric
features of this effect can be discussed by considering the
optical fiber to be a (static) space curve. The experimen-
tal observation can be understood in terms of the parallel

transport (along the fiber) of the unit tangent vector
characterizing the curve. Geometrical properties of the
space curve and its spherical images have been discussed
by Dandoloff and Zakrzewski.

The subject of space curves finds other applications in
physics such as the description of a vortex filament in a
Quid, ' spin configurations in a magnetic chain, " etc. It
is therefore of interest to study the geometric phase asso-
ciated with moving space curves. A brief account of this
space-curve formalism has been recently published by

S.12

In Sec. II, we use space-curve evolution and parallel
transport to obtain an expression for the associated anho-
lonomy density. In Sec. III, using Lamb' s' formalism we
derive an expression for the geometric phase. This ap-
proach is constructive and applies to a general evolution.
Cyclic and adiabatic evolutions in the space of the
tangent vector of the space curve can be studied as spe-
cial cases. The possibility of a quantum analog of the
classical result obtained is discussed. In Sec. IV, we
derive an expression for the gauge potential and show
that it displays a monopolelike character in the tangent
vector space. In Sec. V, nonlinear spin-wave solutions
and soliton solutions for a ferromagnetic chain are
presented and the corresponding anholonomy densities
and geometric phases are determined. In Sec. VI, we
derive a class of moving domain-wall solutions for the
low-energy configurations of an isotropic antiferromag-
netic chain and compute the corresponding geometric
phase. Instanton solutions are also derived and the phase
is shown to be 4mn, where n is an integer. A brief sum-
mary is given in Sec. VII.
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II. SPACE CURVES, PARALLEL TRANSPORT,
AND ANHOLONOMY

A space curve is described either by its parameter
equations or by its natural equations: i~ =x(s) and
r=r(s), where a, r, and s are the curvature, the torsion,
and the length (treated as the natural parameter) of the
space curve. Let us consider a curve y which, in its para-
metric form, is described by r=r(s) and denote by t the
unit tangent vector to this curve and by n and b its prin-
cipal normal and binormal, respectively. Then t, n, and b
form a moving triad of the curve. They are related by the
Frenet-Serret equations:

t, =~n,

n, = —~t+~b,

b, = —nx,

(2.1)

where the subscript s denotes d /ds and a' and r are given
by a-'=t, t, and r=t (t, Xt„)/a'. If we introduce the
Darboux vector g=rt+ab, the Frenet-Serret equations
can be rewritten as follows:

t ~ (t„x t„„)
rp(u) =

Ko

where the subscript u denotes d/du, and ap and
represent, respectively, the curvature and the torsion of a
new space curve with u as its natural parameter. Analo-
gous to the case of a "spatial" curve as we move from uo
to u, along the "temporal" space curve, a phase

Q)„'rp(u)du develops between the natural frame and
0

the corresponding nonrotating frame, where ~0 is to be
determined by deriving the corresponding Darboux vec-
tor g'p=rpt+Bn+ Cb. The relation between rp and ~ will
be derived in the next section.

Let us now consider the space-time evolution of the
tangent to the moving space curve from the point
a =(s, u) to the point d (s +b,s, u +b,u) using paths (a)
and (b) as shown in Fig. 1. Path (a) goes first along the
"spatial" curve from a to b and then along the "tem-
poral" space curve from b to d. Path (b) goes first along
the "temporal" curve a —+c and then along the "spatial"
curve c~d. The rotation angle @ is given in the two
cases by

t, =gxt,
n, =gxn,
b, =fxb.

(2.2)

4, =r(s, u)b +st(s+bs, u)bu,

p:7rp($ u)ku +7($ u +Su)6$

The phase difference 6N =N, —+z is

(2.4)

Thus, g' plays the role of an angular velocity of the
Frenet-Serret triad and has components along the
tangent vector t and the binormal vector b. Let us con-
sider the plane perpendicular to the tangent t, which
moves along the curve y with a constant unit velocity.
The vectors n and b span this plane. The natural frame
(n and b) rotates around t with an angular velocity r($).
As s increases from so to s& the system develops a

S)
phase ' 4, = f, '

r( s) dsbetween n, b, and the corre-
0

sponding nonrotating frame in this plane. Such a nonro-
tating frame may be defined by using the usual Fermi-
Walker parallel transport along the curve y (2.2):

'07
O

Bs
bshu+O(h )

=j(s,u)bsbu+O(h ), (2.5)

(a)

I

I

I

L
c=(s,u+b, u) d=(s+h, s, u+h, u)

where j(s, u)=(Brp/Bs —Br/t)u ) can be thought of as a
measure of "anholonomy density" of the system. Thus,

DA'
c&

= I~ A "(t "n ' t 'n ")=
I ~b X A—)

' . (2.3) n

Such a phase N, appears in the process of propagating
light along a twisted waveguide and also in the case of an
isolated spin in a constant magnetic field B, where the
spin vector plays the role of a tangent t to a space curve
(2.3). The question arises what would happen if the space
curve has one more degree of freedom, as, for example, if
the twist in the waveguide is time dependent, or if the iso-
lated spin is replaced by a linear chain of interacting
spins. This is our main motivation for studying the
Fermi-Walker parallel transport for a moving space
curve.

As time evolves ~ and ~, and thus t, n, b, are, in gen-
eral, functions of both s and time u, i.e., 1~=1~(s,u),
r =r(s, u ). For a fixed s we have

(b)

a=(s, u)

n

n

n

b=(s+h, s,u)

I

I

I

I

I

I

I

L

n

and

~p'(u) =t„ t„ FIG. 1. (a) The route a ~b ~d: the phase is
=~{s,u)As+~0{s+bs, u+hu)hu. {b)The route a~c~d: the
phase is Pz=ro(s, u)bu+r(s, u+ttu)bs.
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the total "anholonomy" or the "phase" N as the system
evolves in space from, e.g., s = —sp to $ =+sp and in
time from u = U& to u = Uz, is

+sp U24= f ds f du j(s,u) (2.6a)
0 1

U2 S =+Spf ra(s, u )du
1

0

+Sp u =U2f r(s, u )ds (2.6b)
0

In order to find N we require ~p and by consequence t„,
n„, and b„. These are determined using a procedure sug-
gested by Lamb, which we now discuss.

curve may be written as

t„=gn+hb . (3.7)

y = —(g +ih)exp i f (r c0)d—s' (3.8a)

n„+ib„=—(g + ih)t

+i R —f r„ds' (n+ib) . (3.8b)

Equating real and imaginary parts of the above equation,
we get

Using Eqs. (3.7), (3.5), and (3.2), we obtain the following
expressions:

The Frenet-Serret equations (2.1) combine to give

(n+ib), +ir(n+ib) = —~t . (3.1)

III. LAMB FORMALISM AND GEOMETRIC PHASE b„=

n„=

R —t wads' n —ht,

f r„ds' —R b —gt .

(3.9a)

(3.9b)

Following Lamb, we introduce the quantities

N=(n+ib)exp i f ds'(r —ca)

and

S

q =~ exp i ds'(r —c0)

(3.2a)

(3.2b)

Equations (3.9) together with Eq. (3.7) represent the
Frenet-Serret-like equations for the temporal curve.
Writing the Darboux vector in the general form
$0= rat+ Bn+ Cb and requiring that t„=g'0 X t, etc.,
Eqs. (3.7)—(3.9) lead to

r-, = f' r„ds —R (3.10a)

and (3.3)

where r(s, u)~ca=const for ~s~ —+~. These definitions
lead to N, = —icDN —qt and t, =

—,'(q*N+qN'). It is
more convenient to describe the temporal evolution of
the curve in terms of t, N, and N' instead of t, n, and b.
N, N, and t satisfy the following conditions:

N. t=N*.t=N N=O

B = —h, and c =g:

~,'=t„ t„=(g'+ h'),
r, =t ~ (t„xt„„)/~',

= f ds'r„—R (gh„—g„h)/(g +h )

gh„—g„h=z()+
g +h

(3.10b)

N N*=2 .

N„=aN+PN*+ yt,
t„=A,N+ pN*+ vt .

(3.4)

Multiplying these equations by N and t and using Eq.
(3.3) gives a+a*=0, P=v=O, and y= —2p. Further,
the compatibility condition t,„=t„, gives A, =p*
= ( —y*/2). Thus, Eq. (3.4) may be rewritten as

The derivatives of N and t with respect to u may be writ-
ten in general as

Thus, the anholonomy density obtained in Eq. (2.5) can
be directly computed from Eq. (3.10) as

T

J (s, u)=
'0 TQ

Bs

a~ aR
Bu Bs

(3.11a)

(BR/c)s) can be calculated from Eq. (3.6) by u~.ng the
definition for q given in Eq. (3.2) and the expression for y
obtained in Eq. (3.8a). We obtain

R, =~h .
Hence,

j(s, u)= —~h . (3.11b)

N„=iR N+yt,
t„=—

—,'(y*N+yN*),
(3.5a)

(3.5b)

where R (s, u) is a real function. Using N,„=N„, and
t,„=t„,yields

Thus, if the space curve evolves such that h =0 [see Eq.
(3.7)], then j (s, u) =0. Further, since t, =~n and
t„=gn+hb, we get (t, Xt„)=baht.

The total phase N can therefore be written in one of
the following forms:

q„+y, +i(cay —Rq) =0
with

(3.6a)

R, =i(yq' —y*q)/2 . (3.6b)

Since t t„=0, a general temporal evolution of the space

U~~= —f du
U,
U~f du-

Ui
U2f du—

UI

f 'dsR,
0

f '
ds~h

0

f dst ~ (t, xt„) .

(3.12a)

(3.12b)

(3.12c)
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g, =K„+h~, (3.13)

Using Eqs. (2.1), (3.7), and (3.9) we can show that the
compatibility condition t,„=t„, leads to the following
coupled equations for g and h:

the following expression for the phase difference 5N in
terms of the gauge potential:

at, at;5@=f A dt= A, (s, u) bs+ A, (s+bs, u) hu
as au

S

h, =~ (r„—R )ds' —gz . (3.14) at,—3;(s+hs, u +Au ) bs
a

0 a 24= —J ds J N* N„du .
2 —s0 as

(3.15)

Replacing the complex unit vector N/&2 by a quantum
state N(u)), we see that i i U'(N BX/Bu )du plays the

1

role, in our approach, of a local Berry phase at the point
s. Equation (3.15) shows that in applications such as in-
teracting many-body systems, the geometric phase is not
the sum of the above local Berry phases, but rather the
sum of their "ditferences" (i.e., gradients).

Now let us consider a space curve such that its torsion
does not depend on time: a~/au =0. Then

asap

M = asSu=( —aZ/as)asSu .
as

Thus,

U2
C — vp s, u du

1
S =S

0

U2

vp s, u du
1

S = S0

Hence this particular time evolution is a subclass of the
general case discussed earlier [Eq. (2.6b)].

IV. GAUGE POTENTIAL

In this section we determine the corresponding gauge
potential related to the phase N. Consider the following
construction. We transport, by Euclidean parallel trans-
port, all the tangent vectors to our "spatial" and "tem-
poral" curves to the center of a unit sphere. The tips of
the tangent vectors trace out the spherical images of
these space curves on the unit sphere. Now, consider a
small plaquette abed on the surface of the unit sphere,
where point a corresponds to point (s, u) of Fig. 1, b to
(s+bs, u), c to (s, u +hu), and d to (s+bs, u+Au).
We note that the vector dt is tangent to the spherical im-
ages of the space curves: t is a unit vector along the ra-
dius of the unit sphere t = 1, t.d t =0. We now consider

The expressions for N given in Eqs. (3.12) are valid for a
general evolution. The special case of cyclic evolution in
t space corresponds to boundary conditions on t(s, u)
such that t(s, u) attains the same value to on the unit
sphere at the two space-time end points. Furthermore, if
the end points correspond to space-time infinity, Eq.
(3.12c) shows that the first term can be written as 4vrn,
where n is the Pontryagin index. This suggests its topo-
logical significance and will be illustrated using an exam-
ple in Sec. VI.

The expression for N given by Eq. (3.12a) shows that it
is possible to interpret the first term as the classical ana-
log of the quantum geometric phase introduced by Berry.
Using Eq. (3.3) in Eq. (3.5a) gives R =( i /2—)N* N„.
Hence,

at,—A;(s, u +hu ) b,u,
a

(4.1)

where A= A(t) is the vector potential and j is the
closed integral over the plaquette abed. After developing
3; in power series of As and Au and keeping only terms
up to second order in As and Au we obtain the following
expression for 6N:

M = II) A dt

a at
as au

at
au as

b,sou . (4.2a)

A short calculation shows that

M =(V, x A) ~ (t, xt„)As', u . (4.2b)

constructed by Shankar [Eq. (2.3) and following discus-
sion of Ref. 14] in the context of the (1+1)d antiferro-
magnetic chain. A comparison of Eqs. (4.2a) and (2.5)
leads to A t„=~0 and A t, =~. Using Eqs. (2.1) and
(3.7) in these relations gives

1 g7A= —n+ . —w()—
K h

(4.3)

In the next two sections we show that the continuum
versions of the classical one-dimensional isotropic
Heisenberg ferromagnet and antiferromagnet provide ex-
amples of interacting spin systems in which the formal-
ism of space curves can be applied to determine the
geometric phase associated with these systems.

V. THE FERROMAGNETIC CHAIN

Consider a one-dimensional magnetic system described
by the Heisenberg exchange Hamiltonian

H= —J gS„S„+,,

where S„denotes the classical spin vector at the nth lat-
tice site, and (S„) =S =const for all n. J represents the

If V, X A=t, we recover our previous expression Eq.
(3.12c) for the phase &b. This identifies A(t) as the vector
potential of a unit monopole at the center of the unit
sphere. In Sec. VI, we will show that the continuum ver-
sion of a Heisenberg antiferromagnetic chain can be dis-
cussed within the framework of the moving space-curve
formalism. Note that our constructive formalism pro-
vides a justification for the Berry phase expression

r

—(s~u ) ds du
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nearest-neighbor exchange interaction. J )0 corre-
sponds to the ferromagnetic chain. It is well known'
that the time evolution of S„(t)obtained from Eq. (5.1) is
given by J(s, u)= KIC~ (5.7)

Let us compute the anholonomy density for this sys-
tem. Using Eq. (5.5) in Eq. (3.11b) we get

dS„ =J[S„X(S„+,+S„,)] .
dt

(5.2)
Hence, knowing a solution of the nonlinear equation
(5.3), we can determine the anholonomy density corre-
sponding to it. As explained in Sec. III, the phase is

This is studied in the continuum approximation by as-
suming a slow variation of the spin vectors along the
chain, i.e.,

PF= f f t.(t, Xt„)ds du =—f f (x ),ds du .
1

(5.8)

arid

S„(t)~S(x,t)

S„+,(t)~S(x, t)+a BS/Bx+ —a
1 EBS
2 Qx

where a is the nearest-neighbor separation. Equation
(5.2) becomes

=Ja (SXS„).
at

(5.3)

t„=tXt„, (5.4)

where t can be identified with the tangent to a space
curve (with natural parameter s) evolving in time. For
the general evolution t„=gn+hb there is a dependence
of g and h on x and r [see Eqs. (3.13) and (3.14)]. Fur-
ther, since t satisfies the partial differential equation (5.4),
we will see that this implies coupled differential equations
for K and ~.

Using Frenet-Serret equations (3.1) in Eq. (5.4), we get

t„=tX (Kn, +x,n) =( —Krn+K, b) .

Defining the unit vector t=S/S and the dimensionless
variables u =JSt and s = (x /a), we get

+e,cosao . (5.9)

Here ao is a constant and (e,e, e, ) denotes the Cartesian
coordinate system. Further, to=p cosao. (Note that for
+0~0, we have co —p corresponding to the usual
"linear" spin waves in a ferromagnetic chain). For all ao,
we can verify that

~ (s, u ) = (Bt/Bs ) =p sin ao =const . (5.10)

Hence (z ), =0, and from Eq. (5.8) the anholonomy
density j(s,u) =0. Thus, the phase PF also vanishes.

(ii) Soliton solutions. It is well known that Eq. (5.3)
represents a completely integrable equation with strict
soliton solutions. Writing

t(s, u ) = ( sin8 cosy, sin 8 sing, cos8),

these solutions correspond to '

(5.11)

As illustrative examples, let us consider two classes of
solutions, viz. , nonlinear spin waves and solitons in a fer-
rornagnetic chain.

(i) Nonlinear spin waves. Equation (5.4) supports' the
following periodic solutions:

t(s, u) =
I e„cos(ps —cpu )+csin(ps —cou I sinao

Thus,
cos8 = [1—2( 1 —a )sech (s —uu ) /I ], (5.12)

g= K7
where a, v, I are dimensionless velocity parameters. o. is
related to the soliton velocity v:

and

h=K, .

Using Eq. (5.5) in Eq. (3.8a) gives

(5.5) a=u/(4')', 0~a ~ 1,
and I is the soliton width:

I —
I (1 2)I

—1/2

(5.13)

(5.14)
Sy= i(Ir, +ilier—)exp i (r co)ds' = —iq, —

co is an angular frequency parameter and y is given by

and from Eq. (3.6b) we get

R = KK, Ck'= —,
'

q

g=q2O+ci)u +
2 v(s vu $0)

+tan tanh[s —uu —so]/I2
vt

(5.15)

where q =~exp[i I' wads'] [see Eq. (2.6b)]. Substitut-
ing these expressions for y and R in Eq. (3.6) shows that
the ferromagnetic chain can be mapped' to the following
nonlinear Schrodinger equation' for q, for co =0:

iq„+q„+—,'(q('q =0 . (5.6)

This is well known to be a completely integrable' equa-
tion. It is clear that this equation leads to coupled
differential equations for K and v. referred to earlier.

Further, (By/Bs ) = u /( 1+cosO).
A short calculation yields

K —(Bi/Bs )

2 2 '

ae
Bs Bs

=(4/I )sech (s —uu —so)/I (5.16)

Using Eq. (5.16) in Eq. (5.8) shows that the effective
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anholonomy density is nonvanishing for a soliton solu-
tion:

(a. ), =(8/I )sech [(s —uu —so)/I ]

Using Eqs. (6.3) and (6.4) in Eqs. (6.1) and (6.2) we get

BS,(x)/Bt =2J IS,(x) XS,(x —a)+aS, (x) X aS, /ax }

(6.5)
Xtanh[(s —uu —so)/I ] . (5.17)

and
From Eq. (5.8) for L /—a & s & L/a and U, & u & U2, we
obtain the geometric phase as

L
P~ = (2/I u ) tanh ——u U2

+tanh —+uU
CX

2

L—tanh ——uU
a

BS,(x —a)IBt =2J IS,(x —t2) X S,(x)
—us, (x —a) XaS. /ax I .

(Explicit time dependence is omitted to avoid cumber-
some notation. ) Adding Eqs. (6.5) and (6.6) yields

a
[S,(x)+S,(x —a)]=2Ja [S,(x)XS,(x —a)] .

a
at ax

(6.7)

Subtracting Eq. (6.6) from Eq. (6.5)

—tanh —+ u U
L
a

(5.18) a [S,(x)—S,(x —a) ]=4J[S,(x) X S,(x —a) ]

where U; =JSt, , i =1,2. Hence the phase depends on the
soliton parameters, i.e., its width and velocity as well as
the magnitude S of the spin.

For L ~ ~ and T„T2 finite, this phase vanishes.
However, for L ~~, T, ~0, T2L/auJS~ ~ (u

finite), we get
We de6ne

as,
+2Ja S,(x) X

as.
XS,

ax
(6.8)

p, =(—4/r„) . (5.19)

Comparing PF with the expression for y in Eq. (5.15), we
observe that PF= —

—,'tan(hp/2), where hy is the phase
shift ' associated with y as one moves across a region of
width I about the center of the solitary wave.

and

(S,—S, )=2S+1—e g

(S, +S, )=2SEg,

(6.9)

VI. THE ANTIFERROMAGNETIC CHAIN

To study the antiferromagnetic chain described by
H = —JQ„S„.S„+&,J &0, we proceed as follows. Since
the neighboring spin vectors on the chains will have a
tendency to be antiparallel to each other due to energetic
considerations, it is convenient to study the problem by
dividing the lattice sites on the chain into "odd" and
"even" sublattices, so that subsequently the continuum
approximation can be used within a given sublattice.

The equations of motion of the spin vectors S; o and
S. . . on "odd" and "even" sites (as the subscripts
denote) are found by using Eq. (5.2):

and

Qg/Bt =2JaS+1—e (g X g)
a
X

(6.10)

Bg/Bt =4JSe(n X g)+2JaS gX
e Bg

1 —E ax

—2JaS't/1 Eri X—2 an
ax

(6.1 1)

where g and g are unit vectors, ri g =0, and e'

=
—,'[1+(S, S, /S )]. Substituting Eq. (6.9) in Eqs. (6.7)

and (6.8) yields

dS;0 =JS;OX(S, +, , +S;, , ),
dS, =JS ] X(S o+S 20)

(6.1)

(6.2)

It is clear that the low-energy configurations would corre-
spond to ~S, —S, ~=2S and ~S, +S,~=O in Eq. (6.11),
corresponding to e &&1. In this case, the dynamics is
dominated by

Since the continuum approximation is justified for neigh-
boring spin vectors in the same sublattice, we have

a~ =2JaS Xgax
(6.12)

and

S, +, , +S. . .~2S, (x —a)+2a BS, /Bx

(S, o+S, 20)~2S, (x)—2aBS, /Bx .

(6 3)

(6.4)

It is interesting to contrast this with the dynamical equa-
tion for the ferromagnetic chain given in Eq. (5.3).

Defining dimensionless variables u =JSt and
s =(x/2a) and identifying g with the tangent to a space
curve, we get
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From Eq. (3.1), since t, =Kn, Eq. (6.13) yields

(6.13) P~„=——f f [(t„) +(t, ) )ds du .1 (6.23)

t„=—~b .

Comparison with t„=gn+hb gives

g=0
and (6.14)

h= —~.
Hence, y for this problem can be found from Eq. (3.8a) as

Sy= iKex—p i (r c, )d—s' = iq —. (6.15)

Also,

R = f Kh ds'= —f K'ds'= —f ~q 'ds . (6.16)

iq„+q, —
q f '

~q~'ds'=0 . (6.17)

This is the analog of the nonlinear Schrodinger equation
[Eq. (5.6)] obtained for the ferromagnetic chain.

Next we compute the anholonomy density j(s, u).
Since g =0 and h = —K, Eq. (3.11b) yields

Using these expressions for y and R in Eq. (3.6), we see
that the antiferromagnetic chain can be mapped on to the
following nonlinear evolution equation for the complex
function q:

ae/au = —(aq /as )sln8,

By/Bu =(sin6) 'BO/Bs .

(6.24)

(6.25)

One of the compatibility conditions, viz. , 0,„=0„„gives
(6.26)

(i) Twist solutions. Consider the following simplest
solution to Eq. (6.26):

Lp(s u)=(kps+copu )

A brief calculation yields

(6.27a)

It is interesting to note that the nonlinear equation
(6.12) cannot support a pure traveling wave-type solution
t=t(z), where z =s —vu, since it leads to —vt, =t X t,
which have no nontrivial solutions. Thus, the nonlinear
spin-wave type of solutions discussed for the ferromagnet
are not possible. Spin waves require that we allow fluc-
tuations in g also [see Eq. (6.10)]. Furthermore, it is not
possible to have purely static solutions with t„=0 or
purely dynamic solutions with t, =0. We will study two
classes of solutions of (6.12), the twist solutions and the
instantons, and the geometric phase corresponding to
them.

Since t(s, u) is a unit vector, we consider a solution as
in Eq. (5.11). Substituting this in Eq. (6.13) leads to

J (s, u ) =K (s, u) (6.18) cos0(s, u)= —tanh(cops —kpu ) . (6.27b)

Note the interchanged roles of coo and ko in y and 0.
Again, it is clear that it is impossible, in general, to have
purely static or purely time-dependent solutions of (6.24)
and (6.25). Substituting Eqs. (6.27a) and (6.27b) in Eq.
(5.11), we getp~, = f f t (t, x t„)ds du

s, u dsdu . (6.19)
t(s, u) =sech(cops —kpu ) [e,cos(kps+lvpu )

Thus, knowing a solution of the nonlinear equation of
motion (6.13), the anholonomy density corresponding to
it can be calculated. The geometric phase is

Before proceeding to find the solutions, let us notice cer-
tain general properties of Eq. (6.13) which are not
satisfied by its analog Eq. (5.4) for the ferromagnetic
chain.

Since t t„=t t, =0, Eq. (6.13) also implies
Thus,

+e sin( kps +pipu ) I

—e, tanh(cops —kpu ) . (6.28)

t, = —(t„xt) .

Combining Eqs. (6.13) and (6.20), we may write

(6.20)

t(s, u)~(0, 0, +1) for s~+ ~ .

Bt /Bx =E„E &
t Bt~/Bx

(x„,x )=(s,u) .
(6.21)

t (t„xt,)=,' [(t„)'+(t,)'I . (6.22)

Hence

These equations were studied by Belavin and Polyakov
in the case of the time-independent, two-dimensional, iso-
topic ferromagnet, where in contrast to our case, s and u

were spatial indices.
Equations (6.13) and (6.20) lead to

This represents a domain-wall configuration, with a type
of spin wave existing essentially within the wall thickness.
At a given instant of time as s increases from —~, the
spin vector (S,—S, /2) pointing along e, starts precess-
ing around the z axis with the precession angle increas-
ing, until at s ~+ ~ it points along —e, . In other
words, if one transports the spin vectors at all the (paired)
lattice sites at a given instant of time to the center of a
unit sphere, then one may imagine the tip of the spin vec-
tor lying at the north pole at s ~—~ to execute a spiral
motion on the surface of the sphere (the axis of the spiral
being the polar axis) in such a way that the tip reaches
the south pole at s ~+ ~. From Eq. (6.28), we find the
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curvature 1~(s, u ):

a (s, u)=(Bt/Bs) =(co +k )sech (coos —k u) .

The geometric phase is found from Eq. (6.19) to be

(6.29)

2
PAp= —(too+ko) ds I du sech (to~ —kou),—I./ra

(6.30)
where U;=JST, , i =1,2. Hence

(coo+ko)
Ap

—— ln
COok 0

cosh( cooL /2a —k 0 U2 )cosh( cooL /2a +k 0 U
&

)

cosh(cooL /2a +ko U2 )cosh(tooL /2a —ko U, )
(6.31)

In the limit I.~ ~, with ( T&
—Tz ) finite, we get

QAp =2(coo+ ko )( U, —Uz )/coo . (6.32)

%'e can easily verify that the Cauchy-Reimann conditions

m, /as =+aM, /au

M (s, u ) =cot —,
' 8(s, u )expig(s, u )

=M, (s, u)+iM2(s, u) . (6.33)

Hence by mutually adjusting the domain-wall parameters
and the time of evolution, diff'erent values of P~p can be
obtained.

(ii) Instanton solutions. Let us consider another class
of solutions of Eqs. (6.24) and (6.25). As already men-
tioned, such equations were studied by Belavin and Po-
lyakov as the minimum energy configurations of the
static two-dimensional ferromagnet (with both s and u be-
ing spatial coordinates). In the present case, they were
derived as dynamical equations for low-energy configura-
tions of the one-dimensional antiferromagnetic chain.
Define

and (6.34)

M(z) =
I (z —zo)/A, I", (6.35)

where n is a positive integer. zo is a complex number, k
is a real number. The geometric phase corresponding to
this solution is obtained by using the definition given in
Eq. (6.23). We find

aM, /au =+aM, /as

are implied by Eqs. (6.24) and (6.25). This shows that if
z =s+iu, then M(z) corresponds to any analytic function
of z (or z*) for the upper (or lower) sign in Eqs. (6.34).
Choosing the former, we consider the simplest solution

Bt Bt
Bs Bu

2 2 2
BO . 2 BCP

as
+n ~

as

2
ae . , a~sin

2

m aM' aM aM'
Bs Bs BQ Bu

(6.36)

where Eq. (6.33) has been used. Since (BM/Bz*)=0, we
get

1

2
Bt
Bs

2

+ a'+
au

2 2
am'
az I 1+ lMI'I ' .

(6.37)

Substituting Eq. (6.37) in Eq. (6.23) and using the form
Eq. (6.35) for M(z) yields

yAp=47rn, n )0 . M(z)=+
Z Z

m.
t

spherical surface, S . Furthermore, the space of fields
t(s, u) is also a spherical surface of radius unity, S .
Thus, the configuration t(s, u) is just a mapping of S into
S, which can be classified into homotopy sectors charac-
terized by the set of integers n.

It is clear that, in general, for any choice of the analyt-
ic function M(z) such that t(s, u)~to, a constant vector
at space-time infinity, as, for example.

Choosing M to be an analytic function of z* would give

y~p=47rn, n (0 .

Note that in this example M(z)~ ~ as z~ 00, i.e., 8=0.
Since the field t(s, u) points towards the north pole at all
points at infinity, the s-u plane can be compactified into a

one can show

P~p=4mn,

with+ m;) g nj, (6.38)

(6.39)
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where n =g m, since there are n roots of z for a given
M.

For the one-instanton solution with n =1 it is easily
seen that the spin configurations are given by

cos8(s, u)=1 —2A, /[(s —so) +(u —uo) +A, j

and

p(s, u)=tan '[(u —uo)/(s —so)] .

(6.40a)

(6.40b)

Thus (so, uo) is the position of the instanton and A, is its
"size," i.e., it is localized in time as well, unlike the mov-
ing twist solutions given in Eq. (6.27). Finally, we remark
that knowing explicit solutions of 0 and p [as in Eqs.
(6.27) and (6.40b)], it is possible to find v and r and there-
fore corresponding solutions of Eq. (6.17), which is a non-
linear equation for q.

VII. SUMMARY

We have studied the spatial and time evolution of a
space curve described by spatial and temporal curvature
and torsion a., ~ and Kp 7p respectively. We have shown
that the evolution is associated with an anholonomy den-
sity j (s, u ) = ( Bra/8, —Br/Bu ), where s and u are the nat-
ural parameters corresponding to spatial and temporal
evolution, respectively. The relation between the "geo-
desic torsion, "

ro, and ro has been derived in Sec. IV [Eq.
(3.10b)]. The total phase @=f ds f du j(s, u).

Starting with a general time evolution for the tangent
t(s, u) to the space curve, t„=gn+hb, where g and h are
functions of (s, u) and n and b are the normal and binor-
mal vectors, we have derived j(s,u) = —vh. The coupled
equations for g and h are given in Eq. (3.14). It is clear
that for the class of evolving space curves for which h or
k vanish, there is no associated anholonomy. The identi-
ty xh =t (t, Xt„) shows that j(s,u) has a topological ori-
gin. A second identity ah = ( i /2)(B/Bs—)(N* N„),
where N=(n+ib)exp[i f ' wds'] helps us to write this
topological phase as (i/2) f d s(B /B s) f du(N* N„). Re-
placing the complex unit vector N/v'2 by a quantum
state ~N(u) ), we see that our expression is the classical
analog of the quantum geometric phase introduced by
Berry when the system evolves with time and with one
more parameter s. This is of relevance when one deals
with a continuum description of interacting many-body
systems in one dimension, and shows that the total Berry
phase is the sum of "differences" of local Berry phases
[using the natural definition of "local" Berry phase in our
formalism Eq. (3.15)].

We have applied this formalism to the dynamics of
classical magnetic chains in the continuum limit. The
spin evolution equation of motion for the ferromagnetic
chain is known to be integrable. It has (localized) soliton

solutions and (extended) nonlinear spin-wave solutions.
We have shown by explicit calculation that the anholono-
my density is nonzero for the one-soliton solution and
vanishes for the latter. The geometric phase for the
former depends on the soliton parameters. The question
of whether the total phase for an X-soliton solution is the
sum of the phases of each of the N solitons is worth fur-
ther investigation.

The dynamics of the antiferromagnetic chain differs
from the ferromagnetic chain in that one must now define
the sublattice and solve the coupled equations (6.10) and
(6.11) in general. We have considered the dynamics of
the low-energy configurations, and shown that the evolu-
tion equations obtained are self-dual and are identical in
form to those studied by Belavin and Polyakov, with
the difference that the independent variables were both
spatial in their discussion. The equations support instan-
ton solutions. We show that a new type of "twist" solu-
tion (which is not a pure unidirectional traveling wave)
also exists. The anholonomy density is nonvanishing in
both cases. For the former the geometric phase in 4~n
where n is the number of instantons. For the latter, the
phase depends on the twist parameters.

It would be interesting to carry out experiments to
measure the phase and to verify Eq. (3.12c) of our paper.
It may be more practical to consider the case when the
two independent variables are both spatial, rather than
one spatial and the other temporal as in Eq. (3.12c).
Also, optical systems may be more practical than mag-
netic ones. A fine mesh made of twisted optical fibers
which forms a twisted surface could be fabricated, and a
method to observe the angle of rotation of the polariza-
tion vector for the paths (abd ) and (acd) in Fig. 1 mea-
sured to see if there is a phase difference. It is clear that
the fibers must have variable torsion (or pitch) since their
derivatives occur in the anholonomy density. A simple
case is when the torsions are linear functions leading to
the phase difference which is proportional to the area of
the twisted surface. Experimental implications of our
formalism for a two-dimensional (2D) magnetic system
require appropriate NMR methods capable of studying
"local" dynamics of the derivatives of spin vectors
(tangents) which are constrained to lie on the n bplane. -

The aim should be to probe the twisting of the derivative
vectors as one moves from point to point on the surface.
Generalization of our formalism to (2+1)-dimensional
cases will be presented elsewhere.
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