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Atomic-size effects on medium-range order in glasses
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Effects of atomic sizes on structural correlations in AX&-type disordered systems such as Si02, GeSe2,
and Ag2Se are studied using a charged-hard-sphere model and the hypernetted-chain scheme. Structural
change is elucidated as a function of the size ratio through the first sharp difFraction peak in the
number-number structure factor (medium-range correlations), the A -X coordination [formation of
A (X&~2)4 tetrahedra], and the principal peak in the charge-charge structure factor (charge ordering).
We find a gradual change from Si02-type to Ag2Se-type disordered structure in the range of
0.5 & R & 1.0, where R ( =o.~ /o. z) is a ratio of the steric radius of A species to that of X species. As R
increases, the medium-range order, which is closely related to the formation of A (X&/2)4 tetrahedra,
disappears. In the transition region frustration between the steric and Coulombic interactions depresses
the charge ordering.

I. INTRODUCTION

In many oxide and chalocogenide glasses of AX2 type,
including SiOz, Ge02, GeSe2, and SiSez, a first sharp peak
is observed in the scattering functions. ' The position of
the first sharp diffraction peak (FSDP) signifies medium-
range correlations extending beyond nearest-neighbor
distances. Moss and Price' gave a unified point of view
for medium-range order on the basis of a random-
packing model of basic structural units.

According to our previous study, ' medium-range or-
der arises from a combination of steric and charge-
transfer effects. Both effects are responsible for forming a
structured network consisting of A(X, &2)~ tetrahedra;
the charge of an 3 atom sitting at the center of the
tetrahedron is locally balanced by twofold-coordinated X
atoms at the four corners. Such a conditional packing of
atoms gives rise to medium-range order and the atten-
dant FSDP. The FSDP essentially has a neutral charac-
ter and is associated with correlations whose spatial ex-
tent is determined by local-charge neutrality. The ap-
pearance of the FSDP thereby does not depend on minor
details in the atomic potentials. Essential features of the
structural correlations in the glasses are thus preserved in
a model comprising charged hard spheres. '"

The formation of such elementary units as A (X»2)z
tetrahedra reasonably depends on the fact that the steric
radius of A-species atoms is much smaller than that of
X-species atoms. As the difference in steric sizes de-
creases, it is expected that those building units are dis-
torted and eventually destroyed, leading to the disappear-
ance of medium-range order. In the opposite limit,
namely, when A-species atoms are much larger than X-
species atoms, there exists a different class of materials
which are exemplified by Ag2Se, Ag2S, etc. These are

characterized as being superionic conductors at low tem-
peratures. A question which naturally arises is, how
is the network structure with medium-range order
modified and transformed into a disordered structure,
such as Ag2Se has, as the relative sizes of atoms change?

In this paper, therefore, we adopt a AX2-type
charged-hard-sphere model and study structural proper-
ties of the system with variation of the ratio of atomic ra-
dii. We pay a special attention to the following: the first
sharp peak in the number-number structure factor associ-
ated with medium-range correlations, bond lengths and
3-X coordination in connection with the formation of
A (X,&2 )~ tetrahedra, and the main peak in the charge-
charge structure factor rejecting charge ordering. For
the calculation of the correlation functions, we use the
hypernetted-chain (HNC) integral equation, ' the accu-
racy of which has been established in describing structur-
al properties of long-ranged Coulombic systems. ' '"

Divalent-metal halides, including alkali-earth chlorides
and ZnC12, are another family of AX2-type materials
which are essentially describable as mixtures of charged
hard spheres. For specific materials, detailed structural
analyses, ' ' combined with x-ray and/or neutron-
diffraction data, have been done using sophisticated po-
tential models.

We remark here that such a detailed comparison with
experimental results is out of the scope of the present pa-
per. Quantitative analysis of experimental data requires
much more realistic potentials: Ingredients which have
to be incorporated are softness of steric repulsion,
charge-dipole interaction due to the large electronic po-
larizability of anions, three-body forces accounting for
the covalent nature of bonding, and so forth. ' '

Abramo et al. ' ' studied atomic-size effects on the
correlation structure of a whole family of molten alkali
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halides within the AX-type charged-hard-sphere model.
Extensive comparison of the partial static-structure fac-
tors and x-ray-diffraction patterns was made with experi-
mental results. Their calculations of the correlation func-
tions are based on the mean spherical approximations
(MSA's), ' which were developed for a fiuid of charged
hard spheres. The advantage of the MSA lies in that it
yields direct analytic expressions for the correlation func-
tions. The MSA, however, suffers from its limitations in
predicting the radial distribution functions at short sepa-
rations; the positivity of the radial distribution functions
is not guaranteed in the MSA in contrast to the HNC ap-
proximation.

In the next section, the model used for this study is de-
scribed. Section III contains a brief account of the HNC
integral-equation scheme and numerical procedure for
solving the equations. Results of the structural analyses
are discussed in Sec. IV. A summary of this work is
presented in Sec. V.

II. CHARGED-HARD-SPHERE MODEL

In the AX2-type system under study, we assume that
atoms of v species (v= 3 or X) have a hard core of radius
cr and carry charge Z . The overall charge neutrality
imposes the relation, for the valences, Zz +2Z& =0. The
interaction potentials P„(r) between the pth and vth
species atoms are then written as

III. HNC SCHEME

To calculate the correlation functions, we took advan-
tage of HNC theory, ' as mentioned in the Introduction.
The HNC equation for the partial pair-distribution func-
tions g„,(r) of the system reads

g„(r)= exp[ —P„(r) /ks T+ h „(r) —c„(r)], (5)

where p, is the number density of ~-species atoms. Equa-
tions (5) and (6) constitute a closed set of equations for
the correlation functions. In contrast to the mean spheri-
cal approximation, an analytic solution to the HNC equa-
tion is not available, so that it must be solved numerical-
ly.

The numerical solution was carried out for the nodal
functions co„(r) [—:h„(r)—c„(r)],with the HNC equa-
tion (5) rewritten in the form of

c„(r)=exp[ P„(r)/k—s T+co„(r)]—co„(r)—1 .

The Ornstein-Zernike relation (6) supplementing Eq. (7)
reduces to a simple product form in wave-number space:

where h„(r) [ =g„(r)—1] refer to the total correlation
functions. The direct correlation functions c„(r) are re-
lated to hv. (r) through the Ornstein-Zernike relation21

h„(r)=c„(r)+gp, f dr&c„,(~r —r&~)h, (r&),

for r &o„+o. ,

Z„Z, /r for r ) o.~+o,
By virtue of a scaling property, the equilibrium state of

the system is completely characterized by a set of three
parameters: the total packing fraction g, the Coulomb
coupling parameter I, and the hard-core ratio R. These
parameters for the system with temperature T are defined
in the following way:

Q(q) =[1—C(q)] 'C(q) —C(q) .

Here a matrix representation is used, i.e.,

&i2(q)
Q(q)= 02, (q) A&2(q)

and the Fourier transformation is defined as

Q„„(q)= (p~„)' f dr co„(r)e'q' . (10)

4m. 3'9 ( Acd+ cxx )p
3

[z„zx//a
(3)

and

(4)

Here c is the concentration of v-species atoms, p is the
total number density, and the mean distance between par-
ticles, a, is defined by (3/4')'

For molten GeSe2 near the melting point, the three pa-
rameters are taken to be g=0.44, r =80, and R =0.38.
These are optimized values so as to reproduce the experi-
mental neutron-scattering function within the charged-
hard-sphere model. ' Recently, Rino et al. have
worked out an effective potential for AgzSe which is ap-
plicable to the supersonic conductor phase as well as to
the molten phase. Using the potential parameters, we
can evaluate g, I, and R in the vicinity of the melting
temperature of Ag2Se as g =0.52, I =31, and R =3.1.

The additional Fourier transformations which are neces-
sary for executing the iteration can be speeded up by
adopting the fast-Fourier-transform (FFT) algorithm.
The utility of co„(r) results from the fact that they are
continuous functions of r even for hard spheres, ' so that
their Fourier transforms are shorter range than those for
the total and direct correlation functions.

The primitive iteration procedures do not work well
because of the strong attractive part involved in the po-
tential between unlike species. To handle such a numeri-
cal instability, we used the e%cient Newton-Raphson
method implemented by Abernethy and Gillan ' for
solving the Auid integral equations. In addition, the
long-range problem posed by the Coulombic part in

P„,(r) was solved with Ng's method. The HNC ap-
proximation can be improved by incorporating higher-
order corrections and the eff'ect of three-body poten-
tials. "

IV. RESULTS AND DISCUSSION

The HNC equation was solved for a series of R ranging
from 0.25 and 3.0, while the other parameters g and I
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were kept constant. Such a calculation gives definite in-
sight into the size effects on the structural correlations in
the system. The fixed parameters coincided with those
for the molten GeSez, that is, g=0.44 and I =80. The
numerical integrations in the iteration procedure were
carried out at 1024 mesh points with an increment of
br =0.05a (b q = sr/10246 r) in real (wave-number)
space. We judged that convergence of the numerical
solutions had been achieved when the relative variance
between the input and output functions became less than
10-'.
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A. Partial pair-distribution functions

The partial pair-distribution functions g„(r) are
shown in Figs. 1 and 2 for various values of R, where the
distance is normalized with sum of the two radii,
d =o.„+o.z. Because of the very nature of the charged-
hard-sphere model, the AX correlation is always well
defined. The second shell of X atoms around an A atom
is also appreciable for small R. For larger R values, how-
ever, the second peak begins to lose a well-defined shell
structure. The X-X pair-distribution function has a
prominent peak for small R. In addition, on the right-
hand side of the peak, we find a shoulder around
r/d =2.0. For increasing values of 8, the height of the
peak decreases. The shoulder incidentally becomes more
pronounced and in the vicinity of R =0.75 it becomes a
clearly independent peak. The position of the first peak
also shifts toward lower values of r/d as R increases, and
for R & 1.0 the X-X peak is located inside the first shell
of the A-X coordination. For small R the first peak in
g~„(r) is broad as compared with those in the A-X and

- A-Xt

h
A-A

X-

10

0
0 2 4

X-X correlations. In addition, the A-A peak becomes
broader with increasing R, ultimately being almost
square shaped at R =1.5.

B. Bond lengths and A -X coordination

The coordination number X„of the vth species
around an atom of the pth species is obtained by integrat-
ing the corresponding partial pair-distribution function
g„(r) as

FIG. 2. Partial pair-distribution functions g„(r), for
R =0.75, 1.0, and 1.5. Same notation and scales are used as in
Fig. 1.

I I

I
X-X

lf

AA

20

R=0.25 — 1 5

T

=4' drr g r
0

J dq LS„(q)—6„]
sin(qr, „)—qr;„cos(qr;„) 4~

4

CD

4-At
i x-x
ll
ll

A

0

10

I 4 I I I

4 )X-X
A-X

ll

~43, A2—

R=0.5

— 10

R 035 — 15
The upper limit r;„of the integration defines the first
coordination shell, which was chosen to coincide with the
first minimum in g„,(r). The second expression on the
right-hand side of Eq. (11) was employed for the practical
calculation to get rid of the discontinuity involved in
g„(r) due to the hard-core interactions.

We evaluated the bond lengths d„between atoms of
the pth and vth species by averaging the distance around
the first peak of g„(r) as

0
0 2 4 4~p~ "mind„= drr g (r) .

o
FIG. 1. Partial pair-distribution functions g„(r) vs dimen-

sionless distance r/d for AX& system from the charged-hard-
sphere model for R =0.25, 0.35, and 0.5, where R denotes the
ratio of hard-sphere radii, o & /o. ~, and d is the sum of the two
radii, d =o.&+o.&. Note that the left-hand vertical scale is for
g»(r) and g»(r), whereas the right-hand scale is for g»(r).

This is because the first peaks in g„(r) are significantly
distorted (away from a symmetric form) by the existence
of hard cores so that the first-peak position provides no
appropriate estimate for the bond lengths.

Figure 3 shows the calculated bond lengths and A-X
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FIG. 3. Coordination number of X atoms around an A atom,
N&z (solid circles), and the ratio of calculated X-X to A -X bond
lengths, biz/biz (open circles), vs R.

coordination number as a function of R. In the absence
of a clearly defined peak around r/d =2.0 in gzz(r), the
X-X bond length was calculated by treating the entire
first peak as one entity. For larger values of R when the
shoulder at rid =2.0 becomes very pronounced and the
value at the dip between the two peaks becomes less than
unity, the bond length was calculated using only the main
peak (up to the dip).

The A -X coordination is nearly 4 and the ratio of X-X
to A -X bond lengths, b~x /b „z, is around 1.6 for
0.25~R ~0.4, so that one can expect that tetrahedral
units of A (X,&2)4 are built in the system. Even for
R &0.5 (o „«ox), the A-A distance is larger than the
X-X distance. This is also consistent with the formation
of well-defined elementary units A (X,&2)4. As R in-
creases beyond R =0.4, the A-X coordination number
exceeds 4 and the ratio of the two bond lengths decreases
below 1.6. This indicates a gradual loss of the tetrahedral
coordination with the increase of R.

Szz(q)= gZ„Z (c„c )' S„(q),1

pv

S~z(q)=, g(c„c )' Z S„(q),1

(16)

(17)

where (Z ) =g„c„Z„.Number-density wave fluctua-
tions such as medium-range order in glasses appear in the
form of a prominent peak in S»(q). The strength of
charge ordering is measured by Szz(q). To what extent
cross coupling between the number and charge Auctua-
tions takes place is described by S&z(q).

All of the structure factors are shown in Figs. 4—7 for
six values of R in 0.25 ~R ~ 1.5. Distinguished features
of those structure factors are observed in the range of
qd &9. The 3-A partial structure factors in Fig. 4 show
two peaks at R =0.25, which slowly merge into a single
peak as R increases to 0.5. Since the first peaks in Sz~(q)
and Szz(q) are located at a different position from the
first peak in Sxx(q) for R &0.5, the total structure factor
S»(q) in Fig. 6 has three peaks in the range qd &9;
those two first peaks in the 2 -3 and 3 -X correlations
give rise to the FSDP in S»(q). The partial structure
factors in Fig. 5 at R =0.75, 1.0, and 1.5 are qualitatively
di6'erent from those in Fig. 4. For R =1.0 and 1.5, the
first peak in S„~(q) is more dominant than the first peak
in S~~(q) and the two peaks are at the same position.
This results in a single-peak structure in S»(q) for
qd & 9 at the corresponding values of R in Fig. 7.

The structure factors S„„(q)and S~x(q) are positive
definite for all values of q, whereas S~z(q) can be of ei-
ther sign. In Fig. 4 (for R &0.5), the main peak in the
X-X correlation at qd =4.5 is accompanied by a deep val-
ley in the 2-X correlation. This is a manifestation of
charge ordering in the system, which is common to dense

C. Static-structure factors

The partial static-structure factors S„(q) are related
to g„(r) through

S„,(q)=5„+4m(p~ )'~ I dr r [g„,(r) I]—
0 qr

(13)
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Since g„(r) have a long-lived oscillatory tail at long dis-
tances, expression (13) is not suitable to the numerical
computation of S„(q). Here we instead calculated

S„,(q) from the direct correlation functions c„„(r)using
the relation
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S(q) = [1—C(q)] (14)

The accurate Fourier transforms of c„(r) are obtainable
as a simultaneous result of the present numerical solution
scheme for the HNC equation.

To analyze the nature of structural correlations in the
system in terms of the number- and charge-density Auc-
tuations, we introduce the additional static-structure fac-
tors

0 =
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S»(q) = g (c„c„)' s„(q), (15) FIG. 4. Partial static-structure factors S„(q) for R =0.25,
0.35, and 0.5.
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FIG. 5. Partial static-structure factors S„„(q)for R =0.75,
1.0, and 1.5.

FIG. 7. Charge-number structure factors for R =0.75, 1.0,
and 1.5. Same notation is used as in Fig. 6.
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FICx. 6. Charge-number structure factors for R =0.25, 0.35,
and 0.5. The solid curve stands for the number-number struc-
ture factor S»(q), the dashed curve for the charge-charge
structure factor Szz(q), and the dotted curve for the cross-
correlation function Szz(q).

ionic systems. ' For larger values of R, in Fig. 5, the
same features are displayed, but with the A-A and A-X
correlations. This signifies that A-species atoms take
over the dominant role in determining the correlation
structure of the system from X-species atoms somewhere
between R =0.5 and 0.75.

It is clear from S~z(q) in Fig. 6 that the FSDP is
present at R =0.25 and its position is qd =3.0. With in-

creasing R the height of the FSDP goes down and the
peak broadens; in addition, the position of the FSDP
shifts to larger values of qd (3.0—3.6 as R increases from
0.25 to 0.5). It should also be iterated here that, for
R ~0.5, Szz(q) has three peaks in qd (9. These systems
model those glasses such as Si02, SiS2, SiSez, Ge02, GeS2,
and GeSe2, which show the FSDP's in their scattering
functions. On the other hand, for R =1.0 and 1.5, there
is only one peak in Sz~(q) in the same range of q. As we

have indicated earlier, R ~ 1.0 leads to disordered
Ag2Se-type structures; the correlation functions at
R = 1.5 are generally in good agreement with those of
molten AgzSe, which were obtained by molecular-
dynamics (MD) simulations. We can thus conclude
that the regimes of R + 0.5 and R ~ 1.0 represent two en-
tirely different classes of systems; R =0.75 is in the tran-
sition region between SiOz- and Ag2Se-type disordered
structures.

The charge-charge structure factor in Figs. 6 and 7
shows basically the same structure for all values of R.
The charge-charge correlation function has no peak cor-
responding to the FSDP; for qd (9, there is a single peak
in the entire range of R. This result, when combined
with the observation of the FSDP in S»(q), means that
the length scale responsible for the FSDP is charge neu-
tral; i.e., it shows no significant charge-charge fluctua-
tions for the wave number at which the FSDP is seen.

The cross-correlation function S~z(q) is also displayed
in Figs. 6 and 7. For R ~0.5, considerable coherence in
phase between the number and charge Auctuations is ob-
served at the FSDP position; the charge-density Auctua-
tions associated with medium-range order are of no
significance in'its strength, though. We also note that in
the same range of R the principal peak in Szz(q),
rejecting the charge ordering, is attended by the an-
ticorrelation peak in S&z(q). Beyond R =1.0, in con-
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trast, the structural properties of the system are almost
independently described in terms of the two density fluc-
tuations, which are quite similar to those of symmetric
molten salts. '

D. Medium-range correlations and charge ordering 3-
lil ~

4-
CD
CD

Z
p

cg
CD
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2.0
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z
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— 1.0

From the above examination of the partial structure
factors and number-number and charge-charge structure
factors, it is clear that the FSDP only occurs in S~~(q)
for R &0.5. The height of the FSDP along with its full
width at half maximum (FWHM) is shown in Fig. 8. It is
quite remarkable that when going from R =0.25 (where
the elementary unit, a tetrahedron, is well defined) to
R =0.5 (where the A-X coordination number is around
5), the height of the FSDP drops to almost half of its
value and the peak width increases by a factor of 2. For
R )0.5 the FSDP is absent, signifying a total loss of
intermediate-range order. We thus see the intimate rela-
tionship between the existence of basic structural units
and the appearance of the FSDP.

In the charged-hard-sphere model, the position of the
FSDP is found at qd =3.0 at R =0.25, whereas in the
scattering experiments the FSDP is observed around
qd =2.5 as shown by Moss and Price. ' This discrepancy
can be easily understood on the basis of three-body co-
valent forces. In a-GeSe2, with only two-body interaction
potentials being used in the MD simulations, ' the posi-
tion of the FSDP was determined to be q =1.4 A
which implies qd =1.4X2.35=3.0. Inclusion of three-
body covalent forces then moved the position of the
FSDP from 1.4 to 1.0 A ' in complete agreement with
the neutron-diffraction experiments. ' This result leads
to qd =1.0X2.35=2.35, which agrees with the elucida-
tion by Moss and Price. Therefore the FSDP position ob-
tained in the charged-hard-sphere model without three-
body interactions is quite consistent with the MD and ex-
perimental results.

The nature of charge ordering is summarized in Fig. 9,
which shows the height of the first peak and its FWHM
in the charge-charge structure factor Szz(q). We can
divide the range of R =0.25 —3.0 into three regions in ac-
cordance with the classification in S~z(q). In the first re-

~ ~ OO0

0.2 0.5 1 R 2 3

FIG. 9. Peak height and full width at half maximum
(FWHM) of the first peak in the charge-charge structure factor
as a function of R. The solid and open squares are for the peak
height and FWHM, respectively.
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is shown for R =0.25 —1.5 in Fig. 10. For R )0. 5 the
envelop of the function shows marked exponential decay
as a function of r/d. The situation is quite different for
R &0.5. The envelop function is nonmonotonic, and the

— 0

gion 0.25 & R 0.5, the height of the first peak decreases
and its width increases, indicating a reduction of charge
ordering. It is this region of R where one observes the
FSDP in S&z(q). The FSDP also shows a similar behav-
ior in this region. The second region 0.5 (R ( 1.0
represents a regime where there is a frustration in charge
ordering because of competition between the steric effects
and Coulomb interactions. The third region of R ~1.0
has good charge ordering where the height of the first
peak is large and the width is small.

The excess number function for 2-species atoms
defined by
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FIG. 8. Peak height and full width at half maximum
(FWHM) of the FSDP in the number-number structure factor
as a function of R. The solid and open triangles are for the peak
height and FWHM, respectively.
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FIG. 10. Excess number function for A-type atoms, Mt»(r),
vs dimension1ess distance r /d.
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excess number function shows considerable enhancement
in the region of r/d =5. It is also this range of R values
in which the number-number structure factor shows the
FSDP.

V. CONCLUSION

Figures 3, 8, and 9 summarize the dependence of the
structure on relative steric sizes in AX2-type mixtures of
charged hard spheres. Combining these results, we can
illustrate the definite structural change as a function of
the atomic-radius ratio R which spans the range
0.25~R ~3.0.

In the first region of 0.25~R ~0.5, the A-Xcoordina-
tion is around 4 along with bzxlb„+=1.6, indicating a
well-defined tetrahedral elementary unit 3 (X,&2)~. The
number-number structure factor shows the FSDP in this
region. As R increases from 0.25 toward 0.5, however,
the height of the FSDP decreases with an increase of the
FWHM and the position of the FSDP shifts to larger
values of q. The number-number structure factor has
three peaks for qd &9 in this range of R. The charge-
charge structure factor, on the other hand, has only one
peak for qd &9 in the entire R range of 0.25 —3.0. For
0.25&R &0.5, the charge ordering decreases, which is
indicated by the depression of the first peak in Szz(q).

In the second region 0.5 & R & 1.0, the 3 -X coordina-
tion number changes from 4 to 8 and correspondingly the
ratio of X-X to A-X bond lengths decreases from its

tetrahedral value of 1.6 as R increases from 0.5 to 1.0.
The FSDP in the number-number structure factor disap-
pears and the three peaks in S»(q) for qd (9 merge into
one peak in this R range; the intermediate-range order is
completely destroyed. The charge ordering shows frus-
tration, which is manifested by the relatively large width
and small height of the first peak in Szz(q). This is due
to competition between steric and Coulomb interactions
in this second range of R, leading to the structural
change from fourfold to eightfold A -X coordination.

In the third region 1.0 ~ R ~ 3.0, the 3 -X coordination
is around 8 and there is no FSDP in S»(q); one can see
no intermediate-range order in this range either as for the
second range of R. The number-number structure factor
is relatively structureless; it has only a single peak in the
range of qd &9. There is, however, excellent charge or-
dering in this range of R as shown by the large height and
small FWHM of the first peak in Szz(q), while the num-
ber and charge fluctuations are nearly decoupled.
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