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Hopping conductivity of a hierarchical lattice
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The dynamic conductivity of a one-dimensional hopping system with hierarchically distributed transi-
tion rates is calculated at all frequencies of the driving electric field using a real-space renormalization-
group approach. It is found that the conductivity of this system can display quite different kinds of low-
and high-frequency behavior as the hierarchy parameter R is varied.

I. INTRODUCTION

In recent years considerable effort has been devoted to
the theoretical investigation of the dynamical properties
of hierarchical structures since these structures are be-
lieved to arise in various physical contexts (see Ref. 1 for
a review). Much attention has been focused on the trans-
port and the electronic and vibrational properties
of these systems. In the case of diffusion, it has been
shown that a hierarchical system can undergo a dynami-
cal transition from anomalous to ordinary diffusion, as
well as display anomalous diffusion behavior when the
hierarchy parameter R is varied. In the electronic and vi-
brational problems, the energy spectra of the
hierarchical system are found to be zero-measure Cantor
sets and the system possesses eigenfunctions that are
self-similar and critical. Similar to the diffusion problem,
different types of scaling behavior of the spectra are ob-
tained in electronic or vibrational spectra depending on
the value of R. However, up to now, the directly measur-
able quantities of this system have not yet been studied
much. In this paper we consider the ac hopping conduc-
tivity of a one-dimensional (1D) hierarchical lattice.

Studies concerning the hopping-transport properties
on 1D systems have shown that the distribution of the
transition rates has great influence on the qualitative be-
havior of the response to external electric fields. The ex-
pression for the low-frequency ac conductivity, for exam-
ple, is regular for periodic chains and becomes nonanalyt-
ic when the transition rates are distributed randomly. ' '"

Rs

The intermediate cases, represented by some determinis-
tic aperiodic systems, were shown to display different fre-
quency dependences. ' So a natural question is whether
or not the hopping conductivity of a hierarchical lattice,
which is another type of deterministic aperiodic system,
will show different types of frequency behavior.

The model treated here is similar to that of Aldea and
Dulea (AD). ' Isoenergetic sites or identical atomic
centers along a straight line are joined by a regular bifur-
cating hierarchical array of links (see Fig. 1). The transi-
tion rate 8'„between the sites n and n +1 is given by

1, n =2l+1,
n =2 (21+1),

where R is the hierarchical parameter. As we study the
influence of the hierarchical distribution of the transition
rates on the conductivity, we limit ourselves at this stage
to the discussion of the case of equidistant sites, with the
spacings between the adjacent sites d„being set to be 1.
When a spatially constant external electric field
E =Eoe' ' is applied along the line of the hierarchical
lattice, the hopping conductivity, determined by taking
the spatial average of the current fiowing between pairs
of adjacent sites, can be written as' '

1

EL

where I. is the length of the chain whereas the "elementa-
ry currents" I„,representing the thermally averaged rate
at which charge is transferred between the nth site and
the (n+1)th or the current Ilowing between the sites n

and n + 1, are the solution of the following Miller-
Abrahams (MA) equations
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FIG. 1. Schematic representation of the hierarchical lattice
with a hierarchy of transition rates. The dots stand for the
isoenergetic atomic sites and the vertical segments represent the
transition rates between two adjacent sites. Sites with crosses
are decimated during the present renormalization scheme.

II. RENORMALIZATION-GROUP APPROACH

Owing to the self-similarity or "inflation symmetry" of
the system, we may expect the renormalization-group ap-

47 3031 1993 The American Physical Society



3032 XIAOMIN WANG, ZHIFANG LIN, AND RUIBAO TAO 47

e1I„=@I„1+I„+1+icoEh1 for odd n,
e„I„=In 1+yIn+1+luEh2 for even n,

(4)

which can be cast into the same form before and after the
decimation procedure. Clearly, the original set of the
MA equations (3) is a special case of Eq. (4) with

lCO
E'n =2+

y h1 =h2= ly g= 1
n

(5)

In terms of the generalized MA equations (4), the con-
ductivity (2) for the system becomes

proach to be applicable. Following Newman and Stinch-
combe, ' we divide the hierarchical lattice into two sub-
lattices consisting of the odd number sites and the even
number sites, respectively. Then the MA equations take
the more general form

placing hj, ej. (j = 1,2), and y by h ",e"), and y", respec-
tively, in Eq. (9). In the practical calculation, we study
the infinite chain consisting of the periodic repetition of
an ¹ rder hierarchical chain with length 2 . Such an
¹ rder approximant to the real hierarchical chain is
indeed obtained by setting the transition rates (1) with
k ~%to be of the following form:

8'„=R, n =2"(21+I) as k )N .

The real hierarchical lattice itself is regarded as the limit
of this ¹ rder approximant as X—+ ~. If we start with
such an ¹order approximant of period 2, then after de-
cimating N —1 times, we are left with a simple periodic
chain composed of only two types of links. The MA
equations for such a final chain are given by

e( "I = ' "I +I +lcoEh'n V n —1 n+1 l~ 1

cr = QI„h„,1

EI. (6)
for odd n,

(12)

where h„ takes either h1 or h2, depending on whether n is
odd or even. After decimating all 4n +2 and 4n +3 sites
(marked by crosses in Fig. 1) and eliminating from the
equations the subset of the "elementary currents" In on
these sites, we are left with a new set of equations linking
the remaining currents. By relabeling the remaining sites
we can recast the new set of equations in the same form
as the old one, except that we have the renormalized pa-
rameters

n &2, E'1=
y

From Eq. (12) it is not difficult to derive

~(N —I) — [(h (N —I) )2 (eN
—I)+(h (N —I) )2e(N —I )

+2h(N —l)h(N —I)(1+ (N —I))] (13)

with

(h(N —I) +h(N —I) )[~( N I)e(N —I) (1+ (N —1))2]

(14)

~(N —1)I I + (N —1)I + Eh (N —1)
~2 n n —1 n+1 l& 2

for even n .

E1h'= 1+ h +—h,1 1 2p

h'= 1+ h +—h
y' E2

2 2 1

162

(7)

So by iterating Eqs. (7) with the initial values (5) and sub-
stituting h,". , e,",and y" into Eqs. (9)—(10) and (13), we
may obtain the conductivity of an arbitrarily high-order
approximant to the hierarchical lattice. The results for
the real hierarchical lattice corresponding to the limit of
N ~ ~ can be obtained by an extrapolation.

2h2 h2I =F2+ P+
1 1

2

(9)

Thus, a straightforward iterative procedure yields

h(N —I) +h(N —I) . N 2 x(i)(h(i) )2
1 2 (N 1) l AP 10—

2N (N —I) 4 ~ 2i (i) (i+I)CT

i=0

(10)

where the parameters h'1', h 2', and y" denote the values
of hi, h2, and y after i iterations of Eq. (7) with the ini-
tial values given by Eq. (5), whereas x" is obtained by re-

Using Eqs. (6)—(7) and after some algebra, we can show
that the conductivity cr', defined by the value of Eq. (6)
on the renormalized chain, is given by

2y'( h)+ h 2 ) icoh, x

y(h'I+h2) y(h I+h2)

where

III. NUMERICAL RESULTS AND DISCUSSION

The first result of our numerical calculation is that
when co —+0, we have exactly Re(o )~cro with

o.O= 1/m

m, = gW'„'=1

2N

N
R R —1 1+

2R —1 2R —1 2R
(15)

Obviously, when R ) —,', Re(cr) tends to a finite limit
o o=(2R —1)/8 as co~0 and N ;co, whereas for R (—,', —
we find Re(cr)~0. In order to attest this result, we have
calculated Re(o. ) at frequencies as low as 10 in units of
8'„where our numerical results still corroborate the
analytical result (15) derived from a formal fiuctuation ex-
pansion. ' This result differs from that of the Fibonacci
chain, where Newman and Stinchcombe' found
Re(o ) =0 when co =0, which is contrary to the prediction
by AD that Re(o) would be finite as co~0.' The
difference, we believe, lies in the appearance of the factor
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Re(cr ) —o 0-co, Im(o ) -co (16)

where the power-law exponents 6 and 6' depend on R.
To be specific, we shall distinguish the following cases.

(1) For R ~2, we have 5=2 and 5'= 1, the conductivi-
ty possesses the same low-frequency behavior as in the or-
dinary periodic case'

Re(cr ) —o 0-co, Im(o. ) -co . (17)

(2) For 1 & R (2, the low-frequency behavior of Im(o )

remains ordinary as in the case of R ~ 2, while the ex-
ponent for the real part of the conductivity 5=R, i.e.,

Re(o )
—o 0-co, Im(o. )-co .

Thus, the crossover for a dynamical transition from ordi-
nary to anomalous low-frequency dependence of
Re(o ) —o 0 is observed at R =2.

(3) For —,
' &R (1,we have 5=5'=2R —1, i.e.,

y'/y before o in Eq. (8). For the Fibonacci chain, ' the
coefftcient before o is L/L', with L' the length of the re-
normalized chain, while for our model, we have the fac-
tor y'/y in addition to the simple rate of lengths L /L'.

Next, we have studied the low-frequency behavior of
Re(o ) —o0 and Im(o. ) for a variety of values of R. Since
our practical numerical calculations are proceeded with
finite X, we have calculated the conductivity for quite a
few values of X to extrapolate the frequency dependence
of the real hierarchical system. Figures 2 —4 show the
hopping conductivity for the chains with R =0.3, 1.8,
and 2.5, respectively, and N =20, 30, and 40. For
R =0.3, the ordinary low-frequency dependences
Re(o ) —o0-co and Im(cr)-c0 are believed to arise from
the period effect (see Fig. 2). Similar cases hold for other
values of R. Eliminating the ordinary period effect by an
extrapolation, we observe the power-law behavior of the
conductivity at low frequencies for various values of R,
i.e.,
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FIG. 3. The same as in Fig. 2 but for R =1.8. Note that the
curves for Re(o. ) —o.o against co for N =20, 30, 40 coincide and
the high-frequency behavior Im(o. ) -co ' comes from the period
effect.

Similarly, a transition of the power-law exponent for
Imcr(co) occurs at R =1, with R =1 corresponding to
W„= 1 and thus Re(o ) =o 0= 1; Im(o ) =0.

(4) For 0&R & —,', we have cr0~0 as N~00 from Eq.
(15). Our numerical results show 5=5' (see, e.g., Fig. 2).
Although we cannot give an explicit expression for the
exponents 5 or 5' in the context of this paper, we find
d5/dR (0, which is obviously contrary to the case of

(5) For R =
—,', we have 5-5'-0. However, our nu-

merical results show evidence that a logarithmic singular-
ity may exist in the low-frequency behavior, which is
similar to the Fibonacci chain. '

We would like to point out that some of the above
low-frequency dependences of the conductivity can be in-
ferred analytically. According to AD, ' the dynamic
hopping conductivity can be expressed as a formal fluc-
tuation expansion

Re(o ) o0 ~—'~ ', Im(o) -~'"
0

10

LEO Is (q)l'
cr(c0)=o11+ lim g~ &0 2( 1 —cosq)+icom

qWO

(20)

where m, and o 0 are given by Eq. (15) whereas S111(q) is
the Fourier transform of the fluctuations
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FIG. 2. Re(o. ) —o.o (solid line) and Im(o. ) (dashed line) as
functions of frequency for R =0.3, N =20, 30, 40. The spacings
between the adjacent sites d„=1 and the transition rates are
given by Eq. (1). The frequency is in units of 8'& and the con-
ductivity in units of 8'&d„. It is easily seen that the ordinary
low-frequency dependences Re(o. ) —o.o-ca and Im(o-) -co arise
from the period effect.
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FIG. 4. The same as in Fig. 2 except R =2.5. Clearly,
Re(o. ) —o.o~const. and Im(o. )-m ' as co—+~ are due to the
period effect.
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5 =W m——1
n n —1

S~(q) = ge'"~5„.1

2N

For the hierarchical model, it is easy to derive

N —1 2"—1

l~~(q)l'= X ~n X &,2k+i, ~„n
n =0 k=0

where

[1—(2R) "] ~
(2R )

(21)

(22)

(23)

Furthermore, if we find co [Re(o )
—o.p] —co for

—2 62(R )

1 &R &2, then for 1 &2R &2, we have p~ 'Im(o. )
52(2R)-co ' . Our numerical results [Eqs. (17)—(19)] agree

with these inferences quite well.
Now we turn to the high-frequency behavior of Re(o. )

and Im(cr). As in the low-frequency case, we also find
the ordinary frequency dependences Re(cr)~const. and
Im(o. }-co ' at very high frequencies. We believe some
of these results are due to the period effect. After elim-
inating the period effect by an extrapolation (see Figs. 3
and 4, we find the high-frequency results as follows.

(1) For R &2, the conductivity has the same high-
frequency behavior as in the ordinary periodic chain

with A =(R —1)/(2R —1). Substituting Eq. (22) into
(20}yields Re(cr ) =m, ; Im(cr ) —p) (30)

gNa(co)=ap+ico lim
N~~ m

with

(24)
with

1 R —1 R
R —2 2

n

1

R —2
(31)

N —1 2"—1
1

gN XXX
k=p 4sin [(2k+1)n./2" ]+idiom

n+1 ~

Taking into account the mathematical formula'

(2S)

which is consistent with the analytical expression due to
AD '

(2) For 2 & R & 4, the high-frequency behavior of
Re(o ) preserves ordinary as in the case of R & 2, whereas
Im(cr) displays an anomalous power-law behavior, i.e.,

N —1
1

k =p sin [(2k + 1 )rrl4N ) +sinh (x l2)X 2

we obtain

2N tanh(Nx)
sinhx

(26)

Re(o. )=m, ; Im(o. )-co~,

with

lnR —ln2
lnR

(32)

(33)

N —i g 2 2n —i tanh(2ny )

p (2R)2+ sinh(2y)

N —1 A 2" tanh(2 "y)

p (2R )N+n sinh(2y)

tanh( 2"y )+
p (2R) " sinh(2y)

(27)

tanh(2"y -2n —lyC 4nk( ~ )k
sinh(2y)

(28)

where the real coefficients Ck are independent of R and n.
Combining Eqs. (27) and (28),

gN

2N
2X4k

a0+ ak
k=0

2k

with sinh y =im iso/4. Retaining the dominant terms
as co~0, we have

Thus, the crossover for a transition from the ordinary to
anomalous power-law decay behavior of Im(cr) is ob-
served at R =v'2.

(3) For R )4, both Re(o ) and Im(o ) display the
anomalous power-law growth

Re(cr )-cop; Im(cr )-co~, (34)

with p given by Eq. (33). Clearly a transition for the high
co dependence of Re(cr) occurs at R =2.

(4) For R =2, our numerical results show evidence that
Re(o) and Im(cr) may display logarithmic growth as
CO~ ~.

In fact, the critical value R, for high co behavior of
Re(o) and Im(cr) can be obtained by an iterative pro-
cedure. ' According to AD, as co—+ ~, we have
Re(o )=m, and colm(o)=a with m, given by Eq. (31)
and

1
a = g( W„—W„W„+,)

2N
'2N

00 2X4k
+iso PP+ Q Pk

k=0
2k R 1 2(1 —R) R

2 —R 2 —R2 2 —R 2

where ap pp ak, and pk are real coefficients dependent
on R but independent of N. Although we cannot deter-
mine the co dependence of o from Eq. (29), combining
Eqs. (24) and (29) we can have the following inferences:
If we have co [Re(o ) crp]-co — for R )2, then for

—2 5i(R)

6)(2R)(2R) &2 or R ) 1, we should have co 'Im(o )-p~ '

(1 —R) R+
22 —R 2

(35)

Obviously, Re(o) goes to infinity as N~ ~ for R )2,
while colm(cr)=a tends to infinity for R )2, in agree-
ment with our numerical results for the critical values of
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R. Furthermore, from the expression (35), we conjecture
that the logarithmic corrections to the power-law decay
of Im(o) at high frequencies are possible in the anoma-
lous regime 2 (R (4, i.e., instead of the second relation
in Eq. (32), we suggest

Im(o ) -co~(lnro)~, (36)

with P' dependent on R. The anomalous high-frequency
dependences of the conductivity are displayed in Figs. 3
and 4 for R =1.8 and R =2.5, which are typical for
v'2 (R (2 and R )2, respectively.

Finally, there are still several points which should be
noticed. The first one is that we do not find any special
characteristic of the conductivity in the intermediate
range of frequencies. This is rather different from the re-
sults of the Fibonacci chain' and the Thue-Morse
chain, ' where strong differences in frequency depen-
dence of the conductivity between the periodic chain and
the aperiodic ones are manifested in the intermediate
range. The second point worth noticing is that our re-
sults for the conductivity of the hierarchical system yield
a smooth curve for u against cu and display no self-
similarity which was found in the electron and phonon
spectra, despite the strong similarity between the MA
equations and the tight-binding equations in the electron
and phonon problem. The explanation lies in the fact
that the oscillatory solutions for the I„are prohibited in
the present model in order that there should be a finite
current Aowing throughout the infinite sample. It is be-
lieved that it is these oscillatory solutions that give the
complex, self-similar structure of the electron and pho-
non spectra. ' The last point comes from the fact that
our results for the conductivity show no oscillatory be-
havior with the length of the chain, which is analogous to
the results for the Fibonacci chain. ' Indeed, since these

results are obtained by solving a finite set of MA equa-
tions with the periodic boundary conditions, the results
so obtained are believed to be similar to those for the
infinite chain, i.e., the variation with the length of the
sample is not available by the hopping model. ' This is a
genuine shortfall of the present model.

IV. CONCLUSION

By a real-space renormalization-group method, we
have calculated, at all frequencies of the driving electric
field, the hopping conductivity of a hierarchical lattice.
It has been found that the low- and high-frequency
dependences of the conductivity are strongly dependent
on the hierarchica1 parameter R. Various types of
power-law behavior, with possible logarithmic correction
in some particular cases, have been found for the real
part and the imaginary part of the conductivity at low
and high frequencies. The power-law exponents for both
the real part and the imaginary part of the conductivity
may undergo dynamical transition at several values of R.
This remarkable type of behavior differs considerably
from those for the Fibonacci chain and the Thue-Morse
chain, at which the low- and high-frequency dependences
of the conductivity are independent of the diluted param-
eter W„/Wz association with the two building elements
in the aperiodic chain. ' ' Finally, the conductivity of
the present model displays no special characteristic in the
intermediate range of frequencies, which is also contrary
to those for the Fibonacci and the Thue-Morse aperiodic
chains. ' '
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