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Liquid alkali metals at the melting point: Structural and dynamical properties
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In this paper we report the results of a comprehensive simulation study of the structural and dynami-
cal properties of liquid Na, K, Rb, and Cs near the melting point. An important consequence of this in-

vestigation is that both the equilibrium and the time-dependent correlations can be cast in a properly
scaled form, which is to a very good approximation the same for all the alkali metals. In particular, for
liquid Cs the simulation findings for the dynamic structure factor are found to be in excellent agreement
with the inelastic-neutron-scattering data recently reported. Finally, the analysis is extended to the two
main transport properties, the difI'usion and the shear-viscosity coefficients. The simulation results corn-

pare satisfactorily with the actual experimental findings and confirm the validity of the simplified mode-

coupling approaches recently proposed for these two quantities.

I. INTRODUCTION

The properties of monatomic liquid metals have always
attracted several experimental investigations, both for
their intrinsic interest as well as for the understanding of
the structural and dynamical features of simple liquids. '

A recent example is the report of new accurate neutron-
scattering measurements of the dynamical structure fac-
tor of liquid caesium slightly above the melting point.
The analysis of these data and the comparison with simi-
lar results in other liquid alkali metals naturally raises the
question of ascertaining possible common features in this
important class of systems. For instance, the Cs data of
Ref. 2 give clear evidence for density Auctuations propa-
gating with wave vectors substantially larger than those
typical of the hydrodynamic regime; this feature, absent
in the typical Lennard-Jones liquids, is instead complete-
ly consistent with previous findings in liquid rubidium.

This and several other analogies in the structural and
dynamical behavior of liquid alkali metals indicate the
possible existence of a potential model whose functional
form is universal for all these elements under appropriate
scaling. Several attempts to verify the validity of a "cor-
responding states law" have indeed been made. A
difficulty is that the e6'ective pair potential u (r) between
the ions is density dependent; moreover, the parameters
entering u (r) are often determined by a fitting procedure
on the properties of the corresponding solid. As a conse-
quence, "natural" length and energy scales by which u (r)
can be cast into a universal form are not apparent a
priori. As in the Lennard-Jones case, one may choose as
proper scaling quantities the energy c of the main poten-
tial well of u(r) and the minimum distance o where the
potential vanishes. This procedure was actually suggest-
ed in Ref. 4, where the scaled version of the potential im-
plemented by Price, Singwi, and Tosi was found to

reproduce fairly well several static properties for Na, K,
and Rb. At that time, the accuracy of the experimental
data was not good enough to make more definite assess-
ments about scaling behavior. Nowadays, a more com-
plete analysis of the problem including both structural
and dynamical features appears to be possible, and this is
one of the main topics addressed in the present paper.

A second point of interest in the recent findings is the
possibility of providing a realistic benchmark for the non-
phenomenological theories of the liquid state dynamics as
developed in the last decade. This test appears to be par-
ticularly enlightening in view of the simplifications which
have recently been proposed' ' in the formal structure
of the kinetic equations, making several properties amen-
able to rather straightforward calculations.

Computer experiments are obviously helpful to eluci-
date both the aforementioned aspects. In the following
we shall report a series of molecular-dynamics (MD)
simulations for several liquid alkali metals (Na, K, Rb,
and Cs) near melting, by which the main static and
dynamical correlation functions can be deduced.

The format of the present paper is as follows. In Sec.
II we specify the potential model (essentially the one
developed in Ref. 8), discuss the first "evidences" for a
scaling behavior, and report the MD results for the main
structural quantities of the liquids under consideration.
Section III deals with an important set of dynamical
quantities, namely, the intermediate scattering function
F(k, t) and its self part Fs(k, t) In particu. lar, here the
simulation results for the dynamic structure factor
S(k, co) in liquid Cs are compared with the corresponding
neutron data of Ref. 2. Also, the validity of the scaling
for di6'erent alkali metals is carefully checked even for
these time-dependent quantities. Finally, Sec. IV is en-
tirely devoted to the analysis of the two main transport
properties, namely, the diffusion and the shear-viscosity
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coefficients. Here the MD findings for the corresponding
Green-Kubo integrands are compared with the theoreti-
cal predictions based on a simplified mode-coupling ap-
proach. The values of the transport coefficients are even-
tually compared with the available experimental data for
the alkali metals near the melting point.

to a negative minimum denoted by —e; this first potential
well is then followed by damped oscillations of the
Friedel form. The quantities o. and c. may tentatively be
taken as length and energy scaling parameters, as pro-
posed by Mountain. In other words, if we plot u (r)/s vs
the reduced length r *= r /o, the function

II. INTERACTION POTENTIAL
AND STRUCTURAL QUANTITIES

A first evidence that alkali metals may be expected to
show a universal behavior is provided by the recognition
that near the melting point the static structure factors
S(k) for Na, K, Rb, and Cs are almost coincident when
reported as a function of the scaled unit k /k, where k
denotes the position of the main peak of S(k) in each sys-
tem. Using both x-ray- and neutron-diffraction data, the
structure factor can be scaled even by adopting slightly
different recipes. ' ' '

This property suggests that an effective ion-ion interac-
tion potential should also have a simple scaling behavior.
On the other hand, a physically based potential model for
metals has to account for the screening effect of the con-
ducting electrons on the sheer electrostatic interaction.
In particular, the model proposed by Price, Singwi, and
Tosi reads

(Ze) 2
y d G( )

sin(qr)
r ~0' '

q
(2.1)

TABLE I. Thermodynamic state points where the simula-
tions have been performed and the correspondent parameters of
the Price potential. n and T are the number density and the

0 —3
temperature expressed in units of A and K, respectively. o.

0
(in units of A) indicates the position of the first zero of the po-
tential, c (in units of K) the value of the main potential well, and
~=(mo. /c) ' (in units of ps) the time scale adopted to
characterize the dynamical features.

Na Rb Cs

n

T
0.024 29

376
3.328

445.60
0.829

0.012 84
343

4.115
420.99

1.376

0.01045
318

4.408
402.20

2.229

0.008 3
308

4.761
386.49

3.061

where Ze is the ionic charge and G (q) is related to the
Fourier transform of an empty core pseudopotential
properly modified to include the above-mentioned screen-
ing effect. The model parameters present in G(q) turn
out to be dependent on the number density n =N/V. In
practice, the form of G (q) proposed in Ref. g is such that
no natural lengths and/or energies are apparent in u (r),
so that a possible scaling behavior can only be tested a
posteriori. Using the parameters reported in Ref. 8 we
have evaluated u (r) for Na, K, Rb, and Cs at the thermo-
dynamic conditions near the respective melting points
(for details see Table I). Broadly speaking, all these po-
tentials show a repulsive portion (noticeably softer than
the corresponding one for the Lennard-Jones case) down

u*(r*)= —u
E, 0

(2.2)

S(k)=1+n f dr[g(r) —1]exp(ik r) . (2.3)

In order to check the reliability of the Price potential for
all the systems, S(k) has to be compared with the avail-
able data obtained both by x-ray and neutron diffraction.
Care must be taken in extending the radial distribution
function beyond the accessible limit, imposed by the finite
size of our simulation cell (i.e., half of the box length L).
The extrapolation has been achieved by fitting the simula-
tion data beyond the distance ra =1.128o. to a functional
form

g(r)=[g(ro) —1]e ' cos[C(r —ro)]+ I, (2.4)

where B,C are suitable parameters. This procedure
yields an accurate Fourier transform since the integral in
Eq. (2.3) can be extended up to distances where g (r) be-
comes as close to one as desired. The results for the
different liquid metals are reported in Fig. 1, along with
the experimental data (both x-ray and neutron); the
agreement is clearly very good. In Fig. 2, the MD data
for the various radial distribution functions are shown as
a function of reduced units r* =r/o. . They appear to fall
onto a universal curve for all the considered systems.
Therefore, it is straightforward to show from Eq. (2.3)

should appear virtually the same for all the elements.
Indeed, it is found that the scaling behavior expressed in
Eq. (2.2) is well reproduced, Na being the element for
which the largest deviations occur. ' We have then pro-
ceeded to the calculation of the structural properties by
using computer simulation techniques. Since we are also
interested in the dynamical properties we have chosen the
molecular-dynamics method; in particular, a system of
N =250 or 432 particles interacting through the Price
potential has been considered in a cubic box and the
motion of the particles within a microcanonical ensemble
has been followed using standard MD programs, 6t = 10
fs being the integration time step. The static (and subse-
quently dynamical) quantities have been obtained by
averaging over runs as long as 120000 time steps. These
comparatively long simulations provide accurate results
for all the properties under investigation, in particular,
for those connected with dynamical quantities having a
collective character. For example, the evaluation of the
viscosity coefficient requires the computation of nondiag-
onal elements of the stress tensor: the associated correla-
tion functions, besides being relatively long lived, show
an anisotropic behavior which washes out only for long
simulation runs. '

First of all, we have evaluated the radial distribution
functions g (r) and the static structure factors



301347 LIQUID ALKALI METALS AT THE MELTING POINT:

S(k) S(k)

0
0

S(k)

3 4 5

V (A')

Rb

0
0

S(k)

k(A )

Cs

FIG. 1. Static structure factors for liquid
Na K, Rb, and Cs, at the thermodynamic
points reported in Table I. The sohd line is
our MD findings. The asterisk refers to the
neutron-diffraction data (reported in Ref. 2 for
Cs and in Ref. 17 for Rb) and the circles to the
x-ray data reported in Ref. 17.
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that the structure factors also presentnt a "universal" form
f the are reported in terms of the reduced wave vectorsi eya
k*=ko at the same reduced densi y n
havior is a so we re1 ell reproduced by the experimental data

s rovi in clearwit in a ewth few percent tolerance. Besides provi ing c ear
lievidence of t e re ia i i yh 1' b'1't of the Price model for the alka

'

metals, these results give additional supp ort to the idea
can be cast into athat the real interaction potentia can e

universal form. oBoth these conclusions are now possible
in view of the higher accuracy of the experimenta a a.
Strictly spea ing, on e ath basis of the corresponding states

ould be expected to scale exactly forlaw, a property wou e
systems at equal reduced temperature (T*= ~ E an

*=X/Vo ). As a matter of fact, while the re-
at theirduced densities of the examined alkali metals, a

respective me ing plt' oint are very much the same (rang-
n*=0.8952 in K to n*=0.8957 in Cs), the re-

uce empe
'

t ran in fromduced temperatures are slightly differen rang g
T*=0.79 in Rb to T*=0.84 in Na). Thus, the observed

1' b havior points out the fact that the structure issca ing e avio
erature0 d very much by small temp

r model s s-differences, a result already known for other mo e sys-
tems (e.g. , Lennard-Jones fluids).

III. INTERMEDIATE SCATTERING FUNCTIONS

0
0

FIG. 2. The radial distribution function g
~ ~ ~

(r) for the liquid
ls Na K, Rb, and Cs near the melting point, report-alkali meta s a,

ed as a function of the reduced length r =r o.. e
refers to s an eC d th dashed one to Na; the results or K and Rb

t e ra h.lie in between an are un
'

b d are undiscernible on the scale o t e grap

i alkaliDealing with the dynamical properties of liqui a
meta s we wi e1 ill be concerned with the two main topics.
First, we wi compill compare the MD results obtaine or iqu'
Cs with the recent neutron-scattering data o e .
Second, we will ascertain the validity of a scaling assump-
tion even for the dynamics.

In our MD simulations, the intermediate scattering
function, oF( k t ) of liquid Cs has been evaluated at t e

d sit and temperature as in the real experimen osame ensi y an
ave vectorsf 2. The components of the wave vRe. . e

k=(k k k ) are chosen of the form k~-= 2~/L)n
where n is a positive integer and L ts the leng

x~ y~ z
n th of the

simulation ox. us,o . Th the minimum wave vector ex-
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0

plored is obtained for N =432, where L =37.34 A and
k;„=0.168 A . To improve the statistics, for a given
value of ~k~ the indexes are rotated along the three axes
and a final average over the distinct orientations of k is
performed. In units of At, liquid Cs requires simulation
runs distinctly longer than the other alkali metals to ob-
tain a comparable accuracy. This feature is consistent
with the increase of the typical time scale r=(mo /c, )'~

from Na to Cs (see Table I).
The features of F(k, t) at different wave vectors are

found to be qualitatively similar to those reported by
Rahman' for liquid rubidium; in particular, even liquid
Cs is found to support well-defined density oscillations
beyond the hydrodynamic region. The dynamic structure
factors S(k, co) at different wave vectors are readily ob-
tained from a Fourier transform of the corresponding
F(k, t) In F.ig. 3 some typical MD results are reported
along with the corresponding neutron-scattering data of
Ref. 2. The agreement is clearly rather good, indicating
that the potential model of Price, Singwi, and Tosi is
sufficiently realistic even for the dynamical features of
liquid Cs. On the other hand, the gross features of
S ( k, co ) are rather unsensitive to the detailed form of
U(r). During the completion of this work we became
aware of analogous MD simulations for liquid Cs by
Kambayashi and Kahl. ' Although these authors used a
slightly different form for G(q) in Eq. (2.1), the quality of
the comparison between their MD results and the experi-
mental data of Ref. 2 appears to be similar to the one re-
ported in the present work.

The presence of well-defined density modes at relative-
ly large wave vectors appears to be peculiar to liquid al-

kali metals near the melting point. Broadly speaking,
this feature can be traced back to the comparatively soft
repulsive potential and to its rather symmetrical shape
around the main minimum. ' These analogies in the dy-
namics of different systems can be made more specific if
we consider a particular potential model. For example,
in the case of the Price potential we have shown that o.

and c are the proper parameters to scale structural prop-
erties from one alkali element to another. For the
dynamical properties we clearly need an analogous time
unit; simple dimensional arguments indicate that such
time unit is provided by the aforementioned quantity
~=(m(T /c. )'

To ascertain the validity of this scaling for the dynam-
ics, in Fig. 4 we report our MD data for the inelastic
peak frequencies of S(k, co) properly scaled for the vari-
ous alkali metals. As is apparent, the consistency among
these different dispersion relations is excellent. Also, the
inelastic peak is found to disappear beyond a reduced
wave vector ko =koo. , which is approximately the same
for all the elements; the data indicate that ko —5.2,
roughly —,

' of the wave vector k* =6.8 where the struc-
ture factors S (k *

) attain their main maximum. To make
a closer contact between these simulation findings and
the data of real measurements, in Fig. 4 we have also re-
ported some scaled peak frequencies deduced from the
inelastic-neutron-scattering experiments in liquid Rb
(Ref. 3) and in liquid Cs. This comparison parallels the
one performed in Fig. 1 for S(k). The good agreement
between MD data and experimental findings points out
the validity of the scaling even for the real systems.

As expected, a similar universal behavior is found even
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FIG. 4. Dispersion relation of the scaled peak frequencies of
the dynamic structure factor for liquid alkali metals. The solid
line represents the average of our MD results; the error bars
give an idea of the maximum discrepancies observed among the
different elements. The symbols refer to the properly scaled
neutron data in Rb (circles, Ref. 3) and Cs (asterisks, Ref. 2) ~

for the detailed time evolution of the scattering functions
of the examined alkali metals at different reduced wave
vectors. In Figs. 5(a) and 5(b) we report such a compar-
ison among the various F(k",t*), where t" =t/r. The
two reduced wave vectors have been chosen to illustrate
different physical situations. In particular, the first one
(k *= l.92) probes a wave-vector region supporting well-
defined density oscillations. The latter are instead absent
for k *=6.86)k o: since this reduced wave vector is
quite near k*, one expects a pronounced "de Gennes"
slowing down of F (k *,t *

), which is indeed observed.
Broadly speaking, all the main qualitative features of

these intermediate scattering functions can be explained
within a simple viscoelastic model in which the second-
order memory function of F(k, t) is assumed to decay
with a relaxation time ~k. ' At small wave vectors this @-

dependent relaxation mechanism is likely to control an
e+ectiue increase of the sound velocity which we observe
for all the alkali elements. In the case of liquid Cs, this
positive dispersion effect has also been reported in the neu-
tron data of Ref. 2, as well as in the simulation work of
Ref. 16. Since an adequate theoretical treatment of the
relaxation channels at arbitrary k is not simple, we defer
a comprehensive discussion of these features to a subse-
quent work. For future use in Sec. IV, we only mention
that for k =k the decay rate I/rk appears to be satis-
factory estimated by the Lovesey recipe ' 1/~k
=2+6,klvr, where the quantity b, k =((cok )/(co& ) )—(cok ) is expressed in terms of the second and the
fourth frequency moments of S(k, co).
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FIG. 5. MD data for the reduced-time
dependence of the intermediate scattering
functions at two different wave vectors, (a) and
(c) k*=1.92 and (b) and (d) 6.86. The solid
and the dashed lines are the results for Na and
Cs, respectively; for the other elements the re-
sults lie in between. In (a) and (b) the full in-
termediate scattering functions are reported; in
(c) and (d) the corresponding self-contributions
are reported.
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Fs(k, t)=exp[ —k 5r (t)/6], (3.1)

To conclude this section, in Figs. 5(c) and 5(d) we also
report our MD findings for the self part of the intermedi-
ate scattering function Fs(k, t), at the same wave vectors
considered for F(k, t) As is well known, Fz(k, t) decays
monotonically at all wave vectors. Physically this time
correlation probes single-particle dynamics over different
scales of length, ranging from diffusive motion (k —+0) to
free-particle behavior at very large wave vectors. Our
MD results show that these features can be satisfactorily
accounted for by the simple Gaussian approximation

"binary" approximation. The functional form for Kz(t)
is not particularly relevant, provided that the memory
function decay is sufficiently fast. It is straightforward to
show that K~ (0)= Ao, with

n02
n

drV2U r g y
3fPl

(4.2)

representing the squared Einstein frequency. Even the
decay time rD =[~K~(0)~/2K~(0)] '~ can be evaluated
from structural quantities. Indeed after some algebra one
finds that (r =x,y, z)

where 5r (t) is the mean-square displacement of a tagged
particle in the liquid. Figures 5(c) and 5(d) clearly show
that even in this case the various reduced Fz(k*, t*)
nearly merge for the different alkalis, as indeed expected
at this stage of our analysis.

IV. TRANSPORT COEFI'ICIENTS

K~(0)=— 2' ~ f~ 8 v(r)
( )I dxhr

2

y j Jg g
~v(r) ~v(r)

Pl 0'8'
X [g' '(r, r') —g (r)g(r')],

(4.3)

At a macroscopic level the dynamics of a Quid is usual-
ly characterized by few transport coefficients, which can
be expressed as time integrals of dynamic correlation
functions by the we11-known Green-Kubo relations. As a
result, the values of the transport coefficients are affected
by the microscopic time scales ruling the decay of the as-
sociated Green-Kubo integrands. Typically, in a dense
Auid the time evolution of these integrands is found to be
characterized by an initial fast decrease (associated with a
decay mechanism provided by "binary" collisions), fol-
lowed by a long-lasting "tail." A consistent theoretical
framework by which both decay mechanisms can be ac-
counted for emerged at the beginning of the 1980s, and
combines both kinetic and mode-coupling concepts.
Adopting well-justified approximations, recently this gen-
eral approach has been made of practical use for two
transport properties, the diffusion' and the shear viscosi-
ty' coefficients. In the following, we shall summarize the
basic ideas behind this simplified approach.

A. The self-diff'usion coefticient

k~T k~TD= dt t = z=0
M o M

(4.1)

where 1((z)=f o dt e "p(t) denotes the VACF Laplace
transform. The dynamical features of the collisional
events, affecting the motion of a tagged particle, are
better understood introducing the VACF memory func-
tion K(t), defined through the Mori equation
g(z)=[z+K(z)] '. As a first attempt, we can assume
that the only relevant mechanism responsible for the time
decay of K(t) is provided from the fast binary decay
channel. In such a case the time evolution will be essen-
tially controlled by a single decay time ~D and can be ex-
pressed as K~(t)=K~(0)f (t/rD), where B stands for

The diffusion coefficient D is expressed in terms of the
normalized velocity auto-correlation function (VACF)
g(t)=(v, (0) v, (t))/(v, (0)) by the Green-Kubo rela-
tion

where the second term on the rhs can reliably be evalu-
ated by a superposition approximation for the triple dis-
tribution g' '(r, r'). ' "Therefore, all the relevant quanti-
ties ruling the decay of Kz(t) follow from static proper-
ties. In our case the reduced values of the quantities Qo
and rD turn out to be (Qo ) =Q&r =182.9 and
=~~/~=0. 092, with a maximum discrepancy =3% be-
tween the different alkalis.

The time dependence assumed for the binary memory
function leads to a simple expression for the binary
diffusion coefficient

k~T
D~ =c

rn GOAD
(4.4)

TABLE II. Diff''usion coefficients (in units of 10 ' cm /s) for
the considered liquid alkali metals at the thermodynamic points
reported in Table I. Dz and D are the value predicted by the
binary [see Eq. (4.4)] and the complete approaches, respectively;
DMD is our simulation estimate, and D,„~t is the experimental
value at melting as reported in Refs. 23(a) and 24.

Na Rb Cs

D~
D [Eq. (4.9)]
D [Eq. (4.6)]
DMD

Dexpt

6.30
4.23
4.11
4.06

4.06—4.35

4.80
3.77
3.62
3.58

3.52—3.72

3.89
2.55
2.46
2.40
2.60

3.34
2.21
2.13
2.11
2.16

where the constant c =1 is slightly dependent on the as-
sumed functional form for f. Choosing, for example,
f (x)=sech x (as in the present paper) the value of c is
exactly l. Equation (4.4) is extremely simple; however,
when applied to liquids the value of Dz is found to
overestimate substantially the actual diffusion coeffi-
cients, as shown in Table II.

The failure of the binary approach clearly indicates
that a slowly varying part in K(t) plays a relevant role in
dense systems. This tail can be accounted for by a
mode-coupling (MC) framework. As a result of the
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F(k, t)
KMc(t) =C [F,(k, t) —Fo(k, t)]

m

(4.5)

theory, the memory function can be written as
K(t) =Ks(t)+KMc(t), where the second term is associat-
ed with long-lasting behavior. A priori, in KMc(t) one
should consider all possible bilinear couplings of slow
wave-vector-dependent modes with the dynamical vari-
able under consideration [in the present case, the fiuc-
tuating force entering K(t)]. In practice, in the liquid
range the only relevant coupling turns out to be with den-
sity fluctuations with a wave vector k =k, which exhibit
a marked "de Gennes" slowing down. In such a case,
KMc(t) can be written as' "

coefficient (4.6) as well as for the intercept I.'+' The
values obtained from the diffusion coefficient by such pro-
cedure are shown in Table II. The agreement with the
simulation result DMD is excellent, the deviations being
within 2.5%%uo for all the considered elements. Moreover,
the available experimental values for D at melting are
also in fair agreement with our simulation findings.

Neglecting the small intercept I, an even simpler per-
turbative approach can be introduced, which allows one
to derive a quite reliable evaluation of D through succes-
sive "renormalizations" of the binary result DB. A first
MC correction for DB is related to the time region where
6r (t) has not yet reached a linear time regime and yields
an intermediate diffusion coefficient' ' '

+ f dt KMC(t)
DB kBT o

(4.6)

where the two distinct contributions arising from K(t)
are made apparent. In principle, KMc(t) involves both
structural and time-dependent quantities. Its evaluation
can, however, be performed by assuming simple approxi-
mations for F and F, . As already noted, in the liquid
range a viscoelastic model for F(k, t) works remarkably
well for k =k, where one finds'

Here C =(ks T/6nmn)k 2., 3 denoting the area under
the main peak of h (k)=S(k) —1 and Fo(k, t)
=exp( —k~Tk t /2m) represents the free-particle limit,
common to both F and Fz. It is easily seen that at short
times KMc(t) vanishes as t, thus confirming that the ini-
tial fast decrease is essentially governed by a binary decay
mechanism. In the opposite limit (t ))rD )

K(t)=KMc(t) ~F,F, since in such a time region both
K&(t) and Fo(t) are negligible. Then the diffusion
coefficient can be expressed as

(4.8)

where B(D)=[k D+y(k )]/Ao. In a second step the
mode-coupling effects due to the proper diffusive regime
are included leading to the final result

D-'=D, '+ k

6m neo

—27TB (D )
e 0

B(DD)
(4.9)

Even if this evaluation is less accurate then the previous
one (giving a maximum discrepancy about 6%), the sim-
plicity of the formulation is very attractive, since it in-
volves only structural quantities.

As already reported in Ref. 13, the VACF's of the
different alkali metals at melting are nearly coincident
when expressed as function of the scaled variable
t*=~/t. Thus, a scaling law is expected to be valid even
for the associated transport coefficients. Indeed, from
definition (4.1) it is easy to derive an expression for the re-
duced diffusion coefficient D *, which reads

F(k, t) =S(k )e (4.10)

—:S(k )e (4.7)

The quantity B (k) in Eq. (4.7) can easily be expressed by
using the aforementioned recipe from Ref. 21. On the
other hand, the self-intermediate scattering function is
well reproduced by the Gaussian ansatz [Eq. (3.1)].
These approximations yield a considerable simplification,
even if in order to obtain the diffusion coefficient from
Eq. (4.6) the knowledge of 5r (t) is still required.

However, just this presence of 5r (t) suggest a self-
consistent approach to evaluate the diffusion coefficient.
In fact, beyond a microscopic short-time region 6r (t)
reaches its asymptotic form 6Dt +I (I being a small inter-
cept). Substituting in Eqs. (3.1) and (4.5), we easily arrive
at a self-consistent set of equations for the diffusion

I

Note the presence of the reduced temperature T*
=ks T/E, which does not follow from simple dimension-
al arguments. This factor somehow incorporates the
sma11 deviations from perfect scaling arising from the
slightly different reduced melting temperatures. For the
different elements the simulation data yield a value of
D MD =0.0354+1.7 %.

B. The shear-viscosity coefticient

The shear-viscosity coefficient q can be expressed as
i)= f 0 dt i)(t), where i)(t) is the stress-autocorrelation
function (SACF). In a liquid the main contribution to the
SACF arises from its potential part

z,, (0)x,, (0) z, (t)x, (r)
(4.11)
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rI (t)=q(0)f(t/~„) . (4.12)

Choosing again the shape function as f (x)=sech x, we
deduce a binary viscosity coefficients qz given by

hatt)
= f dt g~(t)=g(0)r„. (4.13)

The initial value of the SACF (i.e. , the rigidity modulus
G) has a dominant potential contribution which can be
expressed as

Gt, =,4 nn dr r v "(r)+4 v'(r)
g(r) . (4.14)

where the summations run over the N particles of the
fiuid, the combination (zx) is equivalent to (xy) or (yz)
because of the spatial isotropy and v'(r)=dv/dr. In
contrast with D, g is related to collective features. For
simplicity, the subscript P will be dropped, keeping in
mind that we are always referring to this dominant po-
tential part.

A treatment similar to the one developed for E (t) can
also be applied to the SACF. ' In particular, one extracts
binary and mode-coupling contributions by writing
rI(t)=g~(t)+gMc(t), where again rlMc(t) ~t at short
times. As before, the rapidly decaying binary part can
be characterized by a single decay time ~„:

k~T
gMc(t) = k 1—

60m

Fo(k, t)

Fs(k, t)
2 2

S'(k) F(k, t)
S(k) S(k) (4.17)

The overall time evolution of gMc(t) is similar to the one
already discussed for EMc(t), with two noteworthy
differences. The first one concerns the MC relaxation
channel, which is now ruled by F (rather than FsF) as a
consequence of the collective nature of the SACF.
Second, the presence of [S'(k)] in the MC vertex implies
that the main contribution to the integral is provided by
wave vectors k slightly away from k . This means a
comparatively less marked de Gennes slowing down, and
a consequently faster decay of gMc(t).

A preliminary test of the theory can be performed
adopting for Fz and F the aforementioned approxima-
tions and using the MD data for the mean-square dis-
placement 5r (t). Being now confident in the scaling hy-
pothesis, we adopt a reduced SACF q(t*) to represent
our class of systems and report in Fig. 6 the comparison
between theoretical and simulation findings. Although
there is a slight tendency to underestimate the MD data,
the overall agreement appears to be quite satisfactory.

An evaluation of g, avoiding any resort to MD results,
is possible adopting the Vineyard approximation
Fs(k, t) =F(k, t)/S(k). The mode-coupling contribution
to the shear viscosity can be now written as

The short-time behavior of rt(t) is ruled by the decay time
r„=[ i)(0)~/2Gt ] ', where i)(0) can be written as the
sum of a pair term jj' '(0) and of another contribution
Yj '(0) connected to three-body effects. ' The explicit ex-
pression for the pair term reads

S+
2B(k )

1 ~m
2k k~T

k T
(qMc) v = +2m.[S(k ) —l]k a

30m A
1/2

(4.18)

"(&)(0) n zxv'(r)
dr ~ V

2

g(r), (4.15)

and is directly evaluable. In the superposition scheme for
g

' ' and with few other reasonable approximations,
Fj '(0) can be expressed in terms of the Einstein frequen-
cy Ao and reads

1.0 &

i)"'(0)=— f dx x [S(x)—1]
50 ~2o- o

X [3j3(x)+2j,(x)], (4.16)
0.5

where jI(x) denotes the spherical Bessel function of order
I. The reduced values of G~ and ~„ for the considered al-
kali metals are found to be Gp =Gp(o. /E)=16. 1+4%
and r„*=r„/r=0.133+2%. Substituting into Eq. (4.13),
one finds that g& underestimates the simulation findings
by nearly 40%%uo. The discrepancy is in the opposite direc-
tion to the one found for D, a feature consistent with an
approximate Stokes-Einstein relation linking the two
coefficients.

Again, the failure of the binary model points out the
relevance of additional mode-coupling contributions.
The latter can be expressed as'

0.0
0.0 0.5 1.0

= t/~

0 0 n n
1.5 Z. 0

FICi. 6. Stress-autocorrelation function in reduced-tisane
units. The dashed and the solid lines represent the predictions
of the binary and the full theories, respectively. The open cir-
cles are our MD data.
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TABLE III. Shear-viscosity coefficients (in units of mp) for
the considered liquid alkali metals at the thermodynamic points
reported in Table I. g& and g are the values predicted by the
binary and full theories, respectively. gMD is our simulation
finding, and q„pt is the experimental value as reported in Refs.
23(b) and 24. The subscript P refers to the potential part of the
shear-viscosity coefficient.

Na Rb

('9a )s
('g)p

(qMD)~
IMD

9expt

3.02
4.89
5.22
5.30
6.68

2.45
4.15
4.50
4.60

5.14-5.25

3.10
5.33
5.84
5.95

5.52 —6.44

3.23
5.40
6.07
6.16
6.50

with the notations
—x /2

S+ =1+[S(k ) —1]e

and

1+2[S(k ) —1]/e
1+[S(k ) —1]/2e

1 E~
T* (4.19)

The reduced temperature arises in Eq. (4.19) from the ini-
tial definition (4.11) of the SACF. rj* presents a value al-
most identical for all the alkali metals at melting, namely,
g*=3.245+0.4%. As a final remark, we may introduce
a sort of reduced Stokes-Einstein relationship

)fc

4m
(4.20)

where the dimensionless quantity f is such that fo is a
measure of an effective dynamical radius of the particles.

Moreover, the dimensionless quantity a depends on the
value of S(k ).' The values deduced for (gMc)~ agree
quite closely with those obtained from the direct time in-
tegration of Eq. (4.17). Considering the approximations
necessary for this collective case, the final theoretical re-
sults g=q&+gMc compare rather well with the simula-
tion findings. Table III indicates the quality of the com-
parison between theory, simulation, and the available ex-
perimental data. In view of the several uncertainty fac-
tors present in all these data, the overall agreement is to
be considered satisfactory, with the possible exception of
liquid Na.

A scaling law can be introduced here too, leading to a
reduced shear-viscosity coefficient q* defined through the
relation

Our data indicate that f=0.61 for all the alkali metals
under consideration.

V. CONCLUDING REMARKS

A first important result of the present work is the pos-
sibility of a unitary description of the liquid state proper-
ties of the "classical" alkali metals near the melting
point. In this respect, our analysis gives sound support to
earlier attempts to finding a common behavior for all
these systems. The reliability of this conclusion is based
on a comprehensive study of both structural and time-
dependent properties by a molecular-dynamics simula-
tion. Moreover, we have benefited from the availability
of new accurate experimental data.

In our computer simulations, for the alkalis we have
adopted the potential model implemented several years
ago by Price, Singwi, and Tosi. Although not expressible
in a simple analytic form, this effective pair interaction
potential turns out to provide a quite satisfactory descrip-
tion of the properties of the real systems. In particular,
the favorable comparison obtained in Sec. III between
our data and the experimental S(k, co) for liquid Cs sup-
plements earlier similar findings for liquid Rb, and indi-
cates that the potential model is sufficiently realistic.
Quantitatively, the potential is also found to "scale" to a
good approximation for the various elements, giving a
convenient starting point for ascertaining their common
features.

The second relevant aspect of our analysis deals with
two important nonequilibrium quantities, the diffusion
and shear-viscosity coefficients. Our simulation data for
the associated Green-Kubo integrands are found to
confirm the validity of the simplified mode-coupling
theories which have been developed in the last few years.
In particular, the existence of two well-separated "relaxa-
tion channels" for the appropriate dynamic correlations
is given a sound physical basis. Finally, the evaluation of
the transport coefficients themselves offers a possibility of
an overall comparison among theory, simulation and ex-
periments. The result of such a comparison appears to be
satisfactory, confirming all the aforementioned con-
clusions.

ACKNOWLEDGMENTS

The authors are grateful to C. Morkel for providing
unpublished neutron data on liquid Cs, and to R. D.
Mountain and S. K. Lai for useful correspondence. Corn-
puter simulations were performed under a convention be-
tween Consiglio Nazionale delle Ricerche and Centro di
Calcolo Elettronico dell'Italia Nord-Orientale.

N. H. March, Liquid Metals (Cambridge University Press,
Cambridge, 1990).

T. Bodensteiner, C. Morkel, P. Muller, and W. Glaser, J.
Non-Cryst. Solids, 117-118, 941 (1990); C. Morkel and T.
Bodensteiner, J. Phys: Condens. Matter 2, 251 (1990).

J. R. D. Copley and J. M. Rowe, Phys. Rev. A 9, 1656 (1974).

4R. D. Mountain, Inst. Phys. Conf. Ser. 30, 62 (1977).
5M. J. Huijben and W. van der Lugt, Acta Crystallogr. A 35,

431 (1979).
H. B. Singh and A. Holz, Phys. Rev. A 28, 1108 (1983).

7N. Matsuda, H. Mori, K. Hoshino, and M. Watabe, J. Phys. :
Condens. Matter 3, 827 (1991).



3020 BALUCANI, TORCINI, AND VALLAURI 47

D. L. Price, K. S. Singwi, and M. P. Tosi, Phys. Rev. B 2, 2983
(1970).

For a review see A. Sjolaner, in Amorphous and Liquid Materi-
als, edited by E. Luscher, G. Fritsch, and G. Jacucci (Mar-
tinus Nijhoff, Dordrecht, 1987), p. 239.
(a) U. Balucani, R. Vallauri, T. Gaskell, and S. F. Duffy, J.
Phys: Condens. Matter 2, 5015 (1990); (b) U. Balucani, S. F.
Duffy, and R. Vallauri, in Recent Deuelopments in the Physics
of Fluids, Proceedings of the International Symposium (IOP,
Oxford, 1992), Sec. 2.
U. Balucani and R. Vallauri, Phys. Rev. A 40, 2796 (1989).
U. Balucani, Mol. Phys. 71, 123 (1990).
U. Balucani, A. Torcini, and R. Vallauri, Phys. Rev. A 46,
2159 (1992).
U. Balucani, R. Vallauri, and T. Gaskell, Phys. Rev. A 37,
3386 (1988).

A. Rahman, Phys. Rev. A 9, 1667 (1974).
S. Kambayashi and G. Kahl, Europhys. Lett. 18, 421 (1992).

t~W. van der Lugt and B. P. Alblas, in Handbook of Thermo

dynamic and Transport Properties of Alkali Metals, edited by
R. W. Ohse (Blackwell Scientific, Oxford, 1985), p. 299.
J. W. E. Lewis and S. W. Lovesey, J. Phys. C 10, 3221 (1977).
J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-
Hill, New York, 1980).

~ U. Balucani, G. Ruocco, A. Torcini, and R. Vallauri, Phys.
Rev. E (to be published).

2 S. W. Lovesey, J. Phys. C 6, 1856 (1973).
2 L. Sjogren and A. Sjolander, J. Phys. C 12, 4369 (1979); L.

Sjogren, ibid. 13, 705 (1980).
23(a) M. Gerl and A. Bruson, Handbook of Thermodynamic and

Transport Properties of Alkali Metals (Ref. 17), p. 843; (b) E.
E. Shpil rain, K. A. Yakimovich, V. A. Fomin, S. N. Sko-
vorodjko, and A. G. Mozgovoi, ibid. , p. 753.
Transportphanomene I, edited by K. Schafer, Landolt-
Borstein, Zahlenwerte und Funktionen aus Physik, Chemic,
Astronomic, Geophysik und Technik, Pt. 5a (Springer-
Verlag, Berlin, 1969).


