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The structural properties of body-centered-cubic Mo are studied using a plane-wave basis and norm-
conserving pseudopotential scheme with partial-core correction. We find that the equilibrium lattice
constants, bulk moduli, and cohesive energies converge very rapidly as the partial-core cutoff radius de-
creases and thus a relatively large partial-core cutoff radius (and the corresponding smoother partial-
core density) can be used in solid-state calculations. In addition, since the numerical description of the
structural properties converges with the present plane-wave basis with the kinetic-energy cutoff up to

E

pw
ing nonorthogonal bases.

I. INTRODUCTION

Successful applications of norm-conserving nonlocal
pseudopotential methods"? to solid systems rely on a
good transferability of the atomic pseudopotentials.
Among several efforts to improve the transferability,’3™>
the partial-core-correction scheme proposed by Louie
et al.> greatly enhanced the application range of the
pseudopotential methods. In that scheme, the nonlinear
core-valence exchange and correlation interaction is
properly taken care of by including the approximated
core electron density in the solid-state calculations. This
treatment leads to a significant improvement in the calcu-
lated structural and electronic properties of solids where
there is a large overlap between the core and valence elec-
tron densities: alkali® and transition metals,’ and where
the valence electron density is much different from the
reference one of the free atom: ferromagnetic transition
metals® or systems of a large charge transfer between the
composite atoms.’

In the present study, we employ the partial-core-
correction scheme to study the structural properties of
the body-centered-cubic (bcc) Mo, where the localized d-
valence electrons overlap the core ones significantly. The
purpose of this work is to test the effect of the partial-
core correction on the equilibrium structural properties
of solids in a systematic way: we calculate the equilibri-
um lattice constant, bulk modulus, and cohesive energy
of bcc Mo as a function of the partial-core cutoff radius.
In this way, we can determine an optimal partial-core ra-
dius for given elements where the solid-state structural
properties are fully converged and the partial-core densi-
ty remains smooth for easy expansion in momentum
space.

In addition, unlike the previous pseudopotential stud-
ies of Mo, 1%!! we expand the localized d-electron wave
functions in a physically complete plane-wave basis (PW)
in order to remove inaccuracy resulting from the use of
nonorthogonal bases like linear combination of atomic
orbitals (LCAO) or mixed basis (MB). Hence, our results
will be useful in checking the incompleteness of the bases
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=50 Ry, our results are useful for isolating the convergence problem in the previous studies employ-

employed in the previous studies.

The rest of the paper is organized as follows. The
partial-core pseudopotential scheme is briefly reviewed in
Sec. II. In Sec. III, we present the main results of the
study and compare them with the previous theoretical
and experimental results and finally, conclusions are
given in Sec. IV.

II. PARTIAL-CORE PSEUDOPOTENTIAL SCHEME

The nonlocal ionic pseudopotentials used in our calcu-
lations are generated by the generalized norm-conserving
pseudopotential scheme of Hamann et al.»* Following
the scheme of Louie et al.? the bare-ionic pseudopoten-
tial for a given angular momentum component / is con-
structed by

Vilon(r):V§CR(r)_‘VH[pu]_VXC[pc+pu] > (1)

where Vg is the screened atomic pseudopotential, V is
the Hartree potential, and Vyxc is the nonlinear
exchange-correlation potential for the total charge densi-
ty. Since the dependence of the ionic pseudopotentials on
the valence configuration is eliminated by subtracting the
total exchange-correlation potential from the screened
atomic potentials, this scheme greatly improves the
transferability of the atomic pseudopotentials.

The core charge density p, in Eq. (1) is practically re-
placed by a partial-core charge density p,, which
represents well the core charge density where the core-
valence overlap is large, but is much smoother than p, in
the core region. We used the partial-core charge density
proposed by Louie et al.’, which is equal to the core
charge density outside a partial-core cutoff radius R, and,
inside R,, the spherical Bessel function j,(#), which
matches the core charge density at R_.

In our calculations, the local-density approximation'?
(LDA) of Ceperley and Alder as parametrized by Perdew
and Zunger!3 is used for the electron exchange and corre-
lation energy. The wave functions are expanded in a
plane-wave-basis set. The wave functions and the charge
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densities for each iteration are calculated at a uniform
grid of 29k points in an irreducible Brillouin zone with
the use of a Gaussian broadening scheme.!® We calculate
the total energy using a momentum space representa-
tion'* and carry out the self-consistent iteration until the
total energy becomes stable within 107° Ry/atom.

III. RESULTS

To check the convergence with respect to the plane-
wave basis, we have studied the ground-state properties
of bcc Mo using three different plane-wave basis cutoff
energies: E,, =30, 40, and 50 Ry. Total energies are cal-
culated at six different lattice constants ranging from
0.92a, to 1.02a,, where a, is the experimental lattice
constant (3.147 A). The resulting energy-volume curves
fitted by Murnaghan’s equation of state!> are given in
Fig. 1. We find that increasing E,,, from 40 Ry to 50 Ry
lowers the total energies by about 2 mRy. The calculated
structural properties are insensitive to this uniform shift
of the energy-volume curve. The lattice constants are
3.05, 3.03, and 3.03 A; the bulk moduli are 2.78, 2.70,
and 2.71 Mbar; the cohesive energies16 are 7.52, 8.12, and
8.15 eV, for E,, =130, 40, and 50 Ry, respectively. From
these results, we consider that the structural properties
are properly converged at E,, =40 Ry and use this cutoff
energy in the following calculations.

In order to test the effect of the partial-core correction
on the solid-state properties of Mo, we calculated the
structural properties using several different partial-core
cutoff radii (R,). Figure 2 shows the partial-core charge
densities with R, =3.0, 2.5, 1.75, and 1.25 a.u. Total en-
ergies are calculated as a function of atomic volume for
each partial-core correction. The equilibrium lattice con-
stants, bulk moduli, and cohesive energies are obtained
from Murnaghan’s equation of state and are summarized
in Fig. 3 as a function of the used partial-core cutoff ra-
dius. We find that the partial-core correction increases
the lattice constant by 1.4% and the bulk modulus by
3.3%, and decreases the cohesive energy by 5.2% as com-
pared to those with no partial-core correction.

The structural properties in Fig. 3 fully converge at
R,=1.75 a.u.,, but we note that good convergence is
achieved at a greater value of R,=2.5 a.u. This rapid
convergence of the bulk structural properties as a func-

-16.26 — T T T T

.w /.
Z-1629 | ~— "
el
é /3
216321 8 ) e an
= \ s
w=§=53/

-16.35

092 094 096 098 1.00 1.02
LATTICE CONSTANT a/a,

FIG. 1. Total energy of Mo as a function of lattice constant,
for three different plane-wave cutoff energies: (a) E,, =30 Ry,
(b) E,, =40 Ry, and (c) E,, =50 Ry. The solid lines represent
the fitting to Murnaghan’s equation of state. a, is the experi-
mental lattice constant (3.147 A).
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FIG. 2. Radial charge densities r’o(r) for the core (p.) and
valence (p,) electrons of the Mo atom. Four different partial-
core charge densities (p,.= dashed lines) with partial-core
cutoff radii R,=3.0, 2.5, 1.75, and 1.25 a.u. are chosen to ap-
proximate the core charge density.

tion of R, is remarkable (see Figs. 2 and 3). As a refer-
ence, the R, value for Mo recommended by Louie et al.*
is about R, =1.4-1.7 a.u. where the core charge density
is one to two times larger than the valence charge densi-
ty. The present result demonstrates in a systematic way
that a relatively large partial-core cutoff radius is allowed
in the solid-state pseudopotential calculations,!” which is
useful in the momentum space expansion of the corre-
spondingly less localized partial-core density.

We compare the present structural properties of bcc
Mo with those of the previous norm-conserving pseudo-
potential theories,”!%!!  linear-augmented-plane-wave
(LAPW) method'® and the experiments'®?° in Table I.
Note that all theories used different basis sets and LDA
functionals. Our cohesive energy overestimates the ex-
perimental one by 0.88 eV and is in good agreement with
that of pseudopotential III'! and LAPW.!® As is well
known, the LDA calculations tend to overestimate the
cohesive energy by about 1 eV for transition metals. In
this sense, as previously pointed out by Zhu et al.,!! too
small cohesive energies of pseudopotential I'° and pseu-
dopotential II” may be attributed to the basis incomplete-
ness. In spite of its good agreement with the LAPW re-
sult, however, the cohesive energy of pseudopotential III
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FIG. 3. Bulk structural properties of bcc Mo as a function of
partial-core cutoff radius (R.): (a) lattice constant, (b) bulk
modulus, and (c) cohesive energy. We included the values cal-
culated without partial-core correction, for convenience, at
R.=4.0 a.u. as a reference.
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TABLE I. The calculated lattice constant a, bulk modulus B, and cohesive energy E. in comparison
with the previous calculations and experiments. The first term in the parenthesis represents the used
basis set (see text); the second, the used LDA form [H-L, Hedin and Lundqvist (Ref. 21), C-A, Cepere-
ley and Alder (Ref. 13), W, Wigner (Ref. 22)]; PC in the third stands for partial core.

a

B E,

(A) (Mbar) (eV/atom)

Pseudopotential I* 3.14 2.85 6.64
(MB, H-L, no PC)

Pseudopotential II° 3.09 2.78 7.14
(LCAO, H-L, PC)

Pseudopotential III° 3.10 2.71 7.78
(MB, W, no PC)

Present pseudopotential 3.07 2.79 7.70
(PW, C-A, PC)

All electron? 3.13 2.91 7.78
(LAPW, W)

Experiments 3.14° 2.73f 6.82f

2Reference 10 (Fu and Ho, 1983).
YReference 7 (Chan et al., 1986).
‘Reference 11 (Zhu et al., 1987).

also reflects the same problem of basis incompleteness,
since it was calculated without using the partial-core
correction. In the present plane-wave-basis calculations,
a relatively large cohesive energy (8.12 eV) was cured by
the partial-core scheme (see Fig. 3) which decreased it by
as much as 0.42 eV. We expect from the above result
that a partial-core correction of pseudopotential III prob-
ably lowers the cohesive energy to the level of pseudopo-
tential II. Hence, we can say that all the previous pseudo-
potential studies have the common problem of basis in-
completeness.

Since our calculations agree well in bulk moduli with
the other theories and experiments and the effect of the
partial-core correction is not notable, it is hard to quanti-
fy the improvement due to the partial core or the plane-
wave basis. On the other hand, in spite of a large in-
crease due to the partial core, the present lattice constant
is somewhat shorter than those of the other theories and
experiments. The lattice constant, however, turns out to
be sensitive to the employed LDA functionals.®2*2* The
Ceperley-Alder form (used in the present study) usually
results in a shorter lattice constant and with the Wigner
form, a longer one results. This trend explains the
difference in lattice constant between the LAPW and our
result. In conclusion, within the limitation of the LDA,
the present plane-wave-basis partial-core pseudopotential

dReference 18 (Mattheiss and Hamann, 1986).
‘Reference 19.
fReference 20.

results on the lattice constant, bulk modulus, and
cohesive energy of bcc Mo are in good agreement with
those of the LAPW and experiments.

IV. SUMMARY

We studied the ground-state properties of the bcc Mo
using the norm-conserving pseudopotentials with the
partial-core correction and plane-wave basis set. We
found that the equilibrium lattice constants, bulk moduli,
and cohesive energies converge rapidly as the partial-core
cutoff radius decreases, and the partial-core correction re-
sults in the improved structural properties, which are in
better agreement with the all-electron theory and experi-
ments. Moreover, since the calculations were carried out
using a complete plane-wave basis set, our results were
useful to isolate the convergence problem in the incom-
plete Gaussian or mixed basis calculations.
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