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We present a systematic experimental study on vortex dynamics in two-dimensional Josephson-
junction arrays built of underdamped single junctions in which charging effects can be neglected. Arrays
in both square and triangular geometries are measured in small magnetic fields at low temperatures. We
find that the whole picture of the spatial dynamics of vortices in two-dimensional arrays is analogous to
the dynamics of the phase in a single junction. We study in detail the depinning current, the flux-flow
resistance, and the maximum velocity of propagating vortices. Our data show that vortices in under-
damped arrays, when driven with a current, experience more damping than can be explained by Ohmic-
dissipation alone. A simple semiquantitative model, in which the energy lost to junctions in the wake of
the moving vortices is taken into account, explains our data very well. The model shows that vortices
will always experience damping no matter how underdamped the single junctions are.

I. INTRODUCTION

Two-dimensional (2D) arrays of superconducting is-
lands weakly connected by Josephson junction have been
studied extensively for the past ten years.! There are two
important energy scales in Josephson-junction arrays, the
Josephson coupling energy E; and the charging energy
E.. Arrays with E; >>E are classical arrays in which
vortex dynamics plays a crucial role. Vortices move un-
der the influence of a driving current and they can be
detected as a voltage when passing between two voltage
probes. Even in zero field, vortices may be present. The
Kosterlitz-Thouless-Berezinskii (KTB) phase transition?
separates a resistive high-temperature regime with free
vortices and antivortices from a superconductive low-
temperature regime where all vortices are bound in
vortex-antivortex pairs. The transition takes place when
kgTxrg=E;. For high driving currents below Tk g,
single vortices may be present due to current induced
pairbreaking.

In a magnetic field at temperatures below T'xrg and for
low currents, there are only vortices of one sign. Their
number is determined by the applied magnetic field, in
such a way that in a large array one vortex is present per
1/f cells. The frustration parameter f measures the
strength of the applied field and is defined as the applied
flux per cell divided by the flux quantum. At fractional
values of f, the magnetically induced vortices form a lat-
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tice that is commensurate to the underlying junction net-
work. Resistance dips can be seen at these values, as this
interaction with the lattice effectively pins the vortices.
At integer values of f, the behavior of junction arrays is
expected to be same as for f =0, indicating that the resis-
tance oscillates as a function of f with a period f=1.
For small fields (0 < f << 1) the mutual interactions be-
tween vortices and the collective interactions between the
vortex lattice and the underlying lattice are small. In-
dependent vortices experience the 2D periodic lattice po-
tential so that vortices moving from one cell to the next
have to overcome® a geometry dependent energy barrier
Uy..e Below Tyrg vortices are mobile as long as
T > Uy, /kp, and a resistance can be detected across the
array. For lower temperatures, vortices are pinned in the
lattice and flux flow now occurs at currents above a cer-
tain depinning current that is related to U,,,.

Most experiments in junction arrays have been per-
formed in proximity-coupled arrays of
superconductor—normal-metal-superconductor  (SNS)
junctions.*> These arrays are always overdamped (the
junction McCumber parameter S, ;<<1) and vortex
motion is viscous. Arrays made of superconductor-
insulator-superconductor (SIS) tunnel junctions® ™ can be
made in the opposite underdamped limit (B, ; >>1). Vor-
tices can now be viewed as particles with a mass®!° and
nonviscous motion of vortices should be expected.'! ™13
Recent experiments’ on arrays of underdamped SIS tun-
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nel junctions have clearly shown the existence of a mass
term in the equation of motion. More evidence for the
existence of the vortex mass has been found in an experi-
ment!* with ballistic vortex propagation in a 2D array
where no driving currents are applied. However, when
driven with a current, experiments show that vortices ex-
perience more damping”® than can be explained from
Ohmic-dissipation in a Bardeen-Stephen-like flux-flow
picture. To explain the experimental results, one has to
assume that there is an additional damping mechanism.
It has been suggested that moving vortices lose energy to
the junctions in their wake and this energy oscillates at
the plasma frequency.” Recent computer simulations by
Bobbert!> have qualitatively verified this picture.

In this paper, we present a systematic experimental
study of the dynamics of vortices in square and triangular
underdamped arrays in which charging effects can be
neglected. The arrays are fabricated of all-aluminum
high-quality Josephson tunnel junctions. We measure
current-voltage characteristics at low temperatures in a
small magnetic field. For low-resistance samples (100 Q)
depinning currents are in good agreement with the
theoretical predictions. For high-resistance samples (1
kQ and higher) we find that the apparent depinning
current is equal to the retrapping current in a similar way
as in the single junction theory. We also study the flux-
flow regime for currents larger than the depinning
current. We find that the dominant viscosity for 3, ;>1
is indeed determined by the energy lost in the oscillations
in the wake of the vortex. A simple semiquantitative
model for the effective additional viscosity term due to
these oscillations is in good agreement with our data.
For even higher currents, jumps in the voltage occur,
defining a maximum velocity for the propagation of sin-
gle vortices.

II. VORTICES IN SQUARE AND TRIANGULAR ARRAYS

Josephson-junction arrays consist of superconducting
islands arranged in a regular lattice. The islands are
weakly coupled to each other by Josephson junctions, as
illustrated schematically in Fig. 1. In a square array,
each island is connected to four neighbors; in a triangular
array each island is connected to six neighbors. A cell of
the array is shown in grey. In a triangular array, this is
not the primitive cell, which is twice as large. The area
(S) of a cell is s* in the square array and 1s? in the tri-
angular array, where s is the spacing between two cells in
the x direction. There is an anisotropy in the triangular
array. We define the average lattice constant p to be V'S .
For a square array p=s and for a triangular array
p=s/V(2).

Below the BCS transition temperature, the islands are
superconducting and the amplitude of the order parame-
ter is constant over the whole array. Even when magnet-
ic fields of a few flux quanta per cell are applied, the am-
plitude of the order parameter remains the same. Only
fluctuations of its phase are relevant. In zero magnetic
field the interaction energy U between two adjacent is-
lands, U,,, =E,cos(é,, —¢,). Here, ¢, and ¢, are the
phases of the order parameter of islands m and n, respec-
tively. The Josephson coupling energy E; is proportional

FIG. 1. A schematic drawing of a square (A) and a triangular
(B) Josephson-junction array. The open squares are the super-
conducting islands and the crosses the Josephson junctions.
The shaded areas mark cells of the arrays.

to the junction critical current i, E; =®i, /(2m), where
P, is the flux quantum, ;=4 /(2e). A phase difference
across two adjacent nodes leads to a supercurrents
through the junction connecting these two islands, which
is given by i, =i sin(¢,, — ¢, ).

A perpendicular magnetic field introduces an addition-
al phase difference 4,,, across the junction connecting is-
lands m and n. The quantity 4,,, is proportional to the
line integral of the vector potential A,
A,,, =27 /®y) [" Adl. In every cell of the array, sum-
mation of the 4,,,’s must give the applied flux, i.e.,

2 App = =2rf, (1)

cell

where B is the magnetic field perpendicular to the plane
of islands and junctions. The interaction energy and the
supercurrents through the junctions are now determined
by the gauge invariant phase difference (¢,, —¢, — 4,,,,).
Vortices are special excitations in the configuration of
the phases ¢,. The definition of a vortex (antivortex) is
that following a closed contour around it, the sum of all
the phase differences is 27 (—27). In junction arrays,
the 2D flux penetration depth is usually much larger than
the lattice constant. The magnetic field is therefore al-



47 VORTEX DYNAMICS IN TWO-DIMENSIONAL UNDERDAMPED, . .. 297

most uniform over the whole array are indicating that
there is not one flux quantum in a particular cell. The
defining aspect of vortices in junction arrays is therefore
not the flux, but the distribution of phases. In zero field
one can use the arctan analytical expression>> to approxi-
mate the phase ¢, on island n with coordinates (x,,,y,),

¢, =arctan[(y, —yy)/(x, —x,)] . (2)

In this approximation the phases point radially outward
from the vortex center at (xy,y,). Thus, a singularity
occurs in one particular cell and even within that cell the
position of the vortex center can be defined with the
arctan expression.

In the arctan approximation, currents around a vortex
decay inversely with the distance » from its core.
Vortex-vortex interactions have a long-distance character
as they are proportional to In(#). The interaction of vor-
tices with open edges can be viewed as the attraction of a
vortex with its image antivortex outside the array. In
contrast, superconducting banks repel vortices, because
the interaction with these edges can be viewed as the
repulsion of the vortex with its image outside the array.

In underdamped arrays, one can attribute a mass to the
vortices. This mass is associated with the electric energy
a moving vortex generates. To calculate the mass in a
quasistatic approach, equate the kinetic energy of a vor-
tex moving with a constant terminal velocity u to the
sum of the electric energy of all junctions,

IMu*=1C 3 VE, . 3)
m,n
Here, C is the junction capacitance. For a vortex moving
from the middle of one cell to the next, the voltage across
the junction connecting islands m and n, V,,,, can be es-
timated quasistatically to be

Vyon =(Do/2)u /p )b, —,) .

Using the arctan approximation, all the phase differences
in the array can be determined numerically. In doing so
for a square and triangular array, one finds the quasistat-
ic vortex mass, M, to be

M,=®C/2S . 4)

This result is the same as found by others.!® In the calcu-
lation, we have ignored the contribution proportional to
the island capacitance to ground (i.e., the quasiparticle
term). Recent theoretical calculations'® indicate that in a
dynamic situation the effective vortex mass can be higher
by almost an order of magnitude.

Vortices in arrays move under the influence of a driv-
ing current in a direction perpendicular to the current
flow. The Lorentz force associated with a driving current
per junction (iy), F; =®,i, /p. Vortices that move from
one cell to the next have to overcome an energy barrier.
The height of this barrier has been determined numerical-
ly by Lobb, Abraham, and Tinkham.?® They compared
the sum of the interaction energies when the vortex is just
in the middle of a cell with the one when the vortex is
just in between two islands. Their quasistatic calculation

gives, Up,, =V E;(T), where ¥y =0.2 for a large square ar-
ray, and Y =0.043 for a large triangular array. For a
current applied in the y direction, the potential U a vor-
tex feels when moving in the perpendicular x direction,
can well be approximated by

U(x)=—1yE;(T)cos(2mx /p)—Pyizx /p .

A moving vortex also experiences a viscous drag force,
F,=nu, where 7 is the viscosity coefficient. In a
Bardeen-Stephen-like model 755 has been determined.!!
To calculate the average viscosity, one equates the energy
a vortex dissipates per unit time when moving with a ter-
minal velocity u through a viscous medium with viscosity
7gs, to the sum of the power dissipated in each island,
ie.,

npsu’= 3 V2, /r. , (5)
m,n
where 7, is the effective shunt resistance of each junction.
With the assumption that the r,’s are the same for all
junctions in the array, the summation is the same as in
the calculation of the vortex mass. Hence, the result of
the average Bardeen-Stephen viscosity is

_%% 1

= 6
MBs 25 7, (6)

In overdamped arrays, r, is the normal-state resistance.
In underdamped arrays of high-quality SIS junctions, r,
is the effective voltage-bias resistance, which is dependent
on the voltage and the temperature. For low tempera-
tures, r, can be the subgap resistance, which is orders of
magnitude higher than the normal-state resistance, indi-
cating that vortices would then move in a medium with
very little damping.

We can now combine all the previous obtained results
to write down the equation of motion for a single vortex
moving along a row of cells in the x direction

ig
)

27X

M,x +nBsx=——2[—,’1E, @)

1 .
—ysi
2 s )
This equation is valid in both the square and the triangu-
lar array. By making the substitution 27x /p —¢, one
can write Eq. (7) in the same form as the equation for the
phase difference across a single junction

@32 C. ®2

N .
(2m)* 2 ¢ (27)? 2r, ¢

——Log, lsin(g)——2 (8)
YR (1/2)7i,

2

From this equation, one sees that the vortex dynamics in
2D arrays is equivalent to the problem of the phase
difference across a single resistively and capacitively
shunted junction (RCSJ) with critical current yi, /2, ca-
pacitance C /2, and shunt resistance 2r,. In analogy with
single junctions, a McCumber parameter for vortices
B, (r.)=y2mi r’C /®, can be defined as well as an oscil-
lation frequency o, , =1/y2mi./®,C. In square arrays
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B,y =0.23,; and w, ,=0.440, ;, where 3 ; is the junc-

pJ’
tion McCumber parameter, 3. j(re)=2n'icr,_,2C /Py, and
w,; is the single junction plasma frequency,
w, =V 2w, /P,C. In a  triangular  array,

B.,,=0.04383_ ; and w, ,=0.21w, ;.

The analogy between vortex dynamics and phase dy-
namics shows that at low temperatures the depinning
current for vortices is equal to yi. /2. (As expected, the
same answer is found by equating the Lorentz force to
the maximum restoring force of the periodic lattice po-
tential). Above the depinning current, vortex motion is
expected to occur and the current-voltage characteristic
to have a similar shape as the one of a single RCSJ. For
underdamped vortex motion (B, > 1), the mass term in
the equation of motion will lead to hysteretic vortex
motion.

To calculate the flux-flow resistance, we consider a
junction array of M cells long and N cells wide. The volt-
age due to K-independent (small fields) vortices crossing
the array with a terminal velocity u is given by

_ _(_Eo_ 2rukK
27 Np

With a 2D vortex density n,=K /(MNS)=f/S, the
voltage can be written as

D Muf
-

9)

V=®Mpun,= (10)
For high currents, where the influence of the periodic po-
tential is small, the equation of motion reduces to
F,=F,, giving (u/iy)=®y/(ngep). With Eq. (6), one
finds the flux-flow resistance due to a driving current
through the array I, =(N +1)i; to be

_V_ M
Rff Id 2fN+1re.

(11

III. ARRAY FABRICATION

Our all-aluminum junction arrays are made with a sha-
dow evaporation technique. The key point of this tech-
nique is to make a mask with free hanging submicron
bridges, under which Josephson tunnel junctions are
formed by evaporation of superconducting material from
two opposite angles. Our masks are made in a trilayer-
resist system consisting of a bottom layer of 500 nm soft-
baked (120°C) AZ-1470J photoresist, and a top layer of
200 nm polymethyl methacrylate (PMMA)-10 resist
baked at 105°C. The two resist layers are separated by a
50-80 nm thick germanium layer, evaporated on a heat-
ed substrate of 100°C. Patterns are made by direct writ-
ing in the PMMA resist with an electron-beam pattern
generator. After developing, the pattern is transferred
into the germanium layer by anisotropic reactive-ion
etching in a SF¢ plasma. The soft-baked AZ resist is iso-
tropically reactive-ion etched during 12 min in oxygen of
200 mbar. Under the small details of the germanium
mask all the AZ resist is removed (isotropic etching) and
free hanging bridges are formed. Before evaporation, the
samples are wet etched in u posit AZ developer during 10

sec, in order to remove small pieces of resist on the sub-
strate.

Aluminum is evaporated in a conventional, diffusion
pumped vacuum system with a loadlock at a rate of
0.3-0.4 nm/sec. The pressure before evaporation is typi-
cally 2X 1077 Torr and 5 to 10X 10~7 Torr during eva-
poration. The first layer, evaporated at an angle of 45°
with the substrate normal, is 28.3 nm thick, and the
second layer, evaporated at an angle of —45°, is 56.6 nm.
The BCS transition temperatures of these aluminum lay-
ers lie between 1.25 and 1.28 K, indicating that the
aluminum is of good quality. In between the two eva-
poration steps, the first aluminum layer is in situ thermal-
ly oxidized in the load lock during 5 min. During the ox-
idization, the substrate holder is cooled with water of a
temperature of 9-12°C. For our evaporation system and
these temperatures, we find that the normal-state junc-
tion resistivity (p) depends on the oxidation pressure
(P,,) roughly as p=3.8 X 10" P25 where p is expressed
in Qm~? and P, in Torr. After the samples are removed
out of the vacuum chamber, they are cleared by liftoff in
acetone.

IV. ARRAY CHARACTERISTICS

Both square and triangular arrays of different sizes
have been fabricated. Square arrays are 300 cells long
(M =300) and 100 cells wide (N =100) or have M =200
and N =40. One cell in the square array has an area (S)
of 50 pum2 The triangular arrays have L =100 and
W =40, and a cell area of 25 um?. The junctions areas
(A) lie between 0.35 and 1.6 um? When using the sha-
dow evaporation technique, it is inevitable that the is-
lands themselves are also junctions. However, the sizes
of the islands are at least a factor of 15 larger than the
small junctions connecting neighboring islands. The crit-
ical current of these islands junctions will be greater by
the same amount, indicating that their influence will be
very small.

Critical currents measured on single junctions
showed very good agreement with the Ambegaokar-
Baratoff relation for ideal tunnel junctions,

i 4_p(T)r,=[7A(T)/2eJtanh[A(T)/(2k5T)] .

The quantity A(T) is the temperature-dependent quasi-
particle excitation gap and r, is the normal-state junction
resistance. We assume that the i.’s of the junctions in the
array are given by this Ambegaokar-Baratoff relation
with a BCS transition temperature T, of 1.25 K. The ar-
ray critical current I, is defined as I, =(N+1)i.. We
determine r, from the array resistance R, measured at
42 K, r,=R,(N+1)/(M) in both the square and tri-
angular array. For low temperatures (7 <0.5T,), i, is al-
most temperature independent. At T'=0, the i r,- prod-
uct is equal to 300 uV. For T <0.5T,, i, =300 uV/r, is
a useful approximation.

The junction capacitance C is estimated with the paral-
lel plate formula, C =¢y€, 4 /t, where €, is the permittivi-
ty of free space, €, is the dielectric constant of the bar-
rier, and ¢ is the barrier thickness. For our aluminum
junctions, we estimate t/€, to be 0.1 nm, leading to a

18
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TABLE 1. Sample characteristics at low temperatures for square (S) and triangular (T) arrays. M is
the length of the arrays expressed in cells, r, is the normal-state junction resistance, C is the junction
capacitance, f3,,,(7,) is the vortex McCumber parameter with r, as shunt resistance, Uy,, is the vortex-
energy barrier for crossing from one cell to the next, E; /E is the ratio of the Josephson coupling ener-
gy to the charging energy, and A /p is the ratio of the 2D magnetic penetration depth to the lattice con-

stant p.
T C Upar 7k

No. Sample M (kQ) (fF) Beo(ry) (K) E;/E; A/p
S1 V2 300 0.043 160 1.3 33.1 29X 10° 5
S2 V3 300 0.08 160 2.3 18 15x10° 10
S3 K2 100 0.08 160 2.3 18 15X 10° 10
S4 K1 100 0.011 160 32 13 11x10° 14
S5 MQT2 300 3.5 35 22 0.4 76 440
S6 Vo6 300 3.7 80 54 0.4 166 460
S7 K4 100 14.0 160 408 0.1 88 1.8X10°
S8 V8 300 20.6 160 600 0.07 60 2.6X10°
S9 A\ 300 48 80 700 0.03 13 5.8X10°
T1 DS 100 0.044 65 0.11 7 11x10° 8
T2 D4 100 0.45 65 1.1 0.7 1.1x10° 79
T3 D8 100 0.78 65 2.0 0.4 640 137
T4 D2 100 3.08 65 7.8 0.1 162 540
TS D7 100 3.96 65 10.1 0.08 126 690

specific junction capacitance of about 100 fF/(um).? We
estimate the specific island capacitance to ground to be
0.01 fF/(um).? For our arrays, C is at least two orders of
magnitude larger than the capacitance to ground.

The dissipation in the junction is characterized by the
shunt resistance r,, which is in general a function of tem-
perature and voltage. In an ideal junction, dissipation is
determined by tunneling of quasiparticles. For voltages
larger than 2A(T)/e, there is enough energy to create
quasiparticles by pairbreaking and therefore r,=r,.
For voltages smaller than 2A(T)/e, the number of
quasiparticles is determined by thermal activation,
r, <r,exp(A(T)/kgT). At T=T,. r,=r,, but for
T << T,, r, of our aluminum junctions is orders of magni-
tude larger than r,.

We estimate the geometrical inductance L, of our cells
to be about 4 pH. The junction inductance L; is inverse-
ly proportional to the junction critical current,
L/ (T)=®,/[2mi (T)]. Atlow temperatures (T <0.5T,),
we can write L;=r, (in Ohms) X 1.1 pH. For our arrays
with r,>40 Q, L,i, /®Py=(L,/2mL;)<0.02, indicating
that self-field effects do not play an important role
in our arrays. A similar conclusion can be drawn by
looking at the 2D magnetic penetration depth
MT)=®y/[2mpyi (T)]. Our arrays have A>5p even at
the lowest temperatures.

In Table I, we summarize the characteristics of the ar-
rays that have been measured. All arrays have
B.(r,)>1and E; >E.

V. EXPERIMENTAL RESULTS

Arrays are measured in a dilution refrigerator down to
5 mK and are placed inside u metal and leads shields.
Small perpendicular fields can be applied by two coils of
superconducting wire placed in a Helmholtz

configuration. Electrical leads are filtered with rfi feed-
through filters at the entrance of the cryostat. For sam-
ples with a resistance higher than 200 Q, additional filter-
ing is applied in the mixing chamber at the low-
temperature environment by means of RC and mi-
crowave filters.

Before discussing the current-voltage characteristics,
we show the resistance of a square and triangular array
measured as a function of applied field. These plots give
an impression of the quality of the arrays. The result for
a normalized temperature of 7=kzT/E;(T)=0.2 is
shown in Fig. 2. Very pronounced minima can be found
for fractional values of f. For the square array, the most
pronounced dip occurs at f=1, followed by dips at
f=x4,+%, at f=+%,+%, and at f==1,+3. For the
triangular array, the most pronounced dip occurs again
at f=x=1, but the dips at f==1,4+3 are now deeper
than the ones at f==1,+2. The places where the dips
occur and their relative strength as measured by the
depth of the dips, are in very good agreement with
ground-state energy calculations of square'® and triangu-
lar?® arrays.

In Fig. 3, we give typical examples of low-temperature
current-voltage characteristics measured at small fields.
The curve in Fig. 3(a) is taken from sample T1, in which
B.,(r,)<1. The curve clearly shows the curvature
characteristic for a resistively shunted junction (RSJ). In
Fig. 3(b) when B_,(r,)>1, we see hysteresis for small
voltages due to the inertial mass of vortices. Once ac-
celerated, vortices with a mass keep on moving for lower
bias currents. This kind of hysteresis is found for temper-
atures 7 <0.5 K. (Triangular arrays with B, (r,)>1
show the same kind of hysteresis.) Surprisingly, we do
not see the RSJ-like curvature anymore, and the flux-flow
region in the I-V characteristic is almost linear with an
offset of the asymptote in the positive current direction.



300 VAN DER ZANT, FRITSCHY, ORLANDO, AND MOO1J 47
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FIG. 2. The resistance of a triangular (upper curve, sample
T4) and a square (lower curve, S5) Josephson-junction array
measured as a function of magnetic field at a normalized tem-
perature of 0.2. The figure shows the commensurate vortex lat-
tices at fractional values of f as dips in the resistance.

In Fig. 3(c) the I-V characteristic of a high-Ohmic array
is shown. The flux-flow region is again almost linear, but
no hysteresis is observed. The low-current linear resis-
tance in Fig. 3(c) does not vanish at T=10 mK. This
might be due to quantum tunneling of vortices as dis-
cussed elsewhere.” We will not consider this low-current
resistanc in this paper.

At higher currents and voltages for all samples in Fig.
. 3, the voltage jumps in steps to the number of rows times
the gap voltage. The first jump starts at the solid circles
in Fig. 3. Each step is associated with the switching of a
row across the width of the array to the voltage carrying
state.! The steps occur in a very narrow current region
of at most a few percent of the maximum current, indi-
cating that the variation in the critical current of cross
rows of (N +1) junctions is small. In discussing our re-
sults in more detail, we divide the remainder of this sec-
tion in three parts. The first part gives the results on the
depinning currents of square and triangular arrays. The
second- part deals with the flux-flow data from which we
will determine the viscosity coefficient that vortices ex-
perience in underdamped arrays. In the last section, we
show that by evaluating the voltage where the jumps start
to occur, the row switching is initiated by vortices that
move at a characteristic maximum velocity.

A. Depinning Currents

We define the depinning current from I-V curves as the
current where the voltage across the array is equal to 2
uV. I-V characteristics are measured for different values

of the temperature and the magnetic field. In Fig. 4 for
sample S2, we plot the depinning currents as a function
of temperature for f=0.1 (squares) and as a function of
field for T=10 mK (circles). The critical currents in this
figure are normalized to the temperature-dependent array
critical current. For a square array the depinning current
is expected to be 0.1/,.. From the figure, one sees that the
depinning current when normalized to the array critical
current is almost temperature independent up to 1 K.
There is a slight decrease of the depinning current below
0.5 K, which could be due to the formation of discrete
energy levels in the periodic potential. These energy lev-
els effectively lower the energy barriers and therefore the
depinning currents. The energy levels are only formed at
low temperatures, when all quasiparticles are frozen out.
The circles, representing the depinning currents mea-
sured as a function of frustration, show that for low f the
depinning currents are higher than expected. We attri-
bute this to edge effects.!” In our finite arrays, there ex-
ists an edge barrier for vortex entrance that vanishes for
high values of f. Between f=0.1 and f =0.2, the depin-

T T T T -
40F @) Pew <1 ]
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3 L z .
7
- 2
- 7
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<
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T T T . :
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= 20 ' e ? ]
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~ 10} ' ]
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or F=015 ]
-10 . L L
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V (#V)
FIG. 3. Typical current-voltage characteristics of 2D

Josephson-junction arrays, measured in a small magnetic field at
T=10 mK. (a) shows the I-V characteristic for overdamped
vortex motion, (b) for underdamped vortex motion, and (c) is
the I-V for highly underdamped vortex motion in an array with
a high normal-state resistance. At the solid circles, the voltage
starts to jump (row-switching).
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FIG. 4. The depinning current normalized to the
temperature-dependent critical current as a function of temper-
ature for f=0.1 (squares) and as a function of frustration for
T=10 mK (circles). Dashed lines give the expected depinning
current of 0.17,.

ning current is almost constant.

On all our square and triangular arrays we have deter-
mined the depinning currents at 7=10 mK and at
f=0.15. The result is shown in Fig. 5, where the nor-
malized depinning currents are plotted as a function of
the vortex McCumber parameter calculated with 7, as
shunt resistance. For B, <35, we find depinning currents
that are very close to the intrinsic depinning currents pre-
dicted in Sec. II (solid lines). For higher B, values, the
depinning currents are systematically lower. This has
also been seen in single junctions with high normal-state
resistances.?? and it has been shown that the retrapping
current plays the role of the apparent critical current.
For high-Ohmic samples, thermal fluctuations start to
play an important role, even at the lowest temperatures.
The fluctuations lower the critical current, but increase
the retrapping current. At some point, the critical
current and the retrapping current become the same, so

2

10! 100 10! 102 10°
Be,w(rn)

FIG. 5. The depinning currents normalized to the critical
current of different square (solid squares) and triangular (solid
triangles) arrays as a function of the vortex McCumber parame-
ter calculated with r, as shunt resistance. The depinning
currents are obtained from I-V characteristics measured at
T=10 mK and f=0.15. Depinning currents are defined as the
current where the voltage across the array is equal to 2 uV.
Solid lines give the expected depinning currents, and dashed
lines the retrapping currents as obtained from the analogy with
the single junction McCumber theory.

that there is no hysteresis [Fig. 3(c)].

For a single junction, the retrapping current i, in the
absence of thermal fluctuations and for high B, ; values is
given by i,/i,=4/(mV/B, ;). For vortices in 2D arrays,
we can calculate 4, as the retrapping current in a simi-
lar way as done in the single junction McCumber theory.

Dashed lines in Fig. 5 give the results. We find

I
dep__ 4 1 (12)
vI./2 7 /B, (r,)

where ¢, is 2 for the square arrays and 0.4 for the tri-
angular arrays. To compare these values of c¢; with
theoretical predictions, one has to take into account
thermal fluctuations and to know accurately the value of
the damping resistance. However, the damping resis-
tance in SIS arrays, which are not externally shunted, is
unknown. For the high B_, points, it cannot be excluded
that depinning is caused by quantum tunneling of vor-
tices (see discussion elsewhere’).

B. Flux-flow resistance

With a lock-in technique, we measure the dynamic
resistance (dV /dI) as a function of frustration. For sam-
ple S2 the result at 7=10 mK is given in Fig. 6. The
flux-flow resistance is proportional to the applied field in
the range 0.02 < f <0.2, but the straight line does not go
through the origin as expected from ideal flux-flow
theory. For f <0.02, we do not observe flux flow in the
I-V characteristics. Again, we attribute this to edge
effects.!” (For frustrations of the order of 1/N and small-
er there is still an entry barrier for vortices.) For f>0.2,
the commensurate vortex lattices become visible as dips
in the resistance. We have taken the straight line in
Fig. 6 to obtain the effective array shunt resistance,
R,=Mr,/(N+1) [Eq. (11)]. For sample S2, we find that
R, is 1.2R,. This value is almost temperature indepen-
dent for T<0.6 K. The observation that the effective
damping resistance in this sample is the normal-state
resistance might be due to the fact that the plasma fre-
quency of the single junctions is of the same order as the
gap frequency. For samples with a higher resistance, the
plasma frequency becomes smaller and one should expect

200 T T T r T

= sample S2
= T=10 mK
<
z
5

100

-0.2

frustration

FIG. 6. The dynamic resistance of sample S2 measured as a
function of frustration at 7=10 mK. The dashed line defines
an effective damping resistance of the array.
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FIG. 7. The effective damping resistance measured for
different samples plotted vs the junction McCumber parameter
calculated with r, as shunt resistance. The dashed lines define
effective viscosities for underdamped square and triangular ar-
rays [Eq. (13)].

a higher value of the ratio R, /R,,.

In a similar way as described above we have measured
the dynamic resistance at low temperatures for the other
arrays. Again we find straight lines for f in the range
0.02-0.04 < f <0.2, where the lower value depends on
the array sizes. The value of 0.04 is found for our small-
est arrays. In Fig. 7, we plot R, /R, as a function of the
junction McCumber parameter. For low B j values,
drawn lines give the predictions from the Bardeen-
Stephen flux-flow model [Eq. (11)] with an effective resis-
tance of 1.6R, for the square arrays and 4R, for the tri-
angular arrays. Vortices in triangular arrays are driven
with a relatively smaller current (because the depinning
current is a factor 5 smaller) in which case the voltage-
biased resistance can be higher. However, the most
surprising result of Fig. 7 is that as 3 ; increases, the ra-
tio of the effective resistance to R, systematically de-
creases. For the square arrays, we find that the effective
resistance becomes even smaller than the normal-state
resistance. This cannot be explained by the Bardeen-
Stephen model for flux flow. In that model, the main dis-
sipation takes place in the junction that the vortex
crosses. The resistance of that junction cannot be lower
than r,. This indicates that there is an additional damp-
ing mechanism other than Ohmic-dissipation. From the
dashed lines in Fig. 7, one can obtain the effective viscosi-
ty coefficient of this mechanism. We find

nN=—rT5 = (13)

where ¢, =35.5 for the square arrays and 9 for the tri-
angular arrays. We will come back to this result in the
next section.

C. Maximum vortex velocity

When I-V characteristics are measured for different
values of f, we find that the voltage (V) at which the
first row switches depends on the magnetic field. From
the I-V characteristics we have determined V., and

plotted them as a function of f. Figure 8 shows the result
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FIG. 8. The voltage where the jump to the gap voltage starts
to occur as a function of frustration. The dashed line defines a
maximum velocity of propagating vortices.

for sample S2. A linear dependence of V., on f is found
for small values of f (dashed line in Fig. 8). According to
Eq. (10), the slope of the straight line defines a maximum
vortex velocity (u,,,). For sample S2 we find that
Umax =0.13pw, ;. In single long Josephson junctions, the
vortex velocity is limited by the phase velocity of propa-
gating electromagnetic waves.?> Numerical simulations
on 2D arrays by Nakajima and Sawada?* also showed the
existence of a maximum velocity. Their result of the
maximum velocity in a square array, where self-field
effects can be neglected, is Uy, =p o), ; /V'2. In numeri-
cal simulations, Bobbert!'> also found a limiting velocity
for propagation of single vortices. He found that for a
velocity close to pw, ;, vortices and antivortices are gen-
erated in the wake of the moving vortex. The creation of
vortices and antivortices triggers the switching of a row
to the voltage carrying state (single-row switching).

The maximum vortex velocities normalized to pw, ;
are plotted in Fig. 9 for all our arrays. The open symbols
give the values of the calculations of Bobbert, and the
solid symbols our experimental values. Our measured
points are much lower than the ones found in the simula-
tions and follow a different dependence on B ;(r,). The
dashed line through the data points of the square arrays
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FIG. 9. Maximum vortex velocities as a function of the junc-
tion McCumber parameter calculated with », as shunt resis-
tance. The solid symbols are the vortex velocities obtained from
our arrays measured at 7= 10 mK and the open symbols are the
vortex velocities as observed in the simulations of Bobbert (Ref.
15). The dashed line through the data points of our square ar-
rays defines a maximum vortex velocity, u ., =p /(2r,C).
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defines a maximum velocity for our arrays,
Umax /P =1/(2r,C). In underdamped arrays, r,C is the
largest time constant and apparently this time scale limits
the vortex velocity in highly underdamped arrays. The
difference between the simulations and the experiment is
probably due to the fact that in the simulations only one
vortex in an array with periodic boundary conditions is
studied whereas fMN vortices are present in our arrays
with finite sizes.

VI. DISCUSSION AND CONCLUSION

Summarizing our experimental results, we find that the
whole picture of vortex depinning and motion in 2D un-
derdamped arrays is closely analogous to the dynamics of
the phase in a single underdamped junction. Hysteresis
in the current-voltage characteristics shows the impor-
tance of the inertial mass in the vortex dynamics. The
most surprising result is that vortices in underdamped ar-
rays do not move in a medium with little damping. Next
to the Bardeen-Stephen viscosity term, our data show the
existence of an additional viscosity term.

It has been suggested’ that plasma oscillations in the
wake of the vortex are responsible for the lost energy.
Here, we present a simple model to calculate the effective
viscosity due to this process. When in a square array a
vortex moves from the middle of one cell to the middle of
the next cell, the phase difference A¢ across the junction
it crosses, changes by A¢=m. In a triangular array
A¢=2mw/3. Suppose that this is an average phase
difference and that the phases of the junctions at the same
time also oscillates with the plasma frequency. We can
then write for the time dependent phase difference across
the junction

¢(t)=¢(0)+i§g’—t+Dsin(wpyjt) : (14)

where ¢(0)=m/2 in a square array, ¢(0)=w/3 in a tri-
angular array, and where D is the amplitude of the oscil-
lation. By demanding that (8¢ /8¢)~ ¥V =0 (no power ex-
tracted from the moving vortex), we find the maximum
value of D,,, =uA¢/(pw, ;). The corresponding energy
of this plasma oscillation is D, E; for one cell. The
number of cells that a vortex crosses per unit time is ¥ /p,
so that the total power stored in the plasma oscillations is
D . E;u/p. (This power is then dissipated in the cell
over a time scale, probably the r, C time of the junction.)

Another argument for the energy stored in the oscilla-
tion is as follows. If the oscillating part of the junction is
modeled by a parallel circuit of L; and C, then a voltage,
V=(®yuAd)/(2mp), is across this circuit for a time p /u.
After this time V=0, so that the response to this voltage
step is

V(t)=(PoulAd)/(2mp)cos(w, ;t) .
This oscillating voltage produces a phase,

(ulAd)/(pw, ;)sin(w, ;1) ,

PsJ

so that the total phase due to the constant and oscillating
voltage is

¢(1)=¢(0)+(uAd/p)t+(uld/pw, ;)sin(w, ;t) ,

which agrees with the D, that was found.

Equating the total power of D, . E;u /p to the power
(nu?) a vortex dissipates in a medium with effective
viscosity 7, one finds that the effective viscosity due to
the plasma oscillations is

S U S 1s)
Ple, 28 Vv'L,/C’

where ¢; =27 for a square array and c¢; =37 for a tri-
angular array. These values are very close to the ones we
find in our experiment (5.5 and 9, respectively).

To compare this viscosity coefficient with the
Bardeen-Stephen viscosity coefficient, we calculate the ra-
tio between them. We find

N/ Mes=(1/¢3)V/B, ;(r,) . (16)

Thus, the more underdamped the arrays are, the more
dominant the damping due to energy lost in the wake of
the vortex becomes. From Eq. (15), one sees that the
effective damping_resistance of the second damping
mechanism is c;1/L; /C defining an effective McCumber
parameter

B.=c?. (a7

This indicates that the effective McCumber parameter in
square arrays cannot be higher than 40 and in triangular
arrays, 89. This result, however, is obtained from the
measurement on the flux-flow resistance and one should
be careful with applying this result more generally.
Clearly, in the measurements of the depinning currents
we do not see a saturation of the effective damping.

The additional damping mechanism seems to preclude
ballistic propagation of vortices in 2D underdamped ar-
rays as observed in a recent experiment. 14 However, the
experiments in this paper all deal with vortices that are
driven by a transport current. The situation might be
different when this transport current is absent and vor-
tices move at low velocities. It could well be that in that
case the coupling to the plasma oscillations is much
weaker than when the vortices are driven with a high
current. Indications for a velocity dependent damping
resistance have been found in our experiments on the 2D
arrays when comparing the results from the depinning
current and the flux-flow resistance. The fact that the
ballistic motion has been observed in triangular arrays,
where the energy barriers for crossing from one cell to
the next are a factor 5 smaller than in the square array,
might be of importance. It could also be that the ballistic
motion is due to a quantum process, i.e., that the energy
transfer to the oscillations is quantized. The unit of the
energy quantum is probably 7w, ;, so that below a tem-
perature of #w,;/kp and for small or zero applied
currents, there would be no coupling to the oscillations.
Vortices would then move in an environment with very
little damping. Clearly, more research on vortices in 2D
arrays is needed to reveal their full dynamical behavior.

Note added in proof. Recent theoretical calcula-
tions®>2® support our experimental data presented in this
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paper. They find that vortices moving with low veloci-
ties (smaller than 0.lpw;) do not couple to the spin
waves.
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