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Ferromagnetism of the one-dimensional Kondo-lattice model: A quantum Monte Caruso study
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The one-dimensional Kondo-lattice model is investigated using quantum Monte Carlo and transfer-
matrix techniques. In the strong-coupling region ferromagnetic ordering is found even at large band
billings. In the weak-coupling region the system shows a Ruderman-Kittel-Kasuya-Yosida-like behavior.

In recent years the Kondo-lattice model (KLM) has
been investigated to describe the physics of the so-called
heavy-fermion systems. ' The question was addressed
whether this simple model could account for the rich
variety of phases found in heavy-fermion materials,
paramagnetism, antiferromagnetism, as well as supercon-
ductivity. However, as a typical model of strongly corre-
lated electron systems it could be analyzed by only few
approximate treatments ' and has still resisted to give
clear insight into the various possible ground states. It
would be of particular interest to understand the phase
diagram of the KLM. In this work we will tackle this
problem by using quantum Monte Carlo techniques for
the one-dimensional KLM. The results found here par-
tially contradict the phase diagrams given by Ref. 2 ob-
tained by variational methods.

The KLM consists of a lattice of I. localized spins
(S;f 2 1, . . . ,L) coupled to a single band of conduction
electrons (creation operator c, ; i =1,. . . ,L; cr = 1, 1).
It is described by the Hamiltonian
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where cr are the usual Pauli matrices. The first term
denotes the hopping of conduction electrons between
nearest-neighbor sites. The second term is an antiferro-
magnetic (J)0) exchange coupling between localized
spins and conduction electrons. For small J/t the model
can be derived from the periodic Anderson model in its
strong-coupling limit.

The behavior of the KLM is understood only for some
limiting cases. At half-band filling the ground state is a
spin singlet. The nature of this singlet changes from lo-
calized singlet pairs in the limit J/t~ ~ to a collective
singlet at smaller values of J/t. A spin gap has been
found at intermediate values of J/t using quantum
Monte Carlo methods and for the entire range of the
coupling using exact diagonalization. On the other
hand, in the case of only one conduction electron the
ground state of the system is known to be an incomplete-
ly saturated ferromagnet. The same behavior has been
found for two particles and large values of J/t. ' Ques-
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tions arising immediately are the following: What is the
ground state of the system away from these special cases,
where are the boundaries of the ferromagnetic region?
Contrary to expectations from Ruderman-Kittel-
Kasuya-Yosida (RKKY) mechanisms, our results show
ferromagnetic ordering in the strong-coupling region
even for very large fillings. " In the weak-coupling limit a
RKKY-like behavior is observed at intermediate temper-
atures.

We have employed a generalization of the standard
quantum Monte Carlo world-line algorithm (WLA) and
quantum transfer-matrix algorithm (TMA). ' The stan-
dard checkerboard WLA has to be extended to add the
localized spins. ' There is no hopping in the localized
band, therefore the only local move we have to add is one
that can exchange an up (down) spin in the conduction
band with a down (up) spin in the localized band at any
point of the checkerboard. This move accounts for the
exchange interaction between the two bands. A global
move that can change the spin of a world line allows for
fluctuations in the total magnetization. The systematic
error due to the finite Trotter time step A~ is controlled
by extrapolating from results for A~t =0.25 and
A~t=0. 5. The usual zero winding number boundary
conditions are used.

Due to the fermionic degrees of freedom there is a sign
problem. This sign problem is most severe at values ofJ- t and near fillings of p= —', , where p =N/L and N is
the number of conduction electrons. For larger or small-
e~ values of J/t and for a filling of p= —,

' the sign problem
is not toa a~vere to make Monte Carlo simulations impos-
sible.

To study the magnetic properties of the KLM we have
measured the charge and spin structure factors and sus-
ceptibilities. The structure factors are defined as the
Fourier transforms of the real-space correlations. For
the conduction band we have, for the charge and spin
structure factors,
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where P is the inverse temperature 1/T.
Simulations have been performed on lattices of L =12,

18, and 24 sites, at band fillings of p =
3 3

and tempera-
tures down to Pt =32. Coupling constants J/t =0.2, 0.5,
1, 2, 4, and 10 have been investigated. Within the error
bars of our results we cannot see any finite-size correc-
tions. From this we conclude that the results show prop-
erties of the thermodynamic limit. In the figures we only
show the data for the largest reasonable sizes allowed by
the sign problem.

In the strong-coupling region we observe a tendency
toward ferromagnetic ordering at both fillings. The spin
structure factor of the localized spins and the susceptibili-
ty both show a clear peak at q =0 [Figs. 1 and 2(a)]. Fur-
thermore, the q =0 component of the susceptibility is the
fastest diverging one when lowering the temperature. We
note that this ferromagnetic ordering found at large band
fillings of p= —,

' and —', is not expected from the RKKY
mechanism but is a new characteristic of the strong-
coupling region. Also, a slight tendency toward fer-
romagnetic ordering can be observed in the spin structure

In the same manner we define the spin structure factor
for the localized spins:
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The static susceptibility can be calculated as
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factor of the conduction band [Fig. 2(b)]. Double occu-
pancy of a site is strongly suppressed as it costs energy of
the order of J, leading to an effective on-site repulsion.
Therefore, the charge structure factor is essentially that
of spinless fermions, showing a 4kF structure (Fig. 3).

To get more insight into the magnetic properties we
have studied the temperature dependence of the static
uniform susceptibility y(q =0) for J/t =4 and p= —,

' (Fig.
4). We have simulated systems of L =6, 12, 18, and 24
sites by the Monte Carlo method and the L =6 site sys-
tem with the TMA. Special care is necessary for L =6
because the ground state is completely different depend-
ing on the boundary condition. It has been shown using
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FIG. 1. Static uniform susceptibility for the Kondo lattice
model at p= 3 and J/t ranging from 0.5 to 4. The temperature
is Pt =24. At this filling 2kF =sr/3

FIG. 2. Spin structure factors for (a) the localized spins and
(b) the conduction band for the same parameters as in Fig. 1.
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FIG. 3. Charge structure factors for the same parameters as
in Fig. 1.

exact diagonalization that the ground state is a spin sing-
let for periodic boundary conditions, while it is an incom-
pletely saturated ferromagnet for antiperiodic boundary
conditions. ' At J/t =4 the ground-state energy of the
ferromagnetic state is lower than that of the singlet state.
We have calculated y( T) both for periodic and an-

0.5

tiperiodic boundary conditions in the canonical ensemble
using the TMA. In the high-temperature regime g(T)
can be obtained for an infinite-size system in the grand
canonical ensemble by using the M =1 approximation
(M is the Trotter number) in the TMA. '

At high temperatures the susceptibility is the sum of
that of a free conduction electron system and that of free
localized spins Ty= ,'(I+—p—p /2). When the tempera-
ture is lowered to about T=J, the conduction electrons
start to lock into singlets with localized spins and the sus-
ceptibility reduces to about the value for the remaining
spin degrees of freedom Ty= ,'(1 —p—). Lowering the
temperature even further, the spins start to order fer-
romagnetically, leading to an increase in Ty and possibly
a divergence in an infinite-size system.

At small values of J/t, a completely different behavior
can be observed. The effective on-site repulsion is small-
er, leading to an increase in the 2kF component of the
charge structure factor. The charge structure factor
resembles that of nearly free electrons. At the same time
the q =0 component of the conduction electron spin
structure factor and susceptibility is reduced while a cusp
emerges at 2kF. In the localized spins a 2kF structure is
induced by the conduction electrons. This behavior may
be called RKKY liquid. At lower temperatures the 2kF
peaks in the spin structure factors become more pro-
nounced while at the same time the q =0 component is
suppressed. From this we conclude that, in the tempera-
ture regime of our simulations (fjt =32), the system is
dominated by the RKKY interaction. It does not show a
heavy-fermion behavior. In a heavy-fermion system the
conduction band and the band of localized spins are ex-
pected to hybridize. This would result in a single heavy-
fermion band with a filling of p+1, characterized by a
wave vector kf =(p+ 1 Hr/2.

A problem arising in the small J/t region is that the
effective coupling gets very small. Although the tempera-
ture of the Monte Carlo simulations is well below the
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FIG. 4. Temperature dependence of the static uniform sus-
ceptibility for a filling of p= —,'. The solid lines show the M= 1

approximation for high temperatures and the transfer matrix
(TMA) results for periodic (PBC) as well as antiperiodic (APBC)
boundary conditions. Monte Carlo data for L =6 and 12 sites
and zero winding boundary conditions are included. Due to the
sign problem the results for larger lattices have much larger er-
ror bars. They show no qualitatively different behavior.
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FIG. 5. Phase diagram of the Kondo-lattice model. The
Monte Carlo simulations have been performed at the points
shown here. The different symbols denote points with fer-
romagnetic, transitional, and RKKY liquid behaviors.
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Fermi temperature, it is still orders of magnitude above
the single impurity Kondo temperature T~. Tz =10
(10 ' at J/t=0. 5 and p= —,

'
( —', ). This makes it hard to

get information on the ground state of the system from
Monte Carlo simulations.

In Fig. 5, we summarize the results of our Monte Carlo
simulations. At large values of J/t we find ferromagnetic
ordering. There the q =0 component of the susceptibili-
ties is the dominant and fastest diverging one. From our
result we conclude that the ferromagnetic state is stable
for a much wider region of the phase diagram than sug-
gested in Ref. 2. In the small J/t region the system
shows a RKKY liquid behavior, where the q =2k+ com-

ponent of the susceptibilities and spin structure factors
are the dominant ones. At J/t =1 and p= —,', the system
shows a transitional behavior. Probably this point is near
the phase boundary. '
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