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Strong and fragile glasses: A powerful classification and its consequences
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In the strong versus fragile classification of simple liquids near their glass transition, a simple model is
used to quantify this distinction, which sheds light on mechanisms in glass-forming liquids near freezing.
From this model it is shown that the fragility parameter, one of the most important material constants,
can be mapped onto the fluctuation of the coordination number, Az: hz =0 for network glasses; hence
they are strong glasses. Systems with hz )0 are always fragile. Implications on the relaxation behavior
are shown to be in qualitative and quantitative agreement with experimental results. The proposed mod-
el supports the idea that glass-transition phenomena have universal features.

The question whether glass-transition (GT) phenomena
of liquids exhibit universal properties is still one of the
most important issues in this active subject. ' From an
experimental point of view, the GT has many universal
features, ' since a typical relaxation time for transport
properties for all glass-forming liquids, measured, for in-
stance, by NMR or by the viscosity, becomes unusually
large close to a certain material-dependent temperature.
Hence the dynamics of such a system is so slow that the
liquid has to be defined as frozen. The increase of the re-
laxation time with decreasing temperatures is much
larger than the usual Arrhenius behavior, i.e.,
'r exp( 2 IkT), where 3 is an activation energy. The
temperature dependence of the relaxation time near the
GT seems to be a universal, material-independent func-
tion and many glass-forming liquids have been fitted very
successfully with a Vogel-Fulcher law (VF), which has
been also called the Williams-Landel-Ferry (WLF) equa-
tion in the polymer literature:
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Tp is a temperature below the actual glass temperature
T~, and D is a material-dependent parameter. The
theoretical foundation of this law (containing an essential
singularity) is still unclear although there are many at-
tempt to calculate it from particular models.

Some years ago Angell showed that the situation is
more subtle, and different glass formers do not follow the
phenomenological law in a similar manner. He intro-
duced a very important characterization of glass-forming
liquids, when he noticed an important issue of tempera-
ture dependency of the relaxation time, which shows a
very distinguished behavior for different glass formers.
He found two extreme limits, called strong and fragile
glasses. Strong glasses turn out to have almost an Ar-
rhenius behavior, whereas fragile glasses have a typical
Vogel-Fulcher behavior [see Fig. 2(a) below]. With the
aid of Eq. (1), a Tz-scaled plot of Fig. 2(a) can be sketched
by variation of the, so far unknown, parameter D.
The fact that all glass formers in Fig. 2(a) meet at one
point T /T = 1 is due to the definition that the system is
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with zero mean and variance Ep.
Glass-forming liquids basically have a second random

variable, i.e., their coordination number, due to random
configurations. The fluctuation range of the coordination
number strongly depends on the nature of the liquid. For
example, it varies in simple (van der Waals) liquids such

(2)

assumed to be frozen if at a time scale —100 s. This
classification is important first for the development of
basic theoretical ideas for the physics of glass formers
and second for practical purposes and materials develop-
ments. Angell himself made several striking suggestions
to quantify this classification, ' ' for example, to relate
strong glasses to a more modest energy hypersurface with
less-deep minima in contrast to fragile glasses possessing
a very rough energy landscape in configuration space.
Another attempt to relate the classification to an effective
coordination number has been made, but so far no sim-
ple theoretical picture for a physical simple model, which
quantifies and unifies this classification on a physical
basis, has emerged. It has been even argued that the dis-
tinction between strong and fragile glasses destroys any
universal character of the GT.

This paper attempts to specify, quantify, and unify
these ideas and puts forward a simple model that is a
basis for further considerations. The starting point is the
following: It is generally believed that the energy
landscape of the phase space in a glassy system is ran-
dom. This has been proven for spin glasses, where the
number of "deep minima" (pure states) grows exponen-
tially with the number of quenched spins. Ordinary
glasses differ substantially from spin glasses, since the
physics of the latter is dominated by the quenched disor-
der. In ordinary glasses this quenched disorder is missing
at high temperatures, but at sufficiently low temperatures
in the undercooled phase energy, randomness becomes
important, due to random interactions. This can be
shown by using Edwards' theorists' ideal glass' (TICi)
and will be discussed in detail separately. Here we state
that the energy landscape is random and has a Gaussian
distribution
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as orthoterphenyl from 11 to 16, whereas in network
glasses (e.g., SiOz) the coordination number is fixed. Fig-
ure 1 shows that for a random-close-packing (RCP) struc-
ture, "z is random and has a broad distribution P (z).

The (free) energy surface is generally described by a
random function F ( C ), where C means "configuration. "
The form and parameter space of F ( C ) is unknown but
we restrict our model to the variable sets E and z. We
then crudely approximate F ( C ) =E z, where E and z are
random numbers. This is the simplest coupling of the
two random variables (minimal model), which is the lead-
ing term of a more complicated function. To proceed
further we consider the relaxation time

r(E(C))—ep '", P= —,1
(3)

(4)

where Tp =EQ Az. It has to be realized that this singular-
ity at TQ = T appears from the approximation
z;„~—~, z „~+~ and does not appear in reality.
Nevertheless, for T- To (4) can be rewritten to
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which has to be averaged over the whole landscape.
Equation (3) assumes each valley of the energy hypersur-
face to contribute to an Arrhenius relaxation time, and
non-Arrhenius behavior can be expected after averaging.
The average upon the energy distribution equation (2) is
straightforward, but the average over P (z) is more
difficult and we proceed numerically. To do this it is as-
sumed to replace the distribution given in Fig. 1 by a
Gaussian of appropriate width Az and centered around zp
(the mean coordination number) and truncate the tails at
the minimum and maximum values ofz, z;„andz „.If
z;„and z,„are crudely shifted to infinity, the error is
controlled and the calculation can be done analytically.
It is to leading order'
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D is determined by the mean coordinate number zp and
its fluctuation. To compare this result with realistic
values consider first the random closed packing (RCP),
structure, where z=14 b,z=4 for fragile glasses. This
leads to D =3.1, which is in very good agreement with
the lowest value for D =3.2 found experimentally for
simple liquids. ' Second, as zp is constant -3—5 and
Az —+0 as in typical network glasses, D becomes very
large. But notice that Eq. (4), has a well-defined limit for
hz~0. It is
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which is of the form proposed by Bassler' ' and has also
been fitted to viscosity data (see Ref. 1). Figure 2
represents a T -scaled plot based on the numerical in-
tegration. A very good verification of the experimental
situation is obvious.

How can this be understood? To find a VF-type behav-
ior (at least) two random variables had to be used. The
intuitive picture is to have a very complicated energy hy-
persurface. This corresponds to fragile glasses. Strong
glasses have been the result of Az ~0, i.e., one of the ran-

which is the celebrated VF equation emerging here as an
approximation. For finite values of z;„and z „, a
strong increase of ~ can be found by numerical integra-
tion and, as usual, a GT has to be defined whenever ~
exceeds some time (-100 s) corresponding to i) —10' P.
It can be demonstrated by numerical integration that
Eqs. (4) and (5) fit the exact values quite well for r for
temperatures not too close to TQ.

Equation (4) is identical to Eq. (1) and the material
constant D can be identified as
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FICx. 1. The distribution of the coordination number in van
der Waals glasses and in network glasses. For the computation
described later in the text P(z) has been replaced by a Gausian
of width Az and truncated at the tails at z;„and z,„.
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FICx. 2. (a) left: The Tg-scaled plot of the relaxation time of
Angell (a) and the result of the computation of Eq. (2). Notice
that even the strongest glass SiO& (border line at the strong side)
does not have a straight line in this representation in agreement
with the calculations presented here. (b) right: The computa-
tions of the model are shown in the limit bz =0 and Az =4.
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P(t) — exp r(C)

This assumes that every valley of the energy landscape
contributes to a single Debye relaxation, which is analo-
gous to the work for spin glasses and the random energy
model. ' The averaging procedure in Eq. (8) cannot be
done exactly but the long-time limit is given by

The function f (x) is extremely slow decaying in time and
the dominant contribution is the algebraic decay. Notice
that the exponent of the power decay is temperature
dependent (weak violation of the time-temperature super-
position principle) and that it strongly depends on the na-
ture of the liquid (strong and fragile) via b,z. Equation (9)
can be fitted very well to a stretched exponential, suggest-
ing P—= 1 —b,zEO/T. Thus a relation between the relaxa-
tion parameter P at T and the material constant D can
be established:

(To/Ts)D=
[1 P( Ts )]'— (10)

which shows the same behavior as found by Ngai' using
his coupling model. Moreover, calculating from the T-
scaled plot the fragility parameter

6 1n(r)
5(Ts/T) r =r,

dom numbers is quenched out and the energy hypersur-
face is not as rough as for Az &0. Spin glasses, on the
other hand, do have an extremely rough hypersur-
face ' ' due to the quenched disorder and frustration
(even at T) T, ). Hence, spin glasses belong to the ex-
tremely fragile class.

The second universal feature for the GT (apart from
transport properties) supported by experiments are the
relaxation data. These can be uniquely described by a
stretched exponential [Kohlrausch-Williams-Watts
(KWW) function] P(t) = exp[ —(t/r)~], where I3 is anoth-
er phenomenological material-dependent parameter,
which is used for classification of glass-forming liquids.
The relaxation function is much slower as for liquids or
ordered solids, where 13=1. The model presented here is
also able to predict several correlations of P to the type of
the glass-forming system. Consider typical relaxation
functions under the same conditions as above:
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FIG. 3. Fragility m vs KWW exponent at Tg. The experi-
mental values are taken from (Refs. 18 and 19)~ The line is the
fit from Eq. (11).

a relation between m and P can be found:

AT
m=A +1

zoEO&'

Here the value of A defines T (i.e., A=12 for the viscos-
ity to be 10' P). This can be compared to data by
Angell, ' for a system where the fragility could be al-
tered. Equation (12) is in very good agreement with this
result (see Fig. 3). Note than M = A ( A /D + 1) and the
limiting fragility for strong glasses is thus m, = A
whereas for fragile glasses (D =3) mf =

—,
' A + A in our

model.
To sum it up, I have presented a simple model which

quantifies current ideas about glass-forming liquids. Such
disorder models apply below the critical temperature of
the singularity calculated by the mode-coupling theory in
which energetic disorder is not taken into account. I
have succeeded in (1) the classification of strong and fra-
gile glasses, and (2) in deriving a formula that connects
fragility and relaxation [Eq. (11)],which is in accord with
dielectric measurements. ' ' The simple model present-
ed here supports also the idea of the universal behavior of
liquids at the GT, since all glasses (strong and fragile) can
be described within the same framework. They appear
just as difterent limits. Moreover, our theory predicts
differences in the aging behavior of strong and fragile
glasses, the glass-transition temperature as a function of
the quenching rate q, Ts = To(D/lnq+1)'~, which will
be reported elsewhere.
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