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The order-parameter correlation function of the nonconserved, continuum q-state clock model is eval-

uated in the asymptotic scaling limit, during the phase-ordering process after a temperature quench.
The short-distance behavior of the order-parameter scaling function exhibits explicit crossover from that
characteristic of the Ising universality class to that of the O(2) model.

The phase-ordering process of a system quenched from
a high-temperature disordered state into the ordered
phase exhibit universal scaling behavior in the asymptotic
late stages. ' The characteristic scaling length for pure
systems grows algebraically in time, L (t) —t", where n is
called the growth exponent. In addition, the order-
parameter correlation function satisfies similarity scaling

C(r, t ) =POP(r IL (t)),
where Po is the ordered magnitude of the order parame-
ter. The set of factors that characterize a universality
class, and, in particular, the functional form of 2, is
known to include at least the dimensionality of space,
whether the order parameter is conserved, and the degen-
eracy of the ground states.

We shall be concerned here with this last factor for a
system with a nonconserved order parameter. The im-
portance of the degeneracy of ground states lies in the
fact that the symmetry property of the ground state
uniquely determines the types of topological defect struc-
tures that control the late stage ordering in unstable sys-
terns. Recent. studies of systems with continuous sym-
metries (with infinitely degenerate ground states)
shows a variation in the behavior of the scattering struc-
ture factor C&(k), the Fourier transform of C(r, t), from
the usual scalar Ising-type systems. Namely, for large
wave numbers, Porod's law, 4(k) —k '"+", for a scalar
system is replaced by N(k) —k '" "' for the general
O(n) model.

In this paper we investigate the phase-ordering process
for the continuum version of the q-state clock model
(also referred to as the planar Potts model or the vector
Potts model). This model provides an interesting inter
mediate case between the scalar Ising-type dynamics
(where q =2) and the model A dynamics with a complex
order parameter (where q = ~). Unlike the latter two
limits, where the topological defects are interfaces and
vortices respectively, the defects in the q-state clock mod-
el involve both interfaces and vortices rejecting the q-

fold degeneracy of the ground states. This model clearly
is relevant to understanding the disorder-order transition
in some alloys as well as in the evolution of cellular
structures ubiquitous in nature. '

Many numerical studies have been devoted to the in-
vestigation of phase ordering of clock models" and the
standard Potts models. ' While it is by now well estab-
lished that L (t)-t' in both models, there is consider-
able uncertainty in our understanding of the correlation
functions. Numerical work generally shows indepen-
dence of the correlation functions on the degeneracy q of
ground states. On the theoretical front, Kawasaki ex-
tended the Ohta-Jasnow-Kawasaki' method to the clock
model but did not determine the explicit form of the
correlation function. In this paper, we shall derive ex-
plicitly the short-distance behavior of the order-
parameter correlation function in the asymptotic scaling
regime. The auxiliary field method we adopt here has
been proven useful in previous growth kinetics stud-

14, 15

The dimensionless free energy for the continuum q-
state clock model' (q ~ 2) can be written as

F= J « f~@l'—Igl'+ —l@l'

where g(r, t) =If(r, t)le'~"" is the complex order param-
eter and U &0 is a constant. By assuming the standard
relaxation Langevin dynamics for the evolution of the or-
der parameter we obtain the equation of motion

where the noise term has been neglected for a zero-
temperature quench. The q degenerate ground states are
then given simply by lgl = l, P =(2srlq)(j —

—,') with
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j = 1,2, , q, corresponding to q equivalent directions of a
clock.

The phase ordering process of the clock model involves
the motion and annihilation of both interfaces and vor-
tices. Interfaces separate distinct ground states, while
vortices are places where more than two interfaces meet.
At the late stage of the ordering, it is reasonable to as-
sume that only the topologically stable defect
configurations with the lowest energy will be dominant.
Such a defect configuration is simply a vortex where all
q-distinct interfaces meet, so that the phase of the order
parameter changes by 2~ going around the vortex. The
order parameter field around an isolated defect can be de-
scribed by the inhomogeneous solution of the equation of
motion (3). The far field solution for a vortex centered at
r =0 can easily be found to be of the form

2&Ift„(r ) —exp
8(r)

2m /q

where 0 is the polar angle of r and we introduce the nota-
tion that [a] is the largest integer not exceeding a. To ex-
amine the solution near an interface but far away from
the vortex core, we extract from (3) the eff'ective equation
of motion for the variation of phase degrees of freedom
only and obtain

P(z) =—tan exp(&qu z )+4 )
— 2mj

q q

near the jth domain wall.
In the context of growth kinetics the key question is

the structure of the scaling behavior at long time and
large distances. As usual we assume that, in this asymp-
totic scaling regime, the order parameter structures can
be associated with an auxiliary Gaussian field. In our
present case, a complex scalar (or equivalently two-
vector) auxiliary field m (r, t) is appropriate. The magni-
tude

~
m

~
has the interpretation of the distance to the

I

P"(z)+u sin[qg(z)]=0,

where z is the eff'ective coordinate perpendicular to the
domain wall. Equation (5) is of the sine-Gordon form
and has the soliton-type solution

It is easy to show from (4) that

g (8 8 )
—

y (m )qe (m )
—2ni(k —I)/q

for 8, E [2m(k —I )/q, 2mk/q], 82& [2m(l —1)/q, 2m 1/q ]
and k, l=1,2, . . . , q. Here 6&, t92 are the polar angles of
m

&
and m2, respectively. Now the average over the auxi-

liary field is of the form

V = J d m, d m2g(8„82)C&(m„m~) (10)

with the probability density function

'2

4(m „m2)= r
2~(m')

Xexp
—y (m, +mz —2fm, mz )

2(m')
where y=(1 f )

' a—nd f(r, t)=(m(r, t)m'(O, t))/
(m ). By suitably rescaling the arguments, (10) can be
cast into the form

nearest vortex and the phase of m specifies the relative
positions of interfaces. The nonlinear transformation re-
lating the order parameter field to this auxiliary field
g(r, t)=P(m(r, t)) is chosen as the stationary inhomo-
geneous solution of (3) near an isolated vortex, however,
with m the coordinate.

We now proceed to evaluate the correlation function
by writing

C (r, t) = ( g(m, )g*(m2 ) )

=(g„,(m, )P,*„(m,))+O(L '(t))

where m, =m(r, t), m2 =—m(0, t). The average is now
over probability distributions of the auxiliary field m. It
is essential to note that by extracting out the far-field
term in (7) we have absorbed any nonuniversal,
potential-dependent contributions into a term of order
0(L '). Hence, in the scaling limit L(t)~ oo the
asymptotic correlation function is independent of the de-
tailed structure of the potential. Anticipating scaling in
this case we write

X id X27 (f)=f g(8„8z)exp[ —xi/2 —xz/2+x, xzf cos(8, —82)] . (12)
4m y

Note that the dependence of V on r, t is implicitly contained in the correlator f (r, t). In principle, this function
should be determined self-consistently from the equation of motion. Here we shall only need the property that f scales
and has the short-distance expansion: f =f(r/L (t) ) = 1 —const X (r /L ) +

The radial part of (12) can be easily evaluated first to give

2~ d~)d~2
V = f f g(8„82)Q(f cos(8, —Oz)),4~'y'

where

(13)

Q(~)=, +1

1 —a
CK —+arcsina

( 1 2)3/2
(14)
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It is advantageous to exhaust the symmetry properties of g and further restrict the limits of integration to obtain more
explicitly that

277/q 271./q d ~]d 6 2 q
—1

2 2 q cos0, —02 +2 q
—jcos

O O 4~2y2
2' j Q(f cos(8, —82 —2mjlq)) (15)

Finally we complete the 8 integrations in (15) and obtain
the main result of our paper

T

q . 2 m
' 2mj

V [f]= sin — g cos (mA, +A, ), (16)
2m q — qj=0

where A, =arcsin[f cos(2vrj/q )].
Equation (16) shows explicit dependence of the scaling

function upon the degree of degeneracy of the ground
states q. Several limits can be scrutinized at once. In the
Ising case of q =2 one recovers the well-known re-
sult' ' for the scaling function

regard the eight-state clock model as isomorphic to four
Ising models, these Ising models are now coupled, and
there is no simple relation to the uncoupled Ising-type
dynamics. It can be shown that (16) can be further
simplified if even and odd q are treated separately. We
shall, however, not dwell on this any further. Let us
finally examine the limit q~ ~ when we expect the ao-

state clock model to approach the planar rotator or O(2)
model. To see this explicitly, we may simply replace the
sum in (16) by an integral as q~oo. Straightforward
algebra leads to

1/2

V~=(2/vr)arcsinf . (17) (19)

The case q = 3 is interesting because the three-state clock
model is identical to the standard three-state Potts model.
In this case (16) gives

993= m arcsinf +7r arcsin—
8~ 2

+ (arcsinf ) — arcsin—
2

2

The scaling function for q =4 gives the interesting result
V~=(2/vr)arcsinf, which is identical to Vz. This result,
surprising at first sight, is, upon reAection, not unexpect-
ed, since it is known that the four-state clock model is
isomorphic to a pair of noninteracting Ising models. '

Note that this behavior occurs because of the accidental
symmetry property of the model; therefore we do not ex-
pect this to recur for larger q. While we could similarly

& (f)=1—a(q)(1 f')' ' b(q)(1—f)+— , (20)—

a (q) =—sin
7T

q
(21)

where F is the hypergeometric function. Equation (19) is
of the same form as is obtained for the O(2) model. '

We next proceed to analyze the short-distance behav-
ior of the scaling function, since it gives rise to the anom-
alous power-law decay of the scattering form factor N(k )

at large wave numbers. The limit of short distances, i.e.,
x =r/I. (t)~0, is associated with the limit f~1. Keep-
ing the leading terms for f near 1, (16) can be rewritten in
the form

b (q) =—sin — g . +—sin — (q —1)sin —+cos-q . 2 vr ~ '
1 —2j/q 1

q .
&

sin(2m j/q) rr q q q
(22)

b (q)-2m lnq +O(1) . (23)

Recalling that 1 f-x at small —x, the second term on
the right-hand side of (20) gives a linear dependence on x,
for any finite value of q. This can be understood as the
consequence of the presence of interfaces in the system.
Alternatively speaking, this term is responsible for the
power-law decay @(k) —k ' +" at large k. Thus
Porod's law remains valid for all q-state clock models.
However, the Porod's tail gets weaker as the degeneracy

q increases. Evidently, as the limit q ~ ~ is approached,
we have a(q) —q '~0. More importantly, notice that
the expansion (20) is no longer valid in the limit q —+ ~,
due to the noninterchangeable order of the two limits
limf, and lim „.And the coeKcient b (q) diverges,

The logarithmic divergence hints some novel behavior.
In fact, in the limit q —+ ~, we have using (19) instead of
(22), the result

=1+~(1 —f )ln(1 f)+—(24)

which gives a x lnx singularity at small x. In Fourier
space, this corresponds to &b(k)-k ' + ', the recently
discovered result for the O(2) model.

The methodology we adopted here for the clock model
could, in principle, be applied to the Potts model as well.
And it is conceivable that our general conclusion about
the q dependence of the scaling function is correct in the
latter case too. This raises the need for more accurate
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numerical simulations or experiments to further establish
this dependence. Finally, the dynamics for the conserved
clock model is certainly worthy of investigation. Know-
ing that L (t) —t ' for q =2, while L (t) —t ' for
q = ~, there must be crossover behavior as q is varied.

This work was partially supported by the National Sci-
ence Foundation through Grant No. NSF-DMR-91-
20719. F.L. acknowledges partial support from Grant
No. NSF-STC-88-09854 administered through the NSF
Science and Technology Center for Superconductivity.

For reveiws see, J. D. Gunton, M. San Miguel, and P. S. Sahni,
in Phase Transitions and Critical Phenomena, edited by C.
Domb and J. L. Lebowitz (Academic, New York, 1983), Vol.
8; H. Furukawa, Adv. Phys. 34, 703 (1985); K. Binder, Rep.
Prog. Phys. 50, 783 (1987).

M. Mondello and N. Goldenfeld, Phys. Rev. A 42, 5865 (1990);
45, 657 (1992).

A. J. Bray and S. Puri, Phys. Rev. Lett. 67, 2670 (1991).
4Fong Liu and G. F. Mazenko, Phys. Rev. B 45, 6989 (1992);46,

5963 (1992).
5H. Toyoki, Phys. Rev. B 45, 1965 (1992).
A. J. Bray and K. Humayun, J. Phys. A 25, 2191 (1992).
R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952).

8K. Kawasaki, Phys. Rev. A 31, 3880 (1985).
S. E. Nagler et al. , Phys. Rev. Lett. 61, 718 (1988); S. Katano

et al. , Phys. Rev. B 38, 2659 (1988).
For a recent review, see H. V. Atkinson, Acta. Metall. 36, 469

(1988).
K. Kaski and J. D. Gunton, Phys. Rev. B 28, 5371 (1983).

' See M. P. Anderson, G. S. Grest, and D. J. Srolovitz, Philos.
Mag. B 59, 293 (1989); S. Kumar, J. D. Gunton, and K. K.
Kaski, Phys. Rev. B 35, 8517 (1987), and references therein.
T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. Lett. 49,
1223 (1982).

' G. F. Mazenko, Phys. Rev. Lett. 63, 1605 (1989); Phys. Rev. B
42, 4487 (1990).

~5Fong Liu and G. F. Mazenko, Phys. Rev. B 44, 9185 (1991);
45, 4656 (1992).

' Y. Enomoto, T. Aokage, and K. Isibasi, J. Phys. Condens.
Matter 4, L133 (1992).
D. D. Betts, Can. J. Phys. 42, 1564 (1964); M. Suzuki, Prog.
Theor. Phys. 37, 770 (1967).

'8A. P. Y. Wong, P. Wiltzius, and B. Yurke, Phys. Rev. Lett.
68, 3583 (1992).


