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Bond-charge repulsion and hole superconductivity in the atomic representation of the Cuo2 plane
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The pairing theory of superconductivity is applied to tightly bound electrons in narrow energy bands
that interact via short-range Coulomb interactions. We depart from the model Hamiltonian proposed by
Hirsch that emphasizes the role of the bond-charge repulsion for the attractive interaction between holes
in the almost-filled p~ band of the planar 0 anion lattice of the Cu02 layer. Using the method of Ap-
pel and Kohn we cast the pairing theory for the p~ electrons into the atomic representation and con-
struct the set of vertex equations on the two-dimensional square lattice that determine the transition
temperature T, . A parameter study of T, is presented that gives a strong increase of T, with increasing
value of the nearest-neighbor bond-charge parameter At, confirming the results of the theory of Hirsch
and Marsiglio. We extend our parameter study to incorporate also both the next-nearest-neighbor bond-
charge repulsion At& and the Coulomb interaction V2. The trends of the previous T, results remain un-

changed: The adverse effect of V2 is compensated for by the increase of T, with At&. Analytical evalua-
tion of the unscreened bond-charge matrix elements yields the quantitative values: ht =0.806 eV and

At& =0.13 eV, resulting in an attractive pairing interaction. The effect of dielectric screening on At and
At3 is not known at this time and, therefore, it remains an open question whether the bond-charge repul-
sions by themselves lead to an attraction between holes or mitigate the Coulomb repulsions to the extent
that an attractive bosonic exchange can result in high-T, superconductivity.

I. INTRODUCTION

Since the discovery of high-T, superconductors, con-
siderable effort has been made to construct a mechanism
that replaces the phonon-mediated electron-electron in-
teraction of the BCS theory of superconductivity. As-
suming some two-electron pairing mechanism between
Fermi-liquid particles also for these superconductors, the
central question arises whether or not the Coulomb in-
teraction between the electrons in the Cu02 layers can by
itself lead to superconductivity. The idea that supercon-
ductivity may be caused by electron-correlation effects
was first proposed by Kohn and Luttinger' by using an
expansion of Feynman graphs, i.e., perturbation theory,
to obtain an attractive interaction between two electrons,
basically due to the Friedel charge oscillation that sur-
rounds a given electron. More recently, the strongly
repulsive on-site Coulomb interaction U between tightly
bound electrons is studied with the Hubbard model by
Monte Carlo calculations to look for hints of an instabili-
ty in the pair-field susceptibility. These calculations
are also applied to the extended Hubbard model that
takes into account the nearest-neighbor Coulomb interac-
tion V. So far, no clear indication is obtained for s-wave
superconductivity in the frame of the single-band Hub-
bard model and the possibility of d-wave pairing—
indicated by NMR experiments —remains an open ques-
tion. For three-band Hubbard models with on-site and
nearest-neighbor Coulomb repulsion, it is found that s-
wave pairing can be possible. '

Hirsch ' recently suggested another type of nondiago-
nal Coulomb interaction to be important for supercon-
ductivity, namely, the so-called bond-charge repulsion,
i.e., the Coulomb interaction between a bond charge and

an atomic charge. This repulsion is not yet considered in
Monte Carlo calculations. The corresponding Coulomb-
matrix element contains at least one bond charge given
by ep*(r —R; )(b(r —RI ), iW j, whereas the density-
density matrix elements contain only the atomic-charge
densities e

~
P(r —R; ) ~, where P(r —R, ) is a wave function

centered at the lattice site R;. The importance of the
bond-charge matrix element was first recognized by
Kivelson et al. in their theory of the effect of Coulomb
interactions on the Peirels instability in polyacetylene.
Besides U and V, the authors introduce the matrix ele-
ment (in their notation, L) given by

At = f d r d r'P*(r —R, )P(r —Ri)

where i,j are nearest neighbors and V„ is the effective
electron-electron (e-e) interaction. The matrix element
At also plays the key role for the theory of superconduc-
tivity developed by Marsiglio and Hirsch for the holes in
almost-filled and narrow energy bands. ' '" The authors
depart from a Hamiltonian that includes the bond-charge
matrix element ht besides U and V as the relevant
Coulomb interaction.

This paper has a twofold purpose. First, we study the
effect of At on the superconducting transition tempera-
ture T, by an independent mathematical method
developed by Appel and Kohn' for the superconductivi-
ty of tightly bound electrons in narrow energy bands.
This method is formally equivalent to solving the BCS
gap equation for T„ the procedure used by Hirsch and
Marsiglio. Our method is, however, ideally suited to take
into account at successive stages the effects of on-site,
nearest-neighbor, next-nearest-neighbor, and higher-
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order Coulomb matrix elements. The same procedure is
used for a parameter study of T, as a function of At, U,
and V and for investigating the effect of higher-order ma-
trix elements on T„such as the next-nearest-neighbor
bond-charge repulsion At 3.

Second, based on the self-consistent charge X method
of Grodzicki, ' we present a detailed discussion of the
magnitudes of the bond-charge matrix elements. We ad-
dress the importance of the instantaneous Coulomb in-
teractions on superconductivity in narrow-band conduc-
tors, regardless of specific systems such as high-T, super-
conductors. Since our Hamiltonian for the p~ electrons
of the anion 0 lattice serves as a model for the study of
the Coulomb effects contained in ht, U, V, and higher-
order interactions, our discussion is not based on the con-
jecture of Marsiglio and Hirsch, ' according to which su-
perconductivity in the CuO2 planes is in the first place
determined by the holes in the oxygen pm bands and that
the Cu spin degrees of freedom are unimportant for su-
perconductivity.

II. MODEL HAMILTONIAN

The single-band ("conduction-band") Hamiltonian of
Hirsch for the in-plane p~ electrons has the following
form in a two-center approximation:

H = t g (c—; c~ +cc~ c; )+ U' ' g n; & n; &

(ij ), cr I

(ij ),era'

(ij ),cr

Here (ij ) implies summation over all the nearest-
neighbor pairs. The first term accounts for the hopping
between nearest neighbors; t consists of the kinetic energy
and the Coulomb potential of the ion cores,

Ze'
2m [r —R;[

The effective charge Z of the oxygen ions at the nearest-
neighbor sites i,j is determined by the ion-core charge,
the electrons of the valence bands, and the background
charge of the Cu + lattice. Hence the oxygen charge
Z= l. The electron-electron (e-e) matrix elements U' ',
V' ', and b, t' ' (which are positive numbers) contain the
Coulomb interaction e /r. The Coulomb interaction be-
tween neighbors of higher order is neglected. The screen-
ing by the electrons of the partially filled conduction
band is ignored at this point. The pertinent effect of the
electrons in the filled valence bands is—within this
model —to screen the pseudopotentials of the ion cores
which determine the hopping matrix element t.

As a first step toward the use of more realistic parame-
ters, t is renormalized by the classical Coulomb interac-
tion, that is, the Hartree term of the e-e interaction be-
tween the conduction electrons. This term must then be
subtracted from the original e-e interaction. In a second
step, the incorporation of the exchange interaction leads
to the Hartree-Fock approximation, t ~ t&F. Corre-

+V g n;n
(ij ),oo'

+At g (c;c, +c c; )(n, +n ).
(ij ),o

(4)

The hopping matrix element tLDA is obtained by local-
density band or cluster calculations. ' It differs from t~„
in replacing the exchange interaction by the Kohn-Sham
ap' potential (a= —', ) and including some correlation
effects in a local approximation. The on-site Coulomb
repulsion U for some atoms can be determined from ex-
perimental data, ' ' unlike the Coulomb parameters V
and At. The quantities U, V, and At are reduced by
screening effects as compared with U' ', V' ', and At' '.
The theoretical discussion of Marsiglio and Hirsch
departs from the model Hamiltonian defined with the
bare interaction U' ', V' ', and At' ' and with the corre-
sponding hopping matrix elements T,". However, in his
calculations of superconducting parameters such as the
transition temperature T„he eventually uses screened
Coulomb interactions. By comparing (2) and (4), we con-
clude that the Coulomb interaction V„contained in the
matrix elements U, V, and At is screened by the conduc-
tion electrons of the partially filled pm band. In addition,
there is the screening of the e-e interaction by the elec-
trons of the filled valence bands. Within Hirsch's single-
band model, the latter can be accounted for by modifying
the matrix elements in Eq. (2). We assume from here on
that the Coulomb potential V„contains both of these
screenings effects so that the parameters U, V, and At of
our present parameter study correspond to the numerical
values used by Marsiglio and Hirsch. We note that the
Hamiltonian [Eq. (4)] is diff'erent from the Hubbard
Hamiltonian, where t and U are the relevant parameters
and where the hole occupation plays an important role,
too, because of U.

Of central importance is the matrix element At that
reduces the hopping frequency between nearest-neighbor
sites. As can be seen from the last term of Eq. (2), the
hopping of an electron between the two sites is hindered
by the presence of another electron at the initial or final
site. This corresponds to an effective band narrowing

where (n ) is the band filling by electrons. The band is

spondingly, the Hartree-Fock terms have to be subtract-
ed from the e-e interaction. This procedure is given by
Hubbard' and shows how the partition of the Hamiltoni-
an leads to a significant reduction of the original two-
electron interaction. The partition can be carried out in
two different ways.

(i) With Hubbard's procedure, the hopping matrix ele-
ment is t@F and the remaining e-e interaction represents
the correlation part.

(ii) In the local-density approximation (LDA), the hop-
ping matrix element is evaluated as tLDA and one is left
with the effective interactions At, U, and V. The Hamil-
tonian is

H= tLDA g—(c; cj +c, c; )+Urn;&n;&
I
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especially narrow for the case of a nearly occupied elec-
tron band, i.e., a nearly empty hole band.

In the hole picture, Hirsch shows how an attraction
due to At is obtained between two holes with antiparallel
spins by applying an electron-hole transformation to the
Hamiltonian [Eq. (2)]. Formally, the attraction between
holes is due to the asymmetry between electrons and
holes that arises in going beyond the rigid-band model.
The asymmetry has its origin in both single-particle and
correlation effects and is formally evident from the band
renormalization [Eq. (5)]. In the Hartree approximation,
the value of t is determined by two opposing effects.
First, the filling of the conduction band with electrons
reduces the attractive Coulomb potentials by virtue of
screening effects leading to smaller hopping matrix ele-
ments. Second, the reduction in the strength of the at-
tractive potential results in a spreading of the electron
wave function, leading to an increase of the hopping ma-
trix element. The second effect dominates the first be-
cause it depends on the exponential decay of the overlap-
ping electron wave functions, whereas the first effect is
determined by the 1/r dependence of the attractive pseu-
dopotential. As a consequence, the width of the electron
band should broaden in the Hartree approximation. In
addition, however, there are the correlation effects which
are known to narrow the conduction bands. These effects
are the more important the narrower are the original
Bloch bands. From experiments it is known that we are
dealing with narrow bands in the CuO2 plane, and there-
fore the minus sign in Eq. (5) appears justified.

In the hole picture, Eq. (5) becomes

t~t, ff=t'+obt (0~5~2), (6)

where t"=t —2ht and 6 is the hole occupation. The
above discussion shows that Eqs. (5) and (6) must be un-
derstood as a phenomenological description of the experi-
mentally observed width of the partially filled hole band.
The term 5ht is the first-order contribution of an expan-
sion of t,ff in the Coulomb interaction, valid only in the
neighborhood of a nearly empty hole band. The Hamil-
tonian given by Eq. (4) is our point of departure for the
following discussion of the relevant Coulomb effects on
T'

[Eq. (2.27) of Ref. 12]. The interaction kernel E for two

III. T, EQUATION

Based on the Hamiltonian [Eq. (4)], the transition tem-
perature T, is calculated by using the method of Appel
and Kohn. ' Thereby, we can take into account the e-e
interaction beyond the on-site Hubbard repulsion U, that
is, nearest, next-nearest, and higher-order neighbor in-
teractions. The temperature T, is determined as the ei-
genvalue of a matrix equation that in our site representa-
tion takes the place of the BCS T, equation. For the
lattice-site matrix (i,j ), the equation for the e evertex-
function I takes the form,

= —g F(Rk, co')I, lR —Rk, co' —co;R, , co) .
k

Here F(Rk, co') is the anomalous Green's function for an
electron pair in the site representation and I, is the con-
tracted pairing interaction between two electrons, defined
below. The propagation of an electron pair between two
sites separated by R; is given by

1 exp(ik R )
F(R;,co) =—g

i
co

i
+ [E(k)—p, ]

(9)

where N is the number of lattice sites, E(k) is the disper-
sion of the conduction band, and p is the Fermi energy; k
is a vector in the first Brillouin zone. The contracted
pairing interaction of the kernel K is given by

I,(R,co';R;, co)= QI(R +Rk, Rq, co', R, , O, ro),
k

(10)

[Eq. (2.30) of Ref. 12], where I is the four-site interaction
between two electrons initially at the sites R +Rk and

RJ, to be scattered to the final sites R; and 0.
We now proceed to discuss the interaction kernel K in

terms of the functions F and I„determined by the model
Hamiltonian [Eq. (4)]. Our calculation presumes a square
lattice of oxygen ions to present the Cu02 layer. This as-
sumption implies that the holes are in the oxygen pm
bands of the anion 0 lattice and that the Cu ions mere-
ly play the role of providing a positively charged back-
ground. For this model, with zero interplane hopping
and with the nearest-neighbor matrix element t,ff for in-
plane hopping, the dispersion of the conduction band is

s(k)= —2t, ff(cosak +cosak ),
where a is the lattice constant. We take c=4t,~ for the
occupied electron band, i.e., the empty hole band. Using
this dispersion, we can evaluate the pair function F. To
this end, the k summation in Eq. (9) is replaced by an in-
tegration over energy shells,

4& ff N(R;, E)
F(R;,co)= f dc,

eff CO +(E P)
(12)

Here N(R;, E) is the generalized density of states given by

2

N(R;e)= f dk f dk cos(k R;)
4~ —~/a —n. /a

X5(s—s(k)) . (13)

For R; =0, N(R;, E) is the usual density of states per lat-
tice site and per spin. For R, %0, some of the generalized
density of states functions are as shown in Fig. 1.

The pairing interaction I, [Eq. (10)] is determined by
the instantaneous Coulomb interaction, independent of co

and co',

electrons contains the imaginary frequencies
co=i~P '(2n+ 1) and co'=imP '(2n'+ 1), where
n, n'=0, +1,+2,

K(R, t0', R;,co)
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FIG. 1. Generalized density of states A(R, c.).

I(R;,R;Rk, Ri)
= f d r d r'P*(r —R;)P*(r' —R, )

X V„(~r
—r'~ )P(r —Rk )P(r' —RI ) . (14)

The proper choices of the site combinations (i,j,k, l) lead
o the Coulomb matrix elements U, V, and At.

The vertex equation (7) now takes a simple form. Be-
cause of the instantaneous pairing interaction [Eq. (14)],
the pairing kernel K becomes independent of co. The cu'

summation can be carried out to obtain the vertex equa-
tion for I (R, ) = I (R;,co),

I (R, )=—g K, (R, , R )I (R, ),1

J

where

(15)

E,(R;,R, ) = QK(R, , co';R;, co)

= —g I, (R~ —RI„O,R, , O) g F(Rg, co') .
k I

(16)
~ ~

By wnting Eq. (15) as a system of homogeneous equa-

dt 'E R
tions, T, is found from the roots of the eo e equation
det[P IC, (R, , R ) E]=0, where —E is the unit matrix.

he detailed procedure is given by Paulsen. '

ht (ev)

FIG. 2. Transition temperature T, vs the bond-charge repul-
sion for four different values of the hopping parameter t,ff. The
Fermi ener is fixedgy at p —3.8t,ff, corresponding to an almost-
filled electron band with the hole occupation given b
5 = 1 — /4t =0.05.

pa ion given y

C
p ff

= . . The on-site and nearest-neighbor
oulomb parameters are U = 5 eV and V =2 V, y.e, respective y.

find a smaller increase of T, with At and we also get a
larger minimum value of At required for the occurrence
of superconductivity, i.e., T, )0. This behavior of T„
shown in Fig. 2, is in agreement with Marsiglio and

irsch, ' who predict a strong increase of T, with the
bond-charge parameter At provided that the bands are
suKciently narrow. It is seen from Fig. 3 how the
minimum ht necessary for superconductivity becomes
smaller when U or Vare decreased.

The dependence of T, on the band occupatiopa ion, i.e., on
e ermi energy p, is shown in Fig. 4 for t ff =0.125 eVeff

where, however, the renormalization of the bandwidth
[Eq. (6)] is ignored.

We also check the condition for the existence of super-
conductivity given by Eq. (41c) of Ref. 7 in terms of the
parameter b defined by the equation in R f 19 U
this e uis equation and the condition b )0, corresponding to
T, )0, we find the minimum value At;„, which is neces-
sary to get superconductivity with all the other parame-
ters being fixed. In order to control our calculation quan-
titatively, we compare Hirsch's values for At;„with the
values found from our procedure. The results are given
in Fig. 5 as functions of the band occupation. The elec-

IV. PARAMETER STUDY OF T,

We solve Eq. (15) numerically to find the effect of the
different Coulomb contributions to T, . To this end, we
assume the screened matrix elements U, V, and At to be
the variables of this parameter study.

For a narrow, almost-filled electron band—
corresponding to an almost-empty hole band —the
dependence of T, on the pertinent bond-charge parame-
ter At is shown
different values of the bandwidth, i.e., the hopping matrix
element t,ff. The band filling is given by p=3. 8t,ff. The
on-site and nearest-neighbor Coulomb interactions are as-

shows a large increase of T, with At.
For a wider band of width 1 eV ( t z =0. 125 eV) weeff
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FIG. 3. Transition temperature T, vs the on-site Coulomb in-
teraction U for different values of At and V; t,ff=0. 125 eV, the
same p as in Fig. 2.
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Here i, j, and k denote the three-site configuration shown
in Fig. 6(b). The three-center integral b, t3 is proportional
to the overlap matrix S between P*(r—R ) and
P(r —Rk). To be consistent, the hopping matrix element
t [Eq. (3)] must be augmented by a corresponding term

FIG. 4. Transition temperature T, vs the Fermi energy p.
The value of p=4t, z corresponds to an empty hole band; the
same Coulomb parameters U, V as in Fig. 2, t,~=0. 125 eV,
At=0. 815 eV. The crosses represent the numerical T, values
found from Eq. (15) by using the parameter values above. The
line interpolates between the calculated values.

tron (hole) occupation increases to the right (left). For
this comparison, we use the density of states at the Fermi
energy, whereas Hirsch takes the density of states aver-
aged over the bandwidth. We mention that the values of
At;„will decrease if, e.g. , the value of U is smaller than
5 eV (see Fig. 3) because a value of 2 eV is found empiri-
cally in one case. '

The dependence of T, on the Coulomb parameter V2 is
shown in Fig. 7 for the almost-filled band p =3.8t,~. For
the same case and different V2's, the effect of the bond-
charge interaction At& on T, is shown in Fig. 8. Whereas
At 3 has a similar effect as 6t, i.e., an increase of T„ the
density-density interaction V2 has the expected opposite
effect. The value of V2=(1/V2) V would correspond to
the distance ratio between next-nearest and nearest
neighbors. To account for screening effects, we take
somewhat smaller values of V2 in Fig. 8.

Next, we discuss the relative magnitudes of the bond-

(a)

V. HIGHER-ORDER COULOMB INTERACTIONS

We proceed beyond the three-parameter study and dis-
cuss the question to what extent higher-order Coulomb
matrix elements can be important besides U, V, and At.
As seen from Fig. 6, the next step is to include both the
next-nearest-neighbor Coulomb matrix element Vz and
the three-center bond-charge matrix element At&. The
two matrix elements are

e2

V2=I(R, , R),R, , R ) (17)

i.o

0.8

FIG. 5. Minimum value of the bond-charge parameter for
which superconductivity can occur, At;„, vs pit, z. The results
of Hirsch (Ref. 7) are compared with our values denoted by X;
the same Coulomb parameters U, V as Fig. 2. When band re-
norrnalization is taken into account that occurs when the hole
concentration increases —i.e., the widening given by Eq. (6)—
the dependence of At;„on p becomes much stronger.

FIG. 6. Site configuration for the bond-charge matrix ele-
ments (a) for nearest neighbors At and (b) for next-nearest
neighbors At& (left) and b t3 (right).
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value of these matrix elements as compared with At& and
V2.

The lowest-order bond-charge matrix element ignored
in Eq. (15) is b, t 3 shown in Fig. 6(b). Its efFect on T, is ex-
pected to be approximately —,

' of At3 because, for a given
site, there are four matrix elements At or At3, and eight
matrix elements ht3. As for the density-density matrix
elements, we ignore all elements of higher order than V2
because of screening effects.

In summary, of the higher order-matrix elements, only
the three-center bond-charge matrix element is relevant
with nearest-neighbor overlap.

VI. ANALYSIS
OF BOND-CHARGE PARAMETERS

FIG. 7. T, vs the next-nearest-neighbor Coulomb repulsion
V2 for different values of the nearest- and next-nearest-neighbor
bond-charge repulsions ht and At 3, respectively; the same
U, V, p as Fig. 2, t,~=0. 125 eV.

charge matrix elements and density-density Coulomb in-
teractions beyond ht 3 and V2. A bond-charge matrix
element depends on the overlap between two bond-charge
wave functions, SI,J = exp( —~R„—RJ ~ ), and on I /R,
where R is the distance between the center of the bond
charge, eP*(r—Rk )P(r —R ), and the site charge,
e~P(r —R;)~; hence R =

~
—,'(R&+R, ) —R, ~. Therefore it

appears justified to neglect (i) all other two-, three-, and
four-center integrals between two bond charges, because
of their S dependences. The validity of this neglect is
confirmed by the analytical evaluation of S in Sec. VI.
Furthermore, we neglect (ii) all of the matrix elements
with an overlap between next-nearest and higher-order
neighbors. This neglect is justified because the overlap
between next-nearest neighbors is by approximately a fac-
tor of 10 smaller than that between nearest neighbors (cf.
Sec. VI). Finally, we neglect (iii) matrix elements [of the
form Eq. (18)] with a nearest-neighbor bond-charge over-
lap between R and Rk and a site charge at R;, with a
distance larger than that between nearest neighbors [cf.
Fig. 6(b)]. In this case, screening should diminish the

200

So far, we have confirmed Hirsch's conclusion on the
importance of the two-center bond-charge repulsion At
for high-T, superconductivity. Moreover, we find that
the three-center bond-charge matrix element At3 rein-
forces the At effect. We proceed to discuss the physical
basis of this model. The crucial question is whether the
parameter values of At and ht3 —required for the pairing
interaction to be attractive —can independently be
confirmed as physically reasonable. In order to answer
this question, we proceed in two different ways. First, the
matrix elements At' ' and ht3 ' are evaluated analytical-
ly. In addition, values for t„DA are derived from a cluster
calculation. The LDA matrix element corresponds ap-
proximately to the Hartree-Fock matrix element tH„.

The analytical evaluation of At' ' between two oxygen
atoms with the nearest-neighbor distance R =5. 19 a.u. ,

b, t' '= Jd rd r'P*(r)P"(r')~r —r'~ 'P(r)P(r' —R),

P(r)=are &"Y, (r)=R(r). Y, (r), (20)

with an approximately chosen exponent g, the analytical
form of At' ' is in good approximation (cf. the Appen-
dix),

(19)

requires the knowledge of the orbitals p(r). &ssuming
atomiclike O(2p) orbitals

x'(1+x)e ", x=gZ .
2

(21)

100

0
0

I

0.5
ht3 (eV)

1.0

FIG. 8. T, vs the bond-charge parameter At, for difterent
values of the nearest-neighbor bond-charge repulsion At and of
the Coulomb parameter V2; the same U, V, p as Fig. 2,
t,fI-=O. 125 eV.

Taking /=1. 86 a.u.—which is the value that follows
from our cluster calculation —we obtain

=5.93 X 10 Ry =0.806 eV .

The analogous evaluation of At 3
' gives

At3 '=0. 13 eV .

Since two bond-charge matrix elements At3 and one At 3
contribute to each b, t (cf. Fig. 6), the three-center in-
tegrals increase At' ' by approximately 0.35 eV. Hence,
in view of the sensitivity of T, against At, the three-
center integrals are not a priori negligible.

Hopping matrix elements can also be derived from a
calculation on the Cu40&zH, 2Ba6 cluster (cf. Fig. 9). The
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FICx. 9. Cluster model; each Cu atom has a H neighbor in the
z direction.

VII. DISCUSSION OF T, RESULTS

The importance of the two-center bond-charge matrix
element At for the Coulomb interaction between the p~
electrons of the 0 anion lattice is confirmed in agree-
ment with Marsiglio and Hirsch. ' By applying the
method of Ref. 12 to evaluate the transition temperature

TABLE I. Two- and three-center contributions to the hop-
ping matrix elements.

tLDA

EeV)

Two-center
Three-center

Sum

2.32
0.31
2.64

CuO

1.26
0.12
1.38

0-O

0.31
0.60
0.91

calculation is performed by the self-consistent charge X
method' that uses the X exchange potential and a
minimal basis set of Slater-type orbitals. The variable ex-
ponents of these orbitals are automatically adjusted to the
respective electronic configuration of the atom in the
cluster. The potential energy gives two contributions to
the hopping that contain At and At3, respectively. The
comparison of two- and three-center contributions to the
Cu-0 and O-O matrix elements (cf. Table I) emphasize
the importance of the three-center matrix element for the
O-O hopping. Taking into account that delocalization
effects are somewhat overestimated by the LDA, the
value of 0.9 eV for the O-O hopping may be too large by
about 10—15 %.

The LDA calculations of At' ' and At& ' presume an
unscreened Coulomb interaction. The dielectric response
of the electrons in the conduction band with respect to
the bond-charge repulsions is not known, and therefore
the magnitude of the screening reductions of At' ' and
Et' ' remains an open question. At this point, we consid-
er the values of At' ' and ht3 ' to be reasonable upper
bounds for these matrix elements.

T, for tightly bound electrons in the atomic representa-
tion, we find a strong increase of T, with increasing value
of ht, as shown in Fig. 2 for different values of the band-
width, 8t,ff. Figure 3 gives the variation of T, with the
on-site Coulomb repulsion U for different values of V and
At.

The dependence of T, on the band occupation is shown
in Fig. 4. Using the electron picture, we find the max-
imum in T, vs the electron occupation (n ) obtained in
Ref. 7. Moving from the maximum toward larger elec-
tron fillings (n ), i.e., smaller hole occupations 6, we ob-
serve the decrease of T, due to the diminishing number of
Bloch states available for the pairing processes. This
number is determined by the electron distribution func-
tion f(E—p), where the Fermi energy p moves toward
the band edge at c=4t,ff. We note that T, ~0 for p~ ~
because of the Pauli blocking for the electrons in the con-
duction band. Moving from the maximum toward small-
er (n ), T, decreases because the b, t attraction, which
reaches its maximum value for a filled electron band de-
creases as the band is emptied. Our calculation does not
include the band-narrowing effect given by Eq. (5), and
therefore the maximum is less pronounced than in Ref. 7.

The minimum value At;„where superconductivity
can occur by virtue of the bond-charge repulsion, i.e.,
T, )0, is given in Fig. 5 as a function of the Fermi energy
p. The result is compared with that of Hirsch and good
agreement is found, except for the almost-empty electron
band. This difference can be due to the neglect of ob (cf.
Ref. 19).

By using the atomic representation to find T, for the
tightly bound pm electrons, we proceed beyond the
three-parameter study of the Coulomb interactions U, V,
and At defined by the basic model Hamiltonian [Eq. (4)].
It is found that the next-nearest-neighbor bond-charge
repulsion b, t3 reinforces the effect of At (Figs. 7 and 8).

This paper is based on the one-band model Hamiltoni-
an [Eq. (4)] for the p~ electrons. The Cu spin degrees of
freedom are thereby ignored. For holes in the pdo. band,
it is shown elsewhere that the spin fluctuations can lead
to an attractive pair interaction either by virtue of tmo-

magnon exchange —if one presumes an antiferromagnet
metal —or by the exchange of two antiferromagnetic
paramagnons if the superconductivity is approached
from the paramagnetic metal phase.

Finally, we wish to comment on the superconductivity
in a d-band metal, niobium. Whereas the superconduc-
tivity in ordinary metals is usually well accounted for the
BCS and Eliashberg theories in terms of the electron-
phonon parameter A, and the Coulomb parameter p*,
there may be problems with Nb. For this metal two
different experimental groups have used the tunneling
technique to find the microscopic parameters k,p* and
the energy gap Az. Whereas Bostock et aI. get a nega-
tive value of p*= —0.084 together with A, =0.43 and the
experimental gap 50=1.56 meV, Harmon, Geballe, and
Rowell obtain p*=0.05, X=0.81, and 60=1.46 meV.
In either case, the value of p* is much smaller than the
standard values, p*=0.10—0. 15. Niobium metal is a
hole conductor with a positive Hall coeKcient and with a
Fermi surface consisting of octahedral and ellipsoidal



BOND-CHARGE REPULSION AND HOLE SUPERCONDUCTIVITY. . . 2819

hole pockets and a multiply connected hole sheet. Hence
the bond-charge repulsion between the tightly bound 4d
electrons can be responsible for the small value of p*.
For Nb3Sn, Marsiglio discusses in some detail the effect
of At on the Coulomb pseudopotential within Eliashberg
theory of the electron-phonon interaction in supercon-
ductors.

VIII. CONCLUSION AND SUMMARY

exchange of two magnons or two spinAuctuations, in
favor of high-T, superconductivity.
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In this paper we confirm the basic conclusion of Marsi-
glio and Hirsch, according to which the Coulomb repul-
sion between holes in almost filled and narrow energy
bands can lead to an attractive pairing interaction for
BCS-type superconductivity. The crucial role of the
nearest-neighbor bond-charge repulsion At for the pair-
ing kernel is shown with a parameter study of the transi-
tion temperature T, . This temperature is obtained as the
eigenvalue of the e-e vertex equation in the atomic repre-
sentation for the energy band spanned by the oxygen pm
orbitals in the Cu02 plane. Thereby, we also take into
account the next-nearest-neighbor bond-charge repul-
sions At&. Our T, results depend in a sensitive manner on
the magnitudes of both the two and th-ree center m-atrix
elements At and b, t3, assuming reasonable values for the
on-site and nearest-neighbor Coulomb interactions U and
V. It would be of some interest to see these results also
confirmed by Monte Carlo calculations. The matrix ele-
ments At and At& are calculated analytically for the p~
orbitals, and the hopping matrix element t is determined
by a LDA cluster calculation. The quantitative results
for At and At& can be considered as upper bounds for the
two bond-charge matrix elements. The value for At is
larger than the minimum values required for supercon-
ductivity, T, )0. The diminution of At by screening
effects is at least partially compensated for when the
three-center matrix element At& is taken into account.
Because of the sensitive dependence of T, on the magni-
tudes of both At and At3 and because of the unknown
screening effects, we leave open the question whether the
bond-charge interactions are sufFiciently strong to lead by
themselves to an attractive pairing interaction between
holes. This observation does not rule out the possible im-
portance of the bond-charge interaction for the supercon-
ductivity in the Cu02 layers as discussed by Hirsch. If
the bond charge repulsion does n0t lead to an attractive
pairing between holes, it can still have the very important
effect of mitigating the Coulomb interactions U and V.

The foregoing discussion applies to holes in the pm
band. Band-structure calculations —which can be no-
toriously bad for transition-metal oxides —suggest that
the holes are in the pdo. band. Also, for this orbital sym-
metry, the bond-charge repulsion will mitigate the net
Coulomb interaction between two holes. This effect can
be responsible for tilting the delicate balance between the
Coulomb repulsion and the attraction due to the bosonic

X 47r g z+, Yz„(r)Yz„(r')
(2A, +1)r

X P*(r')P(r' —R) .

The selection rules for the Clebsch-Gordan coefficients
restrict A, to 0 and 2. The term with A, =2 contributes
usually less than 10% to At and, therefore, is ignored
here. Then we have

b, t'0'= fd'r'P*(r')P(r' —R)f r &'&'(r)r'dr
0

d r' *r' r' —R

1
X

I

e " (x') 4—v

r 0 vl

where x'=2(r'. Because of the large nearest-neighbor
distance R =5.19 a.u. , the exponential gives a negligible
contribution ( =2%%uo ) and we get

At''=— d r *r r —Rr
For the same orbital exponents, one readily evaluates
such integrals by using the Fourier-transform tech-
nique. The result is given by Eq. (21) for
R=(1 10)/&2.

The three-center matrix element [Eq. (18)] for an un-
screened Coulomb interaction V„has the form,

At& ' =f d r d r'P*(r —R&)P(r —R2), , ~P(r')~
1

This integral can be evaluated with the procedure analo-
gous to that of At. The result is given by

b.t' ' —=R 'S(2p, 2p, vr)

=R
2 2

1+x + e "+ (1+x )e
3 15

where S is the overlap matrix element between two O(2p)
orbitals, x =JR.

APPENDIX: ANALYTICAL EVALUATION
OF ht AND ht3

The matrix element ht [Eq. (19)] is evaluated by ex-
panding ~r —r'~ into spherical harmonics and using Eq.
(20) for the orbital wave functions P(r):

b, t' '= f d r f d r'R (r)~Y, (r)~
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