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We determine the creep rates for classical and quantum motion in uniaxially anisotropic and layered
superconductors within the framework of weak collective-pinning theory. In particular, we concentrate
on the low- and intermediate-magnetic-field regime where single-vortex collective pinning is relevant.
For a field aligned with the crystal c axis, we find that both the classical and the quantum creep rates are
enhanced as compared with the isotropic results due to the increased elasticity of the vortices. For an-

isotropic superconductors the creep rates do not depend on the angle 8 between the magnetic field and
the crystal ab plane and are also independent of the direction of motion. Identical results are obtained
for layered superconductors within the large-angle region 0) e, where e =m/M (1 denotes the mass
anisotropy ratio. A more complex behavior is obtained in the small-angle region ~8~ (et where the
structure of the vortex cannot be approximated by a simple rectilinear object. Here the creep rates de-
pend both on the angle 8 and on the direction of motion. We discuss the finite-temperature corrections
to the quantum motion and determine the crossover temperature to the classical thermally activated be-
havior.

I. INTRODUCTION

The magnetic properties of type-II superconductors ex-
posed to fields larger than the lower critical field H, are

1

determined by the static and dynamic properties of the
vortices. Material defects acting as pinning centers trap
the vortices in a critical state' which is characterized by a
nonuniform vortex density. From the thermodynamic
point of view, the critical state is only metastable and
thus decays by thermally activated vortex motion in or-
der to achieve a more uniform vortex density. This
phenomenon is known as creep and the classical theory
by Anderson predicts relaxation rates (for the diamag-
netic moment or for the persistent current) which vanish
linearly with decreasing temperature. In the oxide super-
conductors the observed magnetic relaxation rate is par-
ticularly large (giant creep ), indicating weak pinning of
the vortices. In addition, recent experiments have shown
that the low-temperature relaxation rate does not extra-
polate to zero, suggesting a decay of the critical state
by quantum tunneling. Similar effects have been ob-
served in a chevrel phase, in heavy fermions, and in or-
ganic superconductors. Thus, the question arises what is
the fundamental parameter governing the quantum
motion of the vortices and distinguishing the oxide, or-
ganic, heavy-fermion, and the chevrel phase supercon-
ductors from "more conventional" superconductors
which do not show quantum effects.

Recently, the tunneling rates for single vortices and for
vortex bundles have been determined within the frame-
work of weak collective pinning theory. ' The tunneling

rate is determined by the (effective) Euclidean action Sz' '

of the process. " For the most important case of single-
vortex tunneling in the limit of strong dissipation, the di-
mensionless effective Euclidean action becomes
SP/A=(A'/e )(g/P„)+jo/j, . The fundamental dimen-
sionless parameter is given by the resistance ratio
(p„/g)/(A'/e ), where p„ is the normal-state resistivity
and g is the coherence length of the superconductor.
Furthermore, jo and j, denote the depairing and the crit-
ical current densities. Superconductors characterized by
a large normal-state resistivity and a small coherence
length, such that p„/g ~ 1kB, are good candidates for the
observation of quantum creep. The exotic superconduc-
tors listed above belong to this class of materials.

The theory as developed in Ref. 10 applies to isotropic
materials, whereas the oxides as well as the organic su-
perconductors are characterized by large anisotropies. In
this paper we extend the theory of quantum collective
creep to uniaxially anisotropic and layered materials.
Thereby we restrict ourselves to the most important case
of single-vortex pinning which describes well the situa-
tion for small and moderate magnetic fields. In general,
the creep rate may depend on the angle 8 between the
magnetic field and the superconducting layers and on the
direction of the motion (motion parallel to the planes
denoted "in-plane", versus motion within the plane con-
taining the vortex and the crystal c axis denoted "out-of-
plane" ). Our main results are the following: In an aniso-
tropic material and for a field directed along the c axis,
the elasticity of the vortices is enhanced with respect to
the isotropic material, leading to a reduction of the
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TABLE I. Angular dependencies of the phenomenological parameters for anisotropic and layered
superconductors and for in-plane ( ~) as well as out-of-plane (l) motions. Parameters for in-plane
motion of Josephson vortices are denoted by J. All angular dependencies are expressed in terms of ez,
with p&= p cos 8+ sin 8. The other parameters are pp= (Np/4wX) &66 =B+p/(8wA, ),
M, =(2/vr')mKF, and i)=%0/2~c g p„. fp;„ is the individual mean pinning force acting on a vortex
aligned parallel with the crystal e axis.
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(effective) Euclidean action Sz' " and thus to an
enhanced magnetic relaxation rate d lnM/d lnt = —A'/

Sz' ". For the case of strong dissipation, the coherence
length g in the effective Euclidean action Sz ' has to be
replaced by the coherence length g, along the c axis. For
anisotropic materials we find Sz' '=SE' "independent of
the direction of the field and of the direction of motion.
For layered materials the results agree with those ob-
tained for the anisotropic case within the large-angle re-
gion 0 &e, where e =I/M &1 is the mass anisotropy
ratio. For small angles, ~6~ (e, a strong dependence of
the action upon the angle 8 is found. The case where the
magnetic field is precisely aligned with the ab plane,
8=0, has been discussed extensively by Ivlev, Ovchinni-
kov, and Thompson. ' All results of the present paper
are summarized in Tables I and II.

The second important aspect discussed in this paper is
the finite-temperature enhancement of quantum creep
and the crossover to the classical, i.e., thermally activat-
ed, regime. It turns out that, once the length of the tun-
neling segment of the vortex has been determined, the dy-
namic component of the tunneling process corresponds to
the tunneling of a pointlike object in a renormalized po-
tential. Therefore, the results obtained for the finite-
temperature enhancement of macroscopic quantum tun-
neling of a pointlike object' '" can easily be generalized
to the string problem. The basic quantity determining
the temperature dependence of quantum creep is the dis-
sipation. For the most important case of ohmic dissipa-
tion, a T behavior is obtained for the finite-temperature
correction b,Sg (T)=SP(T)—SP(0) to the effective ac-
tion. If the coupling to the environment has a low-
frequency cutoff, the importance of dissipation is reduced
and the temperature dependence of the action Sz ( T) is
exponentially small.

The tunneling rate is determined by the saddle-point
solution of the (effective) Euclidean action Sz' ' of the
tunneling process, ' ' ' whereas the classical thermally
activated process is described by the saddle-point solution
of the free energy. The quantum motion is thus an
(n + 1 )-dimensional generalization of the classical n

dimensional process, where the role of the additional di-
mension is played by the time coordinate. Thus, in order
to describe quantum motion we first have to study classi-

II. CLASSICAL CREEP IN ANISOTROPIC
AND LAYERED MATERIALS

A. Anisotropic superconductors

Let us consider an anisotropic superconductor charac-
terized by its mass anisotropy ratio e =m/M &1. We
choose a coordinate system where the z axis is aligned
parallel to the crystal c axis. A magnetic field H enclos-
ing an angle 8H with the ab plane (an angle
9H =rr/2 6H with the c—axis) is applied to the sample.
To fix ideas we assume H to lie in the yz plane of our
coordinate system. The magnitude of H is chosen to be
much larger than the lower critical field H, (9H). The

1

correct angular dependence of H, (HH ) still seems to be a
1

rather controversial issue. A particularly simple expres-
sion can be obtained within the London approximation'

H, (HH)=
+o e

ln
4vrk' ee„

where k denotes the London penetration depth in the ab
plane, g denotes the planar coherence length, No=bc/2e
is the Aux quantum, and

ee=e (8)=e cos8+sin 6
An analysis of based on the Ginzburg-Landau theory

cal creep in anisotropic and layered materials. In Sec. II,
we start with a discussion of classical creep in anisotropic
and layered materials. Here, we refer to an "anisotropic
superconductor" as a material where an anisotropic con-
tinuous Ginzburg-Landau or London free-energy func-
tional gives an accurate description of the physics,
whereas we use the term "layered superconductor" to
refer to a material which has to be described by the
discrete (orthogonal to the layers) Lawrence-Doniach'
model. In Sec. III, we determine the quantum-
mechanical tunneling rate using the classical results for
the calculation of the (effective) Euclidean action Sz' ' of
the tunneling process. Section IV contains a discussion
of finite-temperature effects and we summarize and con-
clude our work in Sec. V.
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provides the additional angular dependence in the loga-
rithm (plus additional nonlogarithmic corrections), which
can lead to substantial modifications of the above simple
result. ' ' Our analysis below will not rely on the de-
tailed value of H, , and the above result is merely quoted

1

for an order-of-magnitude estimate for the regime of ap-
plicability of our results.

In anisotropic superconductors the direction of the
external magnetic field 8H in general deviates from the
direction 6 of the vortices. Here, 8 is again measured
with respect to the ab plane, see Fig. 1. For an Abriko-
sov lattice in an equilibrium state this deviation is given
by 19&22& 23

2Ey ln k/

Here, H,' is the lower critical field along the c axis and
1

H, (8)=No/2rrg ez is the upper critical field along 8.
2

An additional complication occurs in strongly layered su-
perconductors, where the vortices are locked to the ab
plane below the critical angle 8& which is given by the
relation 8& —H; /H—ln(A, /g). For large enough fields,

ment with the c axis after the external field is switched
off. On the other hand, in a zero-field-cooled situation,
vortices entering the sample will be directed along the
external magnetic-field direction at the surface, however,
it is unclear along which direction the vortices will point
within the interior as this is the result of Aux How and
creep during the creation time of the critical state itself.
In this paper we will concentrate on a specific part of this
problem, which is pinning and creep in anisotropic and
layered material due to classical and quantum motion.
We therefore express all quantities by the (local) internal
field angle 8 and leave the problem of relating internal
and external angles under nonequilibrium conditions for
future studies.

Vortices entering the sample will minimize their ener-
gies with respect to the weak random pinning potential
U;„. For not too large fields, the interaction between the
vortices is small compared with the interaction of a single
vortex with the pinning centers, such that we can study
the single-vortex free energy

V[u]= f dz (a, ,u, )'+ '
(a, ,u, , )'

2 ' 2

H» H,',1

1

the relative difference between the external angle 6H and
the internal angle 8 as well as the locking angle 81 be-
come small and we can neglect this complication in the
following analysis, where we express all quantities by the
internal field variable 8. For small field values the situa-
tion is more dificult: Our main focus in this paper is on
pinning, thus the vortices go into a metastable critical
state rather than to the stable equilibrium configuration.
The internal angle 8 then depends on the condition under
which the critical state is formed: If the field is switched
off after field cooling (magnetic remanence), the vortices
are pinned initially in a direction parallel to the former
external field. This initial angle is changed due to Aux
fl.ow and creep as the metastable critical state evolves in
time, as has been shown, e.g. , by Tuominen et al. , who
observe an alignment of the remanent diamagnetic mo-

+ U;„(z',u)

The tilt modulus is determined by the increase in energy
due to a transverse fluctuation of the vortex position:
symmetrically deforming the vortex on a distance 2L by
an amplitude L5$, the energy increase of one segment
with length L is

1 BE5E = 5L+ M+ — (M) .
BL M 2 By2

(3)

Here we have introduced the rotated coordinate system
with z' pointing along the external field H and a. common
x axis, x =x', see Fig. 1. The elasticities eI(8) and sl(8)
for in-plane and out-of-plane motions can be obtained in
the following way: The line energy of a vortex segment
of length L enclosing an angle 6 with the ab plane is
E (L,8)=Eoln(A, /fez)E+, with

2
c'o

4+X

FICx. 1. Coordinate systems used to describe vortex motion
in anisotropic and layered superconductors. The vortices are
directed along z'. In-plane motion of a vortex is along x =x',
whereas out-of-plane motion is along y'. In an anisotropic su-
perconductor the Abrikosov vortex has core dimensions g and

aqua along the x and y' axes, respectively.

For an out-of-plane tilt by an angle 5/=M the length of
the segment L is increased by 5L =L (M) /2. The out-
of-plane elasticity then is defined by the relation

1 BE
CI—'si(8)L(M) = 5L+ — (M) .

BL 2 By2
(4)

Here the linear term in (3) has dropped out as the total
deformation involves two segments of length L with op-
posite angular corrections +56. After a few algebraic
manipulations we obtain the result ' E~(8) =co@ /e&.
For an in-plane tilt by an angle 5$, the length of the seg-
ment L is increased by 5L =L (5$ ) /2, whereas the
change in the angle 6 is given by the equation

tan(ri+ M) =L sin8+(L cos8) + (L 5$),
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resulting in 56= —(tantl)(5$) /2. The in-plane elastici-
ty is defined by

2
—'EI(8)L(5$) = 5L+ M,

aL aa
where we have dropped the term quadratic in 68 as the
angular correction M is already of second order in 5P.
The final result for the in-plane elasticity is
sI(8) = so@ /ez. All angular dependences for the material
parameters are summarized in Table I.

Within weak collective pinning theory vortex seg-
ments of length L, are pinned independently. Each seg-
ment L, is subject to the competition between the elastic
tilt energy and the pinning energy, such that the indivi-
dual pinning forces add up only randomly within the
collective-pinning volume V, ~ L, . On the other hand,
the net pinning forces of the segments add up linearly, re-
sulting in a finite pinning force density. The collective-
pinning length L, is determined by minimization of the
free energy (2). In the following we will study a pinning
potential with a minimal characteristic length r =g
given by the spatial extent of the vortex core. Such a
model is appropriate if the size of the defect is smaller
than the coherence length g. Depending on the mode of
relaxation, we will have to consider the coherence length
g' in the ab plane [u=(u„,0,0)] or the coherence length
uzi along y'[u=(0, u, 0)], see Fig. 1. In the high-T, su-
perconductors weak collective pinning by pointlike oxy-
gen defects is believed to be the main source of pinning
and our model should be applicable.

The solution minimizing the free energy (2) can be ob-
tained using dimensional estimates (in these estimates we
will express all the quantities through their natural pa-
rarneters and will drop the numericals which usually
combine to a factor of the order of unity). Within the
collective-pinning volume V, = ezra L„ the elastic energy
competes with the pinning energy and the equality be-
tween the two energies determines the length L, . We
first study the relaxation mode with u in the ab plane:
For this case the relevant length scale is g, the elastic en-
ergy is EI(8)g /L,", and the pinning energy is
U,"=(f~;„ndL,"g Ez)' g Here nd den. otes the defect den-
sity and f;„ is the individual mean pinning force. Solv-
ing for the collective-pinning length L,II we obtain

2(2 4
' &~3 Lc

8'a e

Here we have introduced the mean-squared random force
density &=f,„nd(g/a), with a =Q@o/B the mean
vortex separation. L, is the collective-pinning length for
a field applied parallel to the c axis of the crystal. Note
that L,' is reduced by a factor e with respect to the iso-
tropic result. The result (6) has to be compared with
the relaxation mode within the yz plane, u = (0,u~, 0).
For this situation the relevant length scale is given uy

e&g, the elastic energy becomes e&(8)(e&g) /L, , and the
pinning energy takes the form

U, = [(fr,„/'Ea) ndL, K a]

For this mode the individual pinning force is enhanced by
a factor of I/ez due to the reduced length scale involved
in the pinning. The collective pinning length becomes

L c
Ll

C

which is identical to the result for in-plane motion. The
vortex relaxes to the pinning potential by choosing the
mode characterized by the smaller collective-pinning
length. Here, L, =L, and thus the relaxation of the vor-
tex involves both in-plane and out-of-plane motions. The
collective-pinning energy is U, = U, = U,' with

U;=( Wa L;)'i g=Eoe g /L'

and hence is independent of the angle 8 between the field
and the ab plane and of the direction of relaxation.

The pinning potential enters the expression for the
collective-pinning length (6) via the mean pinning force
density 8'. Since 8'is not directly accessible by experi-
ment, we relate the collective-pinning length L,' for a field

HIlz to the corresponding critical current density j, in
the ab plane: The critical current density is determined
by the equality between the driving Lorentz force
j,40L;/c and the pinning force U;/g. Using the
definition of the depairing current density
jo =c@0/12&3~A(, we o, btain

1/2

L; =eg Jo
(7)

Jc

expressing L, by experimentally accessible quantities.
Finally, we have to determine the range of validity of

our results. As the external field is increased, the vortex
separation decreases and the interaction between neigh-
boring vortices becomes increasingly important. The
range of applicability of the single-vortex pinning results
is given by the condition that the elastic energy due to tilt
of an individual vortex be larger than the interaction en-
ergy with the nearest neighbor. Consider first the case of
in-plane relaxation: An estimate for the interaction ener-
gy is given ~b the elastic shear energy
a L,"c«(8)(g /a+ed) within the volume a L ~~. The
(easy) shear modulus is given by c66(8)=E&c«, with
c66=B@0/(8~A, ) the shear modulus for the field aligned
with the crystal c axis (note that A, is the London penetra-
tion depth in the ab plane and not an eA'ective mean
penetration depth). In addition, we have used the small-
est intervortex distance aQez in our expression for the
shear energy. Equating the shear energy with the elastic
energy EI(8)g /L," and solving for the maximal single-
vortex pinning length L „we obtain the condition

LII&L II

6

Next, we study the case of out-of-plane relaxation, where
the elastic shear energy is given by
a L,c 66(8)[fez/(a /+ez) ] . The (hard) shear
modulus is given by c66(B)=c«/a~and we have used29 h

the larger intervortex distance a/QE& in the determina-
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tion of the shear energy. The maximal collective pinning
length involving a single vortex then is L, =ra/e&
which coincides with the result (8) for in-plane relaxation.
Using the results (6)—(8), we find that our theory is
applicable for fields

B (a H, (tl),
jo

with o. a numerical of the order of 10. Using a typical
value for the critical current ratio j, /jo=10 for the
oxide superconductors we expect that the single-vortex
pinning regime extends up to fields of the order of 10 T.
Additional complications due to the difference in the
external and the internal field angles can be avoided [see
Eq. (1)j if we choose the induction to lie within the inter-
val

H; «~Q«a H; .
jo 2

B. Layered material

We refer to a "layered superconductor" as a material
which has to be described in terms of a Lawrence-
Doniach' model. In layered superconductors the vor-
tices are not simple rectilinear objects but are rather
viewed as chains of two-dimensional (2D) pancake vor-
tices connected by interplanar Josephson-type vor-
tices, see Fig. 2. A pancake vortex can be viewed as
a finite segment of height d, the interlayer spacing, of an
Abrikosov vortex directed along the c axis. In particular,
as is the case for the Abrikosov vortex, we can associate
two length scales with a pancake vortex, the coherence
length g, which describes the extent of the core region
where the order parameter of the superconducting layer
goes to zero, and the planar London penetration depth A, ,
which describes the magnetic extent of the pancake vor-
tex. In order to understand the nature of a Josephson
vortex consider first a uniaxially anisotropic supercon-
ductor with field directed orthogonal to the c axis. The
number of relevant scales then doubles and the core of
the vortex is described by the scales g (perpendicular to c)
and eg (parallel to c), whereas the magnetic extent of the
vortex is given by A, /e and A, . As the anisotropy increases
we go over to the layered superconductor and the Abri-
kosov vortex turns into a Josephson vortex. Regarding
the magnetic extent of the Josephson vortex, nothing

FICx. 2. Mixed Josephson-pancake vortex in a strongly lay-
ered superconductor. The (phase) core dimensions of the
Josephson vortex are d along the z axis and A =d /e along the
planes. The pancake vortex has a core with vanishing order pa-
rameter with a size g (drawing not to scale).

f(r)=N(e~) f d r'g, (r')V~6, , (r r+')~

+N(cF) f d r'gz(r')g V~Vb, , (r+r')~, (10)

changes as compared with the Abrikosov vortex. On the
other hand, the Josephson vortex has no core in the usual
sense, as the superconducting order parameter is strongly
suppressed in between the layers. Therefore, the Joseph-
son vortex is only defined by its current Aow pattern.
For scales smaller than the magnetic extent of the vortex,
the current Aow pattern can be found from the solution
of a coupled set of nonlinear differential equations involv-
ing the two length scales d (the interlayer spacing) and
A=d /e. The phase and hence the current pattern in a
Josephson vortex then change rapidly on the scales d
(perpendicular to the layers) and A (along the layers).
Whereas for distances z (d, x & A, the layered structure
is relevant (due to the rapid change in phase), an accurate
description of the current pattern can be obtained at
large distances, z »d and x »A, on the basis of a con-
tinuum approximation. Also, due to the rapid change in
phase, the planar order parameter is slightly suppressed
on the scales d and A (see below). Therefore, we call this
inner region of the Josephson vortex, where the phase
changes rapidly, the "phase core" of the Josephson vor-
tex.

In a next step, let us discuss the pinning properties of
pancake and Josephson vortices. The pancake vortices
are pinned against motion within the ab plane, the
characteristic length scale for the pinning being the
coherence length g. Let us denote the individual pinning
force of one small defect acting on a pancake vortex by
f;„.This pinning force is identical to the one acting on
an Abrikosov vortex pointing along the c axis. On the
other hand, the Josephson vortices are intrinsically
pinned against motion parallel to the c axis, however, the
pinning with respect to motion along the ab plane is very
weak. In our model we assume the intrinsic pinning
force to be infinite. The pinning force against motion
within the plane is suppressed compared with the pinning
force f;„ffaecti gna pancake vortex. The origin of this
reduction in the individual pinning force is twofold: First
of all, the relevant extent of the Josephson vortex A is
much larger than the corresponding length g in a pan-
cake vortex, hence the pinning force, being a derivative of
the pinning energy with respect to distance, is reduced by
a factor g/A. Second, the relative suppression of the or-
der parameter within the layers adjacent to the Josephson
vortex is only small, in fact, only by a fraction (g/A),
whereas the relative suppression of the order parameter
in the core of a pancake vortex is of order unity. Hence,
the possible energy gain due to the presence of a defect
within the superconducting layer is reduced by a factor
(g/A) for a Josephson vortex as compared with a pan-
cake vortex. Together, we then obtain a suppression of
the pinning force acting on a Josephson vortex by a fac-
tor (g/A)3 as compared to the pinning force acting on a
pancake vortex. A more quantitative analysis of this
effect involves the following steps: The force f(r) acting
on a vortex due to an individual pin a distance r away is
given by
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where N(E~) is the density of states at the Fermi level
and b, ,(r) is the gap function in the presence of a vortex.
The first term describes pinning due to disorder in the at-
tractive electron-electron interaction g, (variations in the
transition temperature T, ), whereas the second term is
due to randomness in the coherence length of the super-
conductor, as caused, e.g. , by disorder in the mean free
path of the electrons. For a small defect with size ro & g,
the variation in 6, is small on the scale of the variation in
the coupling g and we obtain

f(r) =Ai(e„) V ~b, „(r)~ f d r'g, (r')

The first term describes pinning due to a variation in the
modulus of b,„. For a Josephson vortex the modulus

~
b,

~

in the superconducting layers is suppressed only indirect-
ly via the coupling to the phase cp of the gap function.
We calculate this suppression of the order parameter per-
turbatively. The order parameter b, =

~
b,

~
exp(iy) (6 is

normalized to unity asymptotically) of an isolated layer is
given by the solution of the planar Ginzburg-Landau
equation

With a Josephson vortex present directed along the y
axis, the phase cp(x) changes rapidly on a scale x &A,
such that, to leading order,

The maximal suppression of the order parameter then is
found near the center of the Josephson vortex and can be
estimated to be

'2

2 A

The corresponding result for a pancake vortex, of course,
gives unity. Hence we see that comparing the possible
gain in condensation energy due to the presence of a
small defect within the superconducting layer, the
Josephson vortex is pinned less effectively with a suppres-
sion factor given by (g/A) . Moreover, the relevant scale
for the pinning of a Josephson vortex is given by the di-
mension A of the phase core, whereas it is g for the case
of a pancake vortex. In calculating the pinning force, we
then obtain an additional reduction factor g/A, such that
the first term in Eq. (11) finally produces a pinning force
(g/A) f~;„, which is reduced by a factor (g/A) as com-
pared with the pinning force f„;„exerted by the same de-
fect on the pancake vortex. A more precise numerical
calculation gives a suppression factor (g'/0. 66A) . Qn
the other hand, pinning by disorder affecting the coher-
ence length (more precisely, the mean free path) is mainly
due to the variation in the phase y of the gap function, as
described by the second term above. Using

~
Vb, , ~

=
~
b, „~ /A, we obtain again a reduced pinning

force f„;„=(g/A) f~;„, more precisely, the reduction

factor for the case of pinning by disorder in the mean free
path is (g/0. 71A) . Thus, the reduction factor =(g/A)
is essentially independent of the type of pinning, whether
produced by spatial fluctuations in the transition temper-
ature or by variations in the coherence length.

Before discussing collective pinning in layered super-
conductors we have to determine the elasticities eI(8)
and El(8) of the pancake-chain vortex. The line energy
of a vortex segment of length L enclosing an angle 8 with
the superconducting layers is obtained by summing up
the energies of the individual pancake vortices along the z
direction and their interactions ' along the y axis. Note
that the interaction between the individual pancake vor-
tices consists of two parts, a magnetic one and a second
due to the Josephson coupling between the layers. Here
we concentrate on the second contribution, which is the
dominant one under conditions typical for the oxide su-
perconductors. For large angles 8& e the separation be-
tween neighboring pancake vortices is less than A and the
line energy becomes

E(L,8) e)=EOL~sin8~[I+(e /2)cot 8],
the first term describing the individual pancake energies
and the second term being due to the interaction pro-
duced by the Josephson coupling between the layers. '

For small angles ~8.
~
&e, the interaction energy grows

only linearly with distance and the line energy becomes

E (L, /
8

/
& e ) =eoL /

sin8
/ t I + e'/ cot8

/

+ ( I /2e)
/
tanJ

/ ].

The third term is a higher-order correction to the in-
teraction energy between two pancake vortices, which
has to be taken into account in order to obtain a nonzero
result for the out-of-plane elasticity eI(8). Note that, in
the present case, the two pancake vortices are parallel in-
stead of antiparallel as is the case for the situation dis-
cussed in Ref. 37, hence, the interaction given by Eq. (19)
of Ref. 37 is repulsive in our case. Using again the
definitions (4) and (5) for eI(8) and for EI(8) above, as
well as the expressions for the change in length 5L and
angle 58, we obtain the results Ei(8) e)=co@ /~sin 8~
and Ei(~8~ &e)=ED/e'cos 8 for the out-of plane tilt
modulus and EI(8) e) =co@ /~sin8~ and
EI(~8~ &e)=EoecosB for the in-plane tilt modulus. Note
that the out-of-plane tilt modulus is infinite for the case
where the field is applied parallel to the layers (8=0) due
to our assumption of an infinite intrinsic pinning force.
However, at finite angles ~8~ )0, a finite density of kinks
(pancakes) occurs which are mobile and hence the out-
of-plane tilt modulus becomes finite. Using
e&=e cos 8+sin 8 we find that the elasticities for the
anisotropic and for the layered superconductor are
roughly identical.

Let us now study the pinning properties of a single vor-
tex in a layered superconductor. We start with the sim-
plest case of pure Josephson pinning which becomes
relevant in the limit 8—+0. Keeping in mind that the
relevant length scale is given by the dimension of the
phase core A, we obtain for the elastic energy of a seg-
ment of length L of a Josephson vortex deformed by
u„=A the expression co@A /t. „whereas the (collective)
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pinning energy acting on this segment is given by
U, = [(f„;„)n&L Ad]' A H. ere we have used the 8—+0
limit of the in-plane elasticity EI(8). Equating the elastic
and the pinning energy, we obtain the collective-pinning
length L, for the Josephson vortices

1/3 '2
~2~2A7 I c

(12)
8'a Pd

LJ
C

where the final expression has been obtained by using
A =d /e. The result shows that the collective-pinning
length for the Josephson vortices is considerably
enhanced over the result L, /e for Abrikosov vortices in
an anisotropic material. The collective pinning energy
U, remains again unchanged, U, = U,'.

Next we consider vortices tilted by an angle 6 with
respect to the layers. For angles
=e(d /L,')' (g/A) pinning is dominated by the 2D pan-
cake vortices, whereas for angles I6I & BJ, pinning due to
Josephson vortices is more important. The crossover an-
gle 6J can be determined by a comparison of the critical
current densities as produced by the pinning of the pan-
cake vortices and of the Josephson vortices, respectively,
see below. Again we have to study the in-plane and the
out-of-plane relaxation modes and compare the two col-
lective pinning lengths. We start with in-plane relaxa-
tion: the elastic energy is again EI(8)g /L," but the pin-
ning energy is modified, U," = (f;„n~g L,"I sinBI )'
since only the vertical component of the vortex (pan-
cakes) is pinned. As a result we obtain the pinning length

]. /31/3 Lc
C

2(2 4

Wa e&IsinBI

Ey

Ising I
(13)

This has to be compared with the collective-pinning
length for out-of-plane relaxation,

EOVe Isin Jl L,' Ising
L

C 2 68'a e&
(14)

which is obtained by equating the elastic energy
s&(8)(g sin8) /L, and the pinning energy

(f;„nag L, IsinBI)' g. Note here that the vortex relaxes

by a distance g along the layer such that the relevant or-
thogonal projection along y' is gIsinBI. Comparing (13)
and (14) we find that the ratio L, /L,"=(IsindI/ez)
drops below unity as 8=a, such that for small angles
IVI & e out-of-plane relaxation dominates. For larger an-
gles 6) e, L,~I =L, , and we obtain no preferred direction
of relaxation as for the case of the anisotropic material
discussed above. Furthermore, the collective-pinning
length for the layered superconductor becomes equal to
the corresponding quantity for the anisotropic material
within the large-angle region 8)e. The collective-
pinning energy for the out-of-plane relaxation relevant
for small angles IVI & e takes the form U,'IVI/e, whereas
for large angles the pinning energy U, = U,' becomes
again independent of the angle and identical with the an-
isotropic result.

For the case of small angles (6—+0) L, =L;III/e be-
comes shorter than the distance between neighboring

pancake vortices d / 6
I

and we enter a regime where each
single pancake vortex is pinned independently. The
collective-pinning energy in this regime becomes
U;(d/L, ')'~ . The condition for the realization of single
pancake pinning is L, & d l I

6
I

or, using Eq. (14),
I
8

I
& c(d /L')'

It remains to determine the crossover from Josephson
pinning to single pancake pinning. This crossover takes
place when the Josephson pinning starts to dominate over
single pancake pinning and an appropriate condition is
given by comparing the two critical current densities j,
and j~. For the case of Josephson pinning the Lorentz
force j,&boL, /c acts on the length L, and the pinning
force is given by U, /A, resulting in a critical current den-
sity j, =E(g/A) j, . Again, we use as our reference value

j, the critical current density for the case of a magnetic
field directed along the crystal c axis and a current Aow-

ing in the ab plane. On the other hand, single pancake
pinning produces a critical current density
j~= I6I(L;/d)' j, which decreases linearly with the an-
gle 8: whereas the Lorentz force jf@od/IBI acts on an
increasingly longer vortex segment d/IVI, the single pan-
cake pinning force remains unchanged,
U~/g= U;(d/L;)' /g. The crossover between the two
pinning regimes is given by the equality j, =j~. Thus, we
obtain that, for angles bigger than 6=@(d/L;)' (g/A),
the Josephson part of the vortex is free for current densi-
ties j=j~ and pinning is due to the 2D pancake vortices.

Summarizing, for the case of layered superconductors
we find four different pinning regimes: Josephson pin-
ning for angles IVI &e(d/L;)'~ (g/A), single pancake
pinning for

E(d/L;)'i (g/A) & 8& e(d/L, ')'i,

multipancake collective pinning with out-of-plane relaxa-
tion for e(d/L;)' &8&@, and again multipancake pin-
ning but with mixed in-plane and out-of-plane relaxations
in the remaining regime e (6. Note that for angles 8 ) e
the results for the anisotropic superconductor and for the
layered superconductor agree with each other —any
different behavior between anisotropic and layered ma-
terials is restricted to small angles I6I & e. The results for
the collective-pinning lengths L, and for the collective-
pinning energies U, are summarized in Table II.

Regarding the regime of validity, the results for the
layered materials remains unchanged with respect to the
anisotropic case for the regime 8) e. For small angles
I8I & e, the relaxation is out of plane and we have to com-
pare the elastic energy s&(8)(gsin8) /L, with the shear
energy a L, c66(8)[g ist /(a /+e&) ], leading to a max-
imal single-vortex pinning length L, =a/&e and using
(6) and (7) we obtain again the condition
B —(jo Ij, )H, (8) as for the anisotropic situation. How-

2

ever, there is a second constraint limiting the validity of
our approach, which is given by the assumption of weak
collective pinning. For the layered materials discussed
above, the interplanar distance d defines a second length
scale besides the collective-pinning length L, . A vortex
aligned parallel to the crystal c axis can be considered as
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a chain of pancake vortices. If the collective-pinning
length L,' drops below the distance d between neighbor-
ing pancakes, we enter the regime of strong pinning
where each pancake vortex is pinned individually. This
provides a second constraint to our theory: L,') d.

C. Classical creep

With the determination of the single-vortex
configuration minimizing our free energy (2), we have
performed the main important steps in our effort to solve
the problem of classical creep for current densities near
to the critical current density. Minimizing the free ener-
gy, we have obtained the energy scale for the pinning, the
collective-pinning energy. Equating this energy to the
product of the Lorentz force and the relevant length scale
for the pinning potential we immediately obtain the criti-
cal current densities. However, the creep rate is deter-
mined by the saddle-point solution of the free-energy
functional (2). In general, the elasticity involved in the
relaxation of the vortex to the pins may differ from the
elasticity involved in the hop, leading to an increase in
the length L& of the hopping segment with respect to the
collective-pinning length L, .

Let us first consider the case of an anisotropic super-
conductor. Here the elastic energy density is identical for
the two cases of in-plane and out-of-plane relaxation.
Therefore, the elastic energy density involved in the hop
always agrees with the one involved in the relaxation pro-
cess. Consequently, the minimum and the saddle-point
solution for the free energy agree with each other,
Lz ——L„and the typical activation energy for creep is U,',
independent of the angle 8 or the direction of the hop.

Second, let us turn to layered superconductors. For
large angles 8) e the results for the layered and the an-
isotropic materials coincide and the above formulas for
the activation energy can be applied. Let us then consid-
er small angles with ~8~ &e: The relevant relaxation
mode involves out-of-plane motion. For a current Aow
along the x direction producing out-of-plane motion, the
length of the hopping segment remains unchanged,
L& =L„and the activation energy for creep is given by
U;~B~/e for E(d/L;)' &8&@ and U,'(d/L;)' for the
single pancake pinning regime ~8~ &e(d/L, ')'~ . On the
other hand, a current Aow along y' produces in-plane
motion and we have to determine the length LJ' of the
hopping segment. Equating the in-plane elastic energy
density during the hop, E)(8)(g/L), '), with the out-of-
plane elastic energy density of the relaxed vortex,
E&(8)(g8/L, ), we find for the hopping length

L)I L = )LL,'

gy density U;"t/d /L; ~
8

~
ld, resulting in L),' /L ~

=&~8~/e(L;/d) with L, =d/~6~. The activation en-

ergy for creep is given by

U,'(/d/L, '(L),'/L~) = U;(L;/d )'~4%'~g~/e

and decreases until we reach the single pancake hopping
regime at small angles ~8~ & e(d/L;) ~, where the hop-
ping length L),' becomes larger than the separation d/~6
between two pancakes and the activation energy saturates
to U; )/ d /L;. Finally, for very small angles
~8~ &E(d/L, ')' (g/A), in-plane creep is determined by
the Josephson vortices and the activation energy jumps
back to U,'. This completes our discussion of classical
creep near j,. Note that as the driving current density j
decays far below j„these results have to be modified by
taking the dependence of the collective pinning energy on
the current density j into account.

III. QUANTUM MOTION IN ANISOTROPIC
AND LAYERED MATERIALS

A. Zero dissipation limit

Let us now turn to quantum motion. The Lagrangian
generating the classical equation of motion for the vortex
is given by

The vortex masses M"(6) and M (8) have to be deter-
mined by calculating the kinetic energy of a moving vor-
tex or by studying the inertial response of a vortex to an
external force. For the isotropic case, corresponding cal-
culations have been carried out by Suhl and by Kupri-
yanov and Likharev, using different kinds of time-
dependent Ginzburg-Landau theories but providing con-
sistent results. It is simple to generalize Suhl's analysis to
the anisotropic case: The electronic part of the mass is
determined by the time-derivative term I, in the Lagrang-
ian density which has the form

l, ~ f dx dy'~B, +„(r' v't)~, —

where %', denotes the order parameter in the presence of
an Abrikosov vortex pointing along z' and positioned at
the origin of the (rotated) coordinate system. v' is the ve-
locity of the vortex in the rotated reference frame. Using
8, =u 8„+u~.B~. and the approximations ~B 4, ~

(/g and (8,+, [
= (4 [/ezg' within the core region,

we obtain the results

Thus, for angles e(d/L;)' &8 & e the activation energy
for an in-plane hop is U;(~8~/e)(LJ'/L, )= U;. For an-
gles ~8~ & e(d/L;)' we enter the single pancake pinning
regime but, as long as L),' )d/~B~, creep still proceeds by
simultaneous hopping of many pancake vortices. The
length L)) is then determined by equating the elastic ener-

gy density involved in the hop to the mean pinning ener-

and

M,
M (8)=

(18)

for the angular dependences of the vortex masses. Here
denotes the asymptotic value of the order parameter
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Me~
v = J'dxdz = jdx — q,E C A

2 8' 2 4g2
(19)

where C =a&/4~d is the capacity per unit area between
two layers (sz is the dielectric constant) and y is the
phase difference between the two neighboring layers en-
closing the phase core of the Josephson vortex. Using the
soliton solution p=4 arctan [exp[(x —vt)/A]] for the
phase core of the Josephson vortex, we obtain

2&d
(20)

Depending on the value of the dielectric constant cz, the
electromagnetic mass of the Josephson vortex can be-
come large. Note, that the electronic mass of the Joseph-
son vortex remains unchanged with respect to the result
for the Abrikosov vortex in an anisotropic medium: The
different core size d A is compensated by a reduced
suppression of the order parameter [5~3,, ~

=(g/A) lb, ~ ]
in the Josephson vortex. Using the planar effective Bohr
radius ag =Pi /me, the ratio M, /eM, takes the simple
form M, /eM„=(m. /4)(ag/d)s&/dK+ For the oxi.de
superconductors we use the estimates sz -—20, ag 5 0.5 A,

O

d =10 A, and EF-—~/d, resulting in a mass ratio of the

far away from the vortex core and M, is the vortex mass
for the case of a magnetic field applied parallel to the
crystal c axis. In Ref. 10 we have presented a simple esti-
mate for the vortex mass in isotropic superconductors
which reproduces the results of Suhl and Kupriyanov and
Likharev. This estimate can be generalized to anisotrop-
ic materials and we first consider the case where the mag-
netic field is applied parallel to the c axis. The basic idea
is that the electronic contribution to the vortex mass is
due to the local change in dispersion within the vortex
core. The number of electrons experiencing this change
is erg N(s~)5s. 5m=h'vz/erg is the change in energy due
to the confinement to the vortex core and
X(s~)=K~m lfi tr is the density of states at the Fermi
level for the anisotropic material, m denoting the planar
mass and Kz and v~ are the Fermi wave vector along the
c axis and the Fermi velocity in the plane, respectively.
The effective mass of these electrons will be modified by
an amount of the order of rn5c/c. & and we obtain the
mass M, of the vortex, M, =(2/m )mK+. For the isotro-
pic case this result agrees with Suhl's expression. Finally,
the angular dependences of the masses can be understood
by noting the following two points: (i) The vortex core
size e&g depends on the angle 8 such that the vortex
mass is reduced by a factor ee for motion along x. (ii) In
addition, for motion along y' the effective mass of the
electrons is increased by a factor e&, leading to an in-
crease of the vortex mass by a factor e&

' for this case, in
agreement with Eq. (18).

Besides the electronic contribution, a second term M,
of electromagnetic origin contributes to the vortex
mass. Typically, the electronic contribution discussed
above is the dominant part, but for the case of a Joseph-
son vortex in a layered superconductor M, can become
large. The latter is given by the relation

order of unity. In the following we use the electronic
mass eM„ for the Josephson vortices (see also Table I) but
remark that the dominant mass contribution has to be
determined for each material.

Let us now turn to the tunneling process. In generaliz-
ing the WKB approximation to the many-dimensional
case, Banks, Bender, and Wu pointed out that the tun-
neling particle chooses to follow a path of minimal resis-
tance. Coleman' then showed that the tunneling path
obeys the Lagrangian equations for a particle moving in
an inverted potential (or in imaginary time) and perform-
ing a bounce trajectory (instanton solution). The bounce
or instanton solution corresponds to a saddle-point solu-
tion of the Euclidean action. This reformulation of the
tunneling process allows straightforward generalization
to the case where the tunneling object is not a pointlike
object. ' Here the tunneling object is a 10 string and the
tunneling rate is determined by the saddle-point solution
of the Euclidean action of the vortex

M+ (B,u, ) +V[u], (21)

d lnM
d lnt ~E ~ bounce

(22)

Thus, the quantum problem corresponds to the (n +1)-
dimensional generalization of the n-dimensional classical
problem. For the string n =1, whereas n =3 for the
problem of moving vortex bundles. ' The additional di-
mension becoming relevant for the quantum motion is
time: Quantum mechanically, energy conservation can
be violated in a virtual process. However, the amplitude
of the process decays exponentially with the size of the
time interval during which the energy conservation is
violated.

Whereas we had to determine the saddle-point solution
of the free energy in order to find the classical creep rate,
we now have to determine the saddle-point solution of
the Euclidean action. We use again the method of di-
mensional estimates in order to find the relevant dimen-
sions of the bounce. The geometric dimension of the
bounce has already been determined: The tunneling seg-
ment has a length Lz and we have to use the appropriate
hopping length for each case as discussed above. The es-
timate for the characteristic tunneling time t, is obtained
by equating the kinetic and elastic energy densities in
(21). Note that by construction, the elastic energy densi-
ty involved in the hop is equal to the elastic energy densi-
ty involved in the relaxation to the pinning potential.

Consider first the anisotropic superconductors and
motion in the plane, i.e., the driving current Aows along
y'. For the bounce solution the kinetic-energy density
M "(8)(g/t") is equal to the elastic energy density
s&(8)(g/L,") . Inserting the result (6) for L,~~, we obtain
for the tunneling time t,"=(M, /so)'~ L;/e=t, , where

t, is the tunneling time for a vortex aligned with the
crystal c axis. Finally, the Euclidean action of the bounce
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is (Sz is the action for a vortex parallel to the c axis)

1/2 Sc
=g eKFkF

0
(23)

Here we have used standard formulas to relate the Lon-
don penetration depth A, to the density of electrons
n =k+KF/3~ in the system. For a clean superconduc-
tor, the mean free path I has to be substituted by the
coherence length go. For a free-electron-like parabolic
dispersion, the above formula can be further simplified by
using eK+=kz. Aligning the driving current with the x
axis, the vortex motion involves the out-of-plane mass
and elasticity. The tunneling time is again obtained by
equating the kinetic and the elastic energy densities,

Si=t™Uc1 =Sce
e L,'

1/2

For angles ~8~ &e(d/L;)' we enter the regime of single
pancake pinning where the elementary pinning energy is
U, = U;(d/L, ')'~~ and equating this to the kinetic energy
eM, (d/~8~ )(glt,") the tunneling time becomes
t, = t, (d /L; )' &e/ 8 . The enhancement factor takes
the form LII /L, =i/~6 le(L;/d) ~ resulting in an ac-
tion

3/2 1/2

density involved in the relaxation Ei(8)($8/L, ), results
in an enhanced tunneling time t,~I=t, . In addition, in-
plane hops proceed via larger vortex segments L)~ =L,'/e,
leading to an additional enhancement of the action by a
factor L),'/L, . The result for the multipancake creep re-
gime then is

M (8)(ee(lt, ) =c&(8)(e~(IL, ), L,' L'
C

(27)

resulting in a tunneling time t, =t, which is again in-
dependent of the angle 8 and agrees with the tunneling
time for in-plane motion. Thus, we obtain the simple re-
sult that the Euclidean action for the bounce is indepen-
dent of the angle 6 and of the direction of motion for an
anisotropic superconductor, SE -—SE.

Let us turn to the layered superconductors now and
consider first the simpler case of out-of-plane motion
(current along the x axis) at small angles ~B~ &e. The
tunneling process involves motion of pancake vortices of
mass dM, by a distance g within the ab plane. For the
multipancake pinning regime, the number of pancake
vortices hopping simultaneously is L, ~8~ Id resulting in a
kinetic-energy density ~ij~M, (glt, ) . Equating this ex-
pression with the elastic energy density EI(8)($8/L, ) we
obtain the tunneling time t, =t, (~6~/e)' . Multiplying
by the pinning energy U,'~6~ /e the result for the Euclide-
an action is

SE =SE
1/2

L'
c

(24)

For the single pancake pinning regime at small angles
~8~ &e(d/L;)', we have to equate the kinetic energy
dM, (glt, ) to the pinning energy U;(d/L, ')' . The tun-
neling time is t, =tM(d/L;)'~ and the action takes the
form

3/4
d

L,'
' 1/2

/a/ &e Lc
C

(25)

If the current flows along the y' axis, the in-plane hop in-
volves the motion of the pancake vortices and the Joseph-
son vortices. The latter are not pinned at the current
densities considered here but contribute to the mass of
the moving object. Comparing the pancake vortex mass
dM, with the mass of the Josephson vortex eM, d/~8~,
we find that for small angles ~8~ & e the Josephson vortex
mass is dominant. Thus, the kinetic-energy density in-
volved in the hop is modified and reads eM, (glt,") .
Equating the kinetic-energy density to the elastic energy

Below the angle e(d/L;) ~ the hopping length LjI drops
below the mean pancake vortex separation d/~6~ and we
enter the regime of single pancake hops where the action
increases with decreasing angle 6,

- 3/4 1/2
d

(28)

Lc

3/2

&a&6 L'
c

Finally, at very small angles, we enter a regime where
tunneling is dominated by the Josephson vortices. Com-
paring the kinetic-energy density eM, (A/t, ) with the
elastic energy density eoe(AIL, ), we obtain the tunnel-
ing time t, =t, (AI(), which is considerably enhanced
due to the increased dimensions A and L, of the tunnel-
ing object. Correspondingly the action is very large and
the tunneling rate for the Josephson vortices is small,

A
1/2 3

S~=s~ —,6~ &e Lc (29)

B. Finite dissipation

The above results apply to the limit of vanishing dissi-
pation. Usually, macroscopic quantum tunneling is an
inherently dissipative process as the macroscopic variable
is coupled to environmental degrees of freedom. By cou-
pling the macroscopic variable to a bath of harmonic os-
cillators, Caldeira and Leggett' have been able to take
the effect of dissipation into account in an elegant way.
Integrating out the harmonic-oscillator degrees of free-
dom they were able to derive an e+ectiue Euclidean ac-
tion SE for the macroscopic variable coupled dissipative-
ly to the environment. generalizing their result for the
SQUID to the case of a tunneling vortex, the environ-
ment can be accounted for by adding a term
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r)ll(g) u„(z', t) —u (z', t')
dt dt'dz' .

4m t —t'
2

u .(z', t) u~
—(z. ', t')

+
4m t —t' (30)

to the Euclidean action (21). Here we have assumed that
the dissipation is ohmic and we will comment in some de-
tail on this assumption in Sec. IV. The viscous drag
coefficients i)"(8) and i) (8) depend on the direction of
the applied field and on the direction of motion. Again
the two effects of vortex core size eeg and of the elec-
tronic mass m /e& compete with each other, resulting in

vortex aligned with the c axis of the crystal. As we
redirect the field along 8, the vortex core size g changes
to e&g, producing a correction factor ee '. For the case
of out-of-plane motion, the electric field generated by the
moving vortex points along x, such that we have to use
the in-plane resistivity p, . On the other hand, the in-
plane motion of the vortex produces an electric field
along y' and we have to use the corresponding resistivity
p„/e& in our expression for g. Finally, for the case of
layered superconductors the viscous drag coefficient is

2

(32)

and (31)

Here i) =40/2rrc g p„ is the viscous drag coefficient for a

as can be easily seen by substituting dA for g and p„/e
for p„ in the formula for i). The result (32) agrees with
the result found by Clem and Coffey.

The correction (30) is nonlocal in time and in order to
treat this term we transform the effective action to
Fourier space,

der dq 1

2 2 2
M"(8)+ co +s)(6)q ~u„(q, co)~

+ —' M'(a)+"' '
2

co +si(6)q ~u (q, cu)~ + U;„(q,u) .. (33)

The inclusion of dissipation leads to renormalized disper-
sive masses M",s. =M "( 1+i)"/M"

~
co

~
) and M,z=M (I+i) /M ~co~). The tunneling times t," and t, for

in-plane and out-of-plane motions are obtained by equat-
ing the kinetic- and the elastic energy densities,

M,* (8s, co,*)(/*co,*) =Ei*(8)(g*q,),
q, =2~@&/L,', and solving for m,*=2~/t,*. Here the su-
perscript e stands for

~~
or I and we have substituted the

result (6) for the collective-pinning length into the expres-
sion for the wave vector q, =q,*=2~/L,*. The mass
enhancement factor 1+i)*/M*~co,*~ becomes equal to
1+2/[(1+v*)' —1], with v*=4M*e&*(q, /i)*) . Insert-
ing all angular dependencies one finds v =v =v with
v=16' M, Eoe /(L,') r) . In the following we wish to
concentrate on the limit of large damping, where v is
small. It seems that this limit is applicable for the
description of the oxide superconductors. In order to es-
timate v we use standard expressions to relate the Lon-
don penetration depth A, to the electronic density
n =kFKF-/377 and obtain

v=(32/3ir) (g eK~k~) (1/go)(A'/SP') .

0
tor, KF —-~/d with an interlayer distance d = 10 A, we
obtain (g eK+kz) =10 . For a typical relaxation rate
4/SF' '-—1% we find v «1. The mass enhancement fac-
tors i)*/M*~co,*~ =4/v then are large, corresponding to
the limit of strong dissipation.

Note that a similar expression for a dispersive mass is
obtained by starting from a purely dissipative dynamics
involving a dispersive friction coefficient i)(co): Expand-
ing i)(co) for small frequencies ~co &&b, /R, we obtain a
term of the form [i)(0)/2](l+fi~co~/b, )~co~u in the Eu-
clidean Lagrangian. Using standard expressions for the
friction g and for the gap parameter 6, the second term
reduces to a kinetic-energy term with a mass
M, =( I /2')mKF, ' in rough agreement with our expres-
sion above. Using the result below for the tunneling time
t," as well as Eq. (7), we obtain Ace, /b, =j, /jo, such that
under the condition of weak pinning, j, /jo « 1, the dissi-
pative term in the Lagrangian is always dominant.

In the limit of large damping, the determination of the
tunneling time simplifies considerably and we obtain the
results t,"=t, =t,"=( i)/E)o( L,

' /)e. For anisotropic su-
perconductors the final expression for the effective action
1s

Here we have already anticipated the result (34) below.
Oxide superconductors are characterized by a small elec-
tron density n = 5 X 10 ' cm, a large anisotropy
e-10 ', and a small coherence length /=20 A (~clean
limit). Approximating K& by the reciprocal-lattice vec-

S$ SE tc vlf Lc fi eg Jo
C g P ~

Sea
(34)
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independent of the angle 8 and the direction of motion.
Finally, we have to derive the expressions for the

effective Euclidean action for a layered superconductor
where we have to concentrate on the small-angle region
J8~ & e. Out-of-plane motion again splits into a multipan-
cake pinning regime, where t, =t,"~8~/e, and a single
pancake pinning regime with t, =t,"(d/L;)'~ Th. e cor-
responding expressions for the effective action are

(4l)

This completes our analysis of quantum collective creep
in anisotropic and layered superconductors for the two
limits of vanishing and strong damping. All results are
summarized in Table II ~

Sl —t l Uc Seff, c
E c c EE E

i 1/2

L'
C

&8 &e,

(35)

' 1/2
Sl tlUC d

E C C
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J

' 1/2

Sea;c d

C

(36)

J8/ &e
L,'

The case of in-plane motion is again complicated by the
enhancement length of the hopping segment producing a
shift of the single pancake tunneling regime towards
smaller angles. The results are

Selt, c I

L' (37)

L' E
C

3/2

E L'
C

1/2

&8&& -"

Lec

C

(38)

and

Seft;c
A

' 1/2

I c

2

&8&@
A

2 (40)

The regime of Josephson vortex pinning at very small an-
gles is characterized by a large action and a correspond-
ingly small tunneling rate,

At small angles the friction produced by the moving
Josephson vortex, eq(g/A) d/JDJ, competes with the
friction due to the moving pancake vortex, gd, and for
angles ~8J &e(g/A) the single pancake hops are damped
by the Josephson vortex dragged along. Thus, the single
pancake hop regime splits into two parts with actions

ff
3/2

S)=s' ', e ~ &8&a (39)
A Lc

C C

IV. THERMAL ENHANCEMENT OF TUNNELING

The instanton approach to the tunneling problem al-
lows one to formulate the temperature dependence of the
tunneling process in a straightforward way ' For
finite temperatures T )0, the limits of the imaginary-
time integrals in the effective Euclidean action [see Eqs.
(21) and (30)j have to be cut off at +p/2, where
p= A'/kz T. The bounce trajectory is deformed to a
periodic orbit with a period given by the inverse tempera-
ture p. This deformation mainly affects the motion near
the metastable potential minimum. At zero temperature
the bounce trajectory is a homoclinic orbit where the
metastable potential minimum (local maximum of the in-
verted potential) defines the homoclinic point. At finite
temperatures the bounce trajectory is periodic within a
finite interval and thus avoids the homoclinic point. Far
the case of zero dissipation, this corresponds to an orbit
characterized by a finite excitation energy. Thus, the
effect of finite temperature is to cut off the infinitely slow
motion near the homoclinic point and thereby reduce the
(effective) Euclidean action. The determination of the
finite-temperature corrections to the action involves the
precise knowledge of the bounce solution near the homo-
clinic point —a quantity which is not accessible by our
simple dimensional estimates.

However, for the case where the tunneling object is a
pointlike object, Grabert, Weiss, and Hanggi' have
shown that the finite-temperature corrections to the
bounce trajectory are mainly determined by the dissipa-
tion mechanism alone: For the zero damping limit, the
corrections are exponentially small, cc exp( —A'coo/2k' T).
Here coo denotes the frequency of small oscillations of the
collective coordinate around the metastable minimum.
For nonzero damping, the finite-temperature corrections
to the bounce trajectory show power-law behavior,
~ T '"+",with an exponent n 0 given by the first non-
vanishing term in the Taylor expansion of the frequency-
dependent damping coefficient g(co), 8 "q(co)~o&0. The
most pronounced temperature dependence is a T law'
(n =0) which is realized for the case of ohmic dissipation
with i)(co=0))0. Note that if the coupling to the envi-
ronment has a low-frequency cutoff 6 /A, such that
8 "il(co)JO=O for all n, the finite temperature (ks T & 5)
corrections to the bounce trajectory are again exponen-
tially small. Furthermore, the finite-temperature correc-
tions to the effective Euclidean action show the same
dependence on the low-frequency behavior of the damp-
ing coefficient g(co) and do not depend on the details of
the potential, the only relevant quantity being the tunnel-
ing time t, . In the zero dissipation limit
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b S' )( T) = S('s'( T)—S('s)(0)

to the Euclidean action take the forms

and

b S~ ( T) = —S~( T =0)e (44)

b,SP( T) = —Sg ( T =0) (45)

where we have to insert the appropriate tunneling time t,
as given in Table II.

The crossover temperature Tq, from the quantum to
the classical regime of motion is determined by the condi-
tion b,Sz' '/Sz' '-—I and thus depends on the tunneling
time t„

k T8 qc
C

(46)

Note that, for weak collective pinning, the zero-
dissipation tunneling time t, is determined by the elasti-
city of the string, co, =ck with c ='l/ EDe /M, ez and
k =e&/L;, and not by the curvature of the bare pinning
potential. The time scale for tunneling in the strong
damping limit is enhanced over the zero-dissipation tun-
neling time

and thus the crossover temperature T, becomes small
for the large damping limit. Using Sz' ~(T=O)=t, U„
we obtain the relation

S('s}(T =0) U,

k, r„ (47)

between the zero-temperature (effective) Euclidean action
Sz' '(T =0), the classical activation energy U„and the
crossover temperature T, .

Finally, we make a few remarks concerning the energy
dissipation produced by a moving vortex. Following Lar-
kin and Ovchinnikov, ' the Bardeen-Stephen formula
for the viscous drag coeKcient g can be used also at low
temperatures where quantum motion is relevant. Howev-
er, in this calculation the discreteness of the quasiparti-
cle spectrum within the vortex core has been neglected.
If the dissipation is due to the quasiparticle current Aow-

ing across the vortex core, the spectral density J(co) of
the environment will have a low-frequency cutoff at the
lowest quasiparticle bound-state energy which is of the
order of 6 /sz, with b, denoting the superconducting gap
energy. This is similar to the problem of macroscopic
quantum tunneling in a SQUID as described by Eckern,
Schon, and Ambegaokar who assume that the dissipa-
tion is due to quasiparticle tunneling across the oxide lay-
er in the Josephson junction. Thus, in a very clean super-
conductor we have to expect an exponential low-
temperature behavior for the action in the regime
k&T &b, /Ez. On the other hand, in a dirty supercon-
ductor the quasiparticle levels will be broadened by finite
lifetime effects. If the level broadening A/~ is larger than

the quasiparticle gap b, /eF, the low-frequency cutoff in
the spectral density J(to) vanishes and the Bardeen-
Stephen formula can be used. Here ~ denotes the quasi-
particle lifetime. The condition for the applicability of
ohmic dissipation, 1 & $0( s~ /b, ), with l =v~r =mean free
path, is less stringent than the condition 1 & (0 defining a
dirty superconductor. Thus, we may expect that the
model of ohmic dissipation is applicable for the oxide su-
perconductors which rather belong to the class of clean
superconductors due to their short coherent length.

V. SUMMARY AND CONCLUSION

In this work we have determined the rates for classical
and quantum creep of vortices in anisotropic and layered
superconductors. Both creep rates are determined by the
saddle-point solutions to some specific functional. The
classical motion is characterized by an optimal geometric
configuration of the hopping segment and the rate is
determined by the saddle point of the free energy. Quan-
tum motion additionally involves an optimal dynamics of
the tunneling object and therefore the rate is determined
by the saddle-point solution of the Euclidean action.
Thus, the quantum problem can be viewed as the
(n + I)-dimensional generalization of the n-dimensional
classical problem. In a first step we have solved the clas-
sical problem in order to find the optimal configuration
for the moving vortex. Once the optimal length for the
hopping segment is known, we immediately obtain the
activation barrier against classical creep. In a second
step we then have determined the optimal tunneling time
for the bounce, and using the result for the classical ac-
tivation energy, we have obtained the action determining
quantum creep.

Classical as well as quantum motion of vortices is a
very complex problem which is beyond direct microscop-
ic description. The problem is even too complicated to
be described on the level of Cxinzburg-Landau. In our ap-
proach we have based the description on the Lagrangian
for the macroscopic variable, which is the displacement
field u(r) for the vortex position. This Lagrangian con-
tains the mass M„ the elasticity c.&, and the viscous fric-
tion coeKcient g as phenomenological parameters, which
have been obtained by going back to a Ginzburg-
Landau-type description. This is also the place where the
anisotropic properties of the material enter into the mod-
el.

The determination of the saddle-point solutions for the
free energy and for the (effective) Euclidean action has
been done by using dimensional estimates. In anisotropic
superconductors the mass, the density, the pinning force,
and the friction depend on the angle 8 which the vortex
encloses with the ah plane and on the direction of
motion. Nevertheless, it turns out that for classical as
well as for quantum motion these dependencies cancel
each other such that the final results for the activation
energy U, and for the (effective) Euclidean action Sz~' '

are independent of the angle 8 as well as the direction of
motion. For layered superconductors identical results
have been obtained within the large-angle region 6'& e.
For smaller angles ~8~ &e, the deviation of the vortex
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structure from a simple rectilinear object becomes impor-
tant. Pinning is affecting mainly the component parallel
to the c axis, the pancake vortices. After a transition re-
gion, classical as well as quantum motion proceeds in
terms of single pancake vortex hops characterized by a
reduced activation energy U;(d/L, ')'~ and a reduced
effective Euclidean action SP'd/L;. For the case of
vanishing dissipation, the Euclidean action is reduced for
the case of out-of-plane motion, SF'(d/L, '), however,
for in-plane motion the action increases as the pancake
vortex has to carry the large mass of the Josephson vor-
tex along. The transition region depends on the direction
of motion and the results within this region in addition
also depend on the angle 8, such that the crossover from
anisotropic behavior at large angles to the single pancake
pinning regime at small angles is smooth. Finally, for
very small angles where the distance between neighboring
pancake vortices becomes large, in-plane motion is deter-
mined by the pinning of Josephson vortices. Whereas the
classical activation barrier remains unchanged for this re-
gime, U, = U,', the action is considerably enhanced due to
the large tunneling time t, for the Josephson vortex.

The independence of the classical and quantum creep
rates upon the field direction for anisotropic supercon-
ductors suggests that magnetic relaxation rates for poly-
crystalline and for single-crystal material should be the
same, in rough agreement with the results of Refs. 4 and
6. Also, it would be very interesting to investigate quan-
tum creep in the strongly layered Bi-based high-
temperature superconductors where our theory predicts
large relaxation rates due to the large anisotropy. The
determination of the critical current density j, in the
planes can be used to check the validity of the weak
collective-pinning approach: With d =15 A, /=30 A,
e= —,', and jo ——10 A cm, we obtain the condition

j, &10 Acm (d (L,').
Regarding the finite-temperature corrections to the Eu-

clidean action we have found a T dependence for the
most important case of strong ohmic dissipation. This

T law applies to a very limited regime at low tempera-
tures below the crossover temperature T, = U, W/Sz kz,
with U, the high-temperature activation energy and Sz
the zero-temperature effective Euclidean action determin-
ing classical and quantum creep, respectively. It would
be very interesting to determine the exact behavior of the
low-temperature corrections to the action, as such mea-
surements can provide information on the relevant dissi-
pation mechanism. Within the restricted temperature re-
gime T & T „the action Sz' '(T) changes only by a fac-
tor of the order of unity and therefore the relevant quan-
tity is

gS(eff)( T)—S(effl( T) S(eff)(0)

asking for very accurate measurements. Also note that
with increasing dissipation the effective Euclidean action
Sz' '(0) becomes larger and hence the regime T & T, for
quantum creep becomes smaller.

Let us close with a final remark regarding the concept
of weak collective pinning. The only unknown parameter
entering the theory is the parameter 8'in the force-force
correlator. All other relevant parameters (e.g., the elasti-
city, the vortex mass, the viscous friction coefficient) can
be determined by independent measurements (e.g. , A, , g, e,
p„). Thus, with a single adjustable parameter we can
determine the critical current densities, the activation en-
ergies for classical creep, and now also the Euclidean ac-
tion for quantum motion, as well as their temperature
and field dependencies. The concept of weak collective
pinning seems to be able to produce correct order-of-
magnitude estimates for all these quantities which is em-
phasizing the consistency of the theory.
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