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Transport properties and fluctuations in type-II superconductors near H, 2
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We study the flux-flow Hall effect and thermomagnetic transport near the upper critical field H, 2 in

extreme type-II superconductors starting from a suitable generalization of the time-dependent
Ginzburg-Landau equations. We explicitly incorporate the effects of backflow into the calculations of
the local electric field and current, which leads to a current that is properly divergenceless. The Hall
conductivity calculated from this current agrees with other mean-field calculations that assume a uni-

form applied electric field (the Schmid-Caroli-Maki solution), thereby vindicating these simplified treat-
ments. We then use these results to calculate the transverse thermomagnetic effects (the Ettingshausen
and Nernst efFects). The effects of thermal fluctuations and nonlocal elasticity of the flux lattice are in-

corporated using a method recently developed by Vecris and Pelcovits [G. Vecris and R. A. Pelcovits,
Phys. Rev. B 44, 2767 (19911]. We find that the elastic fluctuations of the vortex lattice suppress the con-
ductivities below their mean-field values. Our results, taken together with those of Vecris and Pelcovits,
provide a rather complete description of the transport properties of the flux lattice state near H, 2, at
least within the framework of time-dependent Ginzburg-Landau theory.

I. INTRODUCTION

The thermodynamic and transport properties of the
mixed state of type-II superconductors continue to at-
tract the interest of theorists and experimentalists alike,
due in large measure to the unusual transport properties
of the high-temperature superconductors. High transi-
tion temperatures, short coherence lengths, and large an-
isotropies conspire to produce enhanced thermal Auctua-
tions in these materials, which can significantly modify
the mean-field phase diagram; we refer the reader to Ref.
1 for a detailed discussion of these effects. These Auctua-
tions are also apparent in the transport properties, as
they lead to a broadened resistive transition in the Aux-
flow regime near H, 2 (when pinning is unimportant), and
to thermally assisted flux flow at lower temperatures (but
away from the putative vortex-glass transition'). Indeed,
if we had a detailed theory of the transport properties in
the presence of Auctuations we could in principle use this
to infer properties of the equilibrium phases. So far, most
of the theoretical work on transport properties has fo-
cused on understanding the behavior of the longitudinal
conductivity of the Aux lattice. However, it is really the
Hall effect which represents the greatest challenge to our
understanding of the dynamics of the vortex lattice in su-
perconductors, as evidenced by the experimental observa-
tion that the Hall conductivity changes sign upon enter-
ing the mixed state in the high-T, superconductors, a
feature that is at odds with the classic theories of vortex
motion in superconductors. ' Motivated by these ob-
servations, in this paper we reexamine the theory of the
Hall effect in the mixed state near H, 2 using a variant of
the standard time-dependent Ginzburg-Landau (TDGL)
theory. By incorporating the effects of thermal Auctua-
tions, the nonlocal elasticity of the Aux lattice, and
backAow, we have consolidated the results of several pre-

vious authors into a rather complete theory of the Hall
effect near H, 2 (at least within the TDGL framework).
As a byproduct, we also study transverse thermomagnet-
ic effects, such as the Ettingshausen effect and the Nernst
effect.

As this paper is in a sense a consolidation of the results
of several different authors, it is appropriate to first
brieAy review the history of the subject. Schmid" de-
rived a set of TDGL equations from the microscopic
Gorkov equations. From these equations he was able to
calculate the flux-flow conductivity both near H, z (by
solving the linearized equations) and near H„(for a sin-
gle vortex). The behavior near H, 2 was obtained by as-
suming that the applied electric field E was constant in
space; the Aux lattice is then effectively "boosted" by a
velocity v= EX B/8, with 8 the induction field. Similar
methods were also used by Caroli and Maki' to study
both the dirty and clean limits. We will henceforth refer
to this solution as the Schmid-Caroli-Maki solution. Un-
fortunately, the local current (which includes the normal
current plus the supercurrent) obtained using this method
is not divergence free, as was pointed out by Thompson
and Hu. ' To obtain a current with zero divergence, it is
necessary to incorporate backAow currents; however, the
backAow has zero spatial average, so that the spatially
averaged conductivity calculated using this method
agrees with the Schmid-Caroli-Maki result. These calcu-
lations have recently been taken one step further by
Vecris and Pelcovits, ' who studied the effect of the elas-
tic Auctuations of the Aux lattice on the conductivity.
Starting from the TDGL equations, these authors calcu-
lated the local current with backAow, and incorporated
the elastic Auctuations by using a dynamic generalization
of the formalism developed by Brandt' for the static Aux
lattice.

In all of these cases, the TDGL equations that were
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employed had a purely real order-parameter relaxation
time, and therefore exhibited a type of "particle-hole"
symmetry, which leads to a Hall conductivity that is
identically zero. ' ' To obtain a nonzero Hall conduc-
tivity one needs to generalize the TDGL equations by al-
lowing the relaxation time to be complex. The imaginary
part of the relaxation time might result from either con-
siderations of Galilean invariance, ' ' or from micro-
scopic considerations, such as Fermi-surface curvature.
Maki' and Ebisawa ' have used TDGL equations with a
complex relaxation time to calculate the Hall conductivi-
ty using the Schmid-Caroli-Maki method (i.e., without
backfiow). These equations have also been used to study
the fluctuation Hall eA'ect for temperatures T) T,2.

' '

More recently, one of us (A.T.D.) has used the general-
ized TDGL equations to study the dynamics of a single
vortex (i.e., for fields close to H, &).

'

In this paper we calculate the transport properties for
the mixed state of type-II superconductors starting from
a set of TDGL equations that have a complex relaxation
time. The results of this paper, therefore, complement
the single vortex results obtained in Ref. 18. The paper is
organized as follows. In Sec. II we calculate the longitu-
dinal and Hall conductivities in mean-field theory by ex-
plicitly including backflow, thereby extending the work
of Thompson and Hu and Vecris and Pelcovits. One of
the important results of this section is that the backflow
current, while important in ensuring that the total
current has zero divergence, does not contribute to the
spatially averaged Hall conductivity (which is of experi-
mental relevance). Hence, the Hall conductivity that we
obtain agrees with the result that would be obtained us-
ing the Schmid-Caroli-Maki method. We also briefly dis-
cuss the relevance of our results to the issue of the sign
change of the Hall conductivity in the mixed state of the
high-T, superconductors. In Sec. III we calculate the Et-
tingshausen and Nernst eBeets in the presence of
backflow. Our derivation, which utilizes a recently
discovered "virial theorem" for the equilibrium
Ginzburg-Landau equations, is exact within mean-field
theory. The eftects of elastic fluctuations of the flux lat-
tice are considered in Sec. IV, which follows the work of
Vecris and Pelcovits. We find that the amplitude fluctua-
tions in the flux lattice phase suppress the flux-flow con-
ductivities below their mean-field values. Nonlocal
efI'ects are extremely important in setting the scale for
these fIuctuations.

II. MEAN-FIELD THEORY

J=J, +J, . The normal current is

J (n)F
n (2.3)

where the electric field is expressed in terms of the poten-
tials as

1E= ——VN —(3, A .
K

(2.4)

In the normal current we include both the longitudinal
and the transverse response of the normal carriers; the
underbar that appears in Eq. (2.3) denotes a tensor witho" the normal-state conductivity tensor,

(n)
~xx

(n)
0xy

(n)
~xy

(n)~xx
(2.5)

The signs used in o'"' are appropriate for positive car-
riers. The supercurrent is given by

J, =
2

(q*v0 Ivan*)—lpl'A —. (2.6)

These equations are written in dimensionless variables
such that lengths are scaled by the magnetic penetration
depth A, , time is scaled by iri/2m/ with g' the coherence
length, magnetic fields are scaled by v 2H, with H, the
thermodynamic critical field; x = A, /g is the usual
Ginzburg-Landau parameter. As an aid to the reader,
important results will be explicitly expressed in both di-
mensionless and conventional units. The quantities y,
and y2 are the real and imaginary parts of the dimension-
less order-parameter relaxation time. The scalar poten-
tial is denoted by N; the difterence between the scalar po-
tential and the electrochemical potential will be ignored
here (see Refs. 11 and 14 for a more extended discussion).
Since in equilibrium we will assume that we have local
charge neutrality, out of equilibrium any excess charge
density must be O(v), with v the velocity of the vortex
lattice; therefore the time variation of the charge density
is O(v ), and will be neglected in the spirit of the linear
response calculation of this paper. As a result, the total
current must be divergenceless; i.e., V (J„+J, ) =0.

Before attempting to solve the TDGL equations, it is
useful to first simplify them somewhat. To do this, we
write the order parameter in terms of an amplitude and a
phase,

i'(r, t)=f(r, t)exp[i'(r, t)] .

In terms of the gauge-invariant quantities Q —= A —Vy/i~
and P—:@+8, cp, the magnetic and electric fields are

The TDGL equations consist of an equation of motion
for the order parameter it,

h=VXQ, (2.7)

2

(y, +iy )(i), +i@)i(i= ——i A /+it —
lgl P,

along with Ampere's law,

(2.1)

1E=——VS —a, Q,
K

and the supercurrent is

J, = f'Q . —

The real part of Eq. (2.1) is

(2.8)

(2.9)

where h=V'X A is the local magnetic induction field.
For the current we adopt a two fluid model, so that

(2.10)



47 TRANSPORT PROPERTIES AND FLUCTUATIONS IN TYPE-II. . . 2717

while the imaginary part is

y2a f+y)Pf+ fv—Q+ Q—vf =o,1 2

and Eqs. (2.2) —(2.6) become

v x v x Q= ~(") ——vp —a, Q f 'Q—.(.)

(2.11)

(2.12)

only terms of order the flux lattice velocity v. In this
spirit, we expand all quantities in powers of the velocity,
with the order of expansion denoted by a superscript:
f=f' +f'", Q=Q' '+Q"', where f"' and Q'" are
O(U). Note that P is O(U), since the electric field van-
ishes in equilibrium. The O(1) equations are simply the
equilibrium Gin zburg-Landau equations. The electric
field can therefore be written as

An explicit equation for P may be obtained as follows.
First, multiply Eq. (2.11) by f; the gradient terms can be
combined as V J„' then use the fact that V J, = —V.J, .
We finally obtain

1E= —vXh'" —V —P —v Q"'
K

(2.14)

Upon averaging over the volume V of the sample, we find
for the spatially averaged electric field

+y if'P+yZdif =o .—V ~(" VP —a—Q—1 „) 1

K K
(E)—:—f d r E(r)= —vXB,1

V
(2.15)

(2.13)

We begin by calculating the local electric field for the
moving Aux lattice. First, we assume that the lattice
translates uniformly, so that f, Q, and P are only func-
tions of r —vt. Therefore, we replace all time derivatives
in Eqs. (2.10), (2.12), and (2.13) by —v V. Second, as we
are concerned with linear response in this paper, we keep

since the average of the gradient term in Eq. (2.14) can be
converted to a surface term that vanishes at the boun-
daries; B= ( h' ' ) is the (equilibrium) macroscopic induc-
tion field. Although the gradient term in Eq. (2.14) does
not contribute to the spatially averaged electric field, it
does contribute to the local electric field. We therefore
need to calculate P/x vQ' ', a—n equation for this quan-
tity follows from Eq. (2.13):

V cr'"'V P —v Q' —' —~ y)0i' ' P —v Q' —' = —V o'"'(vxh' ')+ co' 'v +)~. y, co' 'v Q' ',
K K

(2.16)

where for simplicity we have introduced co( '=(f' ') .
The last term on the right-hand side of Eq. (2.16) can be
further simplified by noting that from the equilibrium
equations we have

v. (cd' 'Q' ')=V (vXh' ')

Simplifying the derivatives on the left-hand side, we final-
ly arrive at

I

(2.17). Noting that for the equilibrium state
5h= —(5'/2~)z, which is correct to O(5(0 ), we then
see that it is possible to write Eq. (2.18) in the following
form:

f)K /2Kj(r)=o'"'[vX5h(r)] — 5'(r)(zXv)+ 5'(r)v .
2 2

(2.21)

K K

where we have defined

(2.17)

Eqs. (2.14), (2.17), and (2.21) will together determine the
local electric field, and therefore the local normal current.

The solution to Eq. (2.17) is

2Kj(r):—o'"'[vxh' '(r)] —
l~ y, vXh' '(r)+ co' '(r)v .

(2.18)

1—P(r) —v Q' '(r)= —f d r'G(r, r')V' j(r')
K

= f d r'j(r') V'G(r, r'), (2.22)

Next, define the local deviations from the average equilib-
rium values of the magnetic induction field and the
square of the order parameter as

where G(r, r') is the Green's function that satisfies

[o'„"'V —~ y, co' '(r)]G(r, r') =5' '(r —r'), (2.23)

5h(r) —=h' '(r) —B,
5~—~(0) ( (0) )

(2.19)

(2.20)

so that (5h(r)) =(5') =0. When these expressions are
substituted into Eq. (2.18), there will be a constant piece
that can be discarded as it will not contribute to Eq.

and where in the second line of Eq. (2.22) we have in-
tegrated by parts and neglected a surface contribution.
With this solution it is possible to calculate the normal
current. First, take a gradient of Eq. (2.23) and multiply
by the normal-state conductivity tensor; after using
several vector identities, we find
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~'"'V' P——v Qo = f d r'j(r')o. „'"„'V V"G(r, r') —V'X f d r'j(r')X[~'"'V'G(r, r')] . (2.24)

The ffux lattice state is not translationally invariant, so that G(r, r ) is not a function of the coordinate difference alone.
However, sufficiently close to H, i the order parameter amplitude is small, and we can replace coI '(r) in Eq. (2.23) by its
spatial average (co' '), which is correct to O(5co). Within this approximation, the Green's function G(r, r') =G(r —r');
then

V' V"G(r, r')= —V G(r —r') .

Combining this result with Eq. (2.23) for the Green s function, we find that Eq. (2.24) becomes

(.)o'"'V' p —v Q—' ' = —j(r) —K y, (co' ') f d r'G(r —r')j(r') —VX f d r'j(r')X[o'"'V'G(r —r')] . (2.25)

The second term on the right-hand side of Eq. (2.25) will
generally be quite small near the transition, as j itself is
O(6h); this is then multiplied by (co' '), rendering the
second term doubly small near the transition. We will
therefore drop this term in what follows. The normal
current is obtained by combining Eq. (2.25) with the
definition of the normal current, Eq. (2.3), along with the
expression for the electric field, Eq. (2.14); the final result
1s

P)K /peJ„(r)= —cr'"'[v X B]— 5co(r)(z X v)+ 6co(r)v
2 2

P )K fpKA= —zXr — zXv+ v .
2 2 2

(2.28)

g[x(t)+iy(t)]= Q [x(t) x+—i[y(t) —y, ]j . (2.29)

This form of the order parameter has zeros at the instan-
taneous vortex positions r . We therefore have for the
square of the amplitude of the order parameter,

We use an analytic function, g[x(t)+iy(t)], ' ' ap-
propriate for a translating Aux-line lattice with Aux lines
located at r and parallel to the z axis,

+V'X fd r' j(r')X [cr'"'V'G(r —r')] . (2.26)

( J„)= —o'"'(v XB)=cr'"'(E),

As a check on our result, we note that the spatial average
of the last three terms on the right-hand side of Eq. (2.26)
is zero, so that

N

co&(r(t))=exp — r (t) g ~r(t) —r
~

v=1

and for the phase of the order parameter

y (t) y„—
y(r(t))= g tan

x(t) —x,

(2.30)

(2.31)

as required. It is also straightforward to show that when
cr'"'=ye=0, Eq. (2.26) reduces to the analogous results
derived by Thompson and Hu' and Vecris and Pelcov-
its' in two and three dimensions, respectively.

We next calculate the linearized supercurrent for the
moving Aux lattice. This calculation is most conveniently
carried out in the symmetric gauge, rather than the Lan-
dau gauge used by Thompson and Hu. ' Following
Vecris and Pelcovits, ' we start by using a postulated
solution for the order parameter of a uniformly translat-
ing Aux lattice,

i)'j, (r(t))=exp — v (t) g[x(t)+iy(t)], (2.27)

where the subscript l indicates a linearized solution,
r(t)=r —vt is the coordinate in the moving frame, and
g[x(t)+iy(t)] is an analytic function (to be specified
later). In the presence of an electric field there are
corrections to K of O(U ), which we drop in the spirit of
our linear response calculation. ' Substituting Eq. (2.27)
into the first TDCxL equation, Eq. (2.1), and dropping
terms proportional to V'g/g, we find the required sym-
metric gauge potential near H, z,

For the gauge-invariant vector potential we then have

1Q= A ——Vy
K

7')K ppK 1 & zX [r(t) —r ]=—zXr — zXv+ v ——g2 2 ~r(t) —r, ~

z X Vol zXv+ v.+
2

(2.32)

The linearized supercurrent J, = —coQ is, therefore,

J, =J, + coI(z X v) — co,v,( p ) P ]K P pK
(2.33)

where J,' '=z X V'co&/2v is the uniformly translating equi-
librium supercurrent.

The total current J=J„+J, is obtained by adding our
expression for the normal current, Eq. (2.26), to our ex-
pression for the supercurrent, Eq. (2.33), which we ob-
tained above. Using v= (E) XB/8, we find

J(r)=o ( E ) +J,' '+ V' X f d r' j(r') X [o'"'V'G(r —r') ],
(2.34)

where the conductivity tensor is
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y K(~(0))
~(n)+

XX 2B

y2K& CO(")
~( )+

2B

y K(~(0))
(n)

P(K(CO )

2B

(2.35)

The spatial averages of the last two terms on the right-
hand side of Eq. (2.34) are zero, so that (J) =o (E); we
also have V.J=O, since V J,' '=0. We have therefore
found a current that is properly divergenceless, as re-
quired. The various terms on the right-hand side of Eq.
(2.34) also have simple interpretations —the first term is a
uniform transport current, the second is the uniformly
translating equilibrium supercurrent, and the last term is
the backAow current. This form of the local current was
first obtained by Thompson and Hu' for the case
0 y f2 0 our result is a generalization to the situation
in which there is particle-hole asymmetry.

In mean-field theory the Abrikosov value for ((0' ') is
(see Ref. 22, for instance)

tegrating, we obtain [h(r)=h(r)z]:
h(r)=h' '(r) —(J, Xz) r

+ d r' j r' X o'"'V''G r —r' (2.40)

III. THERMAL TRANSPORT

where h' '=B —6cu/2~ is the equilibrium local magnetic
field. This is a generalization to the particle-hole asym-
metric case of the result of Vecris and Pelcovits [see Eq.
(2.23) of Ref. 14]. As noted by these authors, the second
term in Eq. (2.40), which grows linearly with distance
within the sample, is typical of magnetostatics problems
in the presence of a uniform current density.

To summarize our results so far, we have explicitly cal-
culated the total current for a moving fiux lattice starting
from the generalized TDGL equations. This current has
zero divergence; however, the conductivities calculated
from this current are identical to those that would be ob-
tained by using the Schmid-Caroli-Maki solution.

(0)) m c2

2Me* (2K —1)P„+1
(2.36)

where Pz = ((co' ') )/((co' ') ), which is 1.16 in mean-
field theory for a triangular flux lattice. This leads to
the following expressions for the conductivities in mean-
field theory, in conventional units:

The moving Aux lattice not only produces dissipation
but also transports energy, in a direction parallel to its
velocity. In order to calculate the transported energy in
the mixed state, we start from the expression for the ener-

gy current, which is due to Schmid:"

J =2EXh —2EXB

p)m H, q
—B

2mB (2K —1)p„+1 8 (2.37) +2 ——i A g(B, i4)P —+c.c.
K

(3.1)

and

@2m Hc2 B
(2K —1)P„+1

(2.38)

V'Xh(r) =J(r)

Notice that the conductivities have contributions from
both the normal carriers and from the vortex motion.
The real part of the order-parameter relaxation time, y&,
is always positive, so that this contribution is additive for
the longitudinal conductivity. However, the sign of yz is
most likely determined by microscopic considerations;
if y2&0, then it is possible for the Hall conductivity to
change sign in the mixed state. Further microscopic cal-
culations are needed to determine if this is the source of
the sign change that has been observed in the high-T, su-
perconductors.

It is also possible to calculate the corrections to the lo-
cal magnetic field for a moving Aux lattice. We can do
this by expressing the local current as a curl:

J"=2 — VP+v V'Q' ' —X(VXQ' ') —2EXB1

K

+ — ——(v Vf '0')( Vf '0')+PQ(0)( f(0) )2
K K

(3.2)

Using

V X V X Q(0) + (f (0) )2Q(0) —0

the first and last terms in Eq. (3.2) may be combined:

where J is in units of (H, /4~)(fi/2m )(K /A, ) (i.e., units
of energy per unit volume times velocity). The second
term, which was not considered by Schmid, is necessary
in order to subtract out the contribution from the uni-
form background field B=(h). This expression may
be greatly simplified by using a sequence of transforma-
tions that were used in Ref. 18; these are reproduced here
for completeness. First, in terms of the potentials P and
Q, along with the order-parameter amplitude f, to O(U)
Eq. (3.1) becomes

= —V X [z(J, X z ) r ]—V X [z(o' '( r ) /2K ]

+V X f d r'j(r') X [o'"'V'G(r —r') ], (2.39)

(VP) X(VXQ( ')+PV X VXQ( '=V X(PV XQ' '),
(3.3)

where J, = (T ( E ) is the uniform transport current. In-
where a vector identity has been used. The second term
on the left-hand side of Eq. (3.2) may be written as

(v VQ' ')X(VXQ' ')=VX [(v Q' ')VXQ' ']+v(VXQ' ') —(v Q' ')VXVXQ' ', (3.4)
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where we have again used several vector identities. Com-
bining Eqs. (3.2) —(3.4), we have

U
4W K —H

P„(2a.—1)

J~=2PX '~+'q() h() —2EXB
K

H, 2
H—

4~ P„(2)( —1)
(3.9)

+2 (v Vf ')(Pf' ')
'1

K

+(f(0) )2( v q(0) )q(0) +v( g (0) )2 (3.5)

+2(I (0) )2 —2a 2 (3.6)

Therefore, the backflow terms only appear in the first two
terms on the right-hand side of Eq. (3.5). However, when
we calculate the spatially averaged heat current, the first
term on the right-hand side of Eq. (3.5) can be converted
into a surface term, which vanishes; the second term
yields —2 ( E ) XB= 2B v;—therefore the backflow
corrections do not enter into the calculation of the spa-
tially averaged energy current. After performing the spa-
tial average, we find that (J ) =n U&v, where n =trB /2m
is the vortex density (n =B/(t 0in conventional units),
and where U& is the transport energy per vortex; we have

nU =— d r (qf(0))2+(f(0))2(Q(0))21 1
7l

2

where the second line is again in conventional units. Us-
ing the linearized microscopic theory near H, 2, Maki
obtained the result U&= —$0MLD(t), where t is the re-
duced temperature; LL)(t) = 1 in the dirty limit near H, 2,
so that our results agree in this limit. Note that our re-
sult is much more general, as the derivation did not in-
voke the assumption of linearity of the order parameter,
but only the assumption of linear response in the flux lat-
tice velocity. Therefore, our result holds for the entire
mixed state (but only within the TDGL framework and
in mean-field theory), and not just near H, 2.

The thermomagnetic transport coefficients for a super-
conductor in the mixed state are discussed in Ref. 18, to
which we refer the reader for details. The Nernst
coefficient is defined as v=E /H(BT/Bx ), under the
conditions of J =J =0T /By =0. Introducing the trans-
port coefficient a through ( J") =a„~(E) Xz, then it is
possible to write the Nernst coefficient as
v=(1/TH )(a /o. ), where cr„ is the full conductivity
(including both the normal-state and flux-flow contribu-
tions); but from the above discussion we see that
a, = U&/(t0. We therefore find for the Nernst
coefficient,

(a factor of —,
' arises from an angular average in the in-

tegral). The first two terms are half of the kinetic energy
of the superfluid, while the third term is the magnetic
field energy. Recently, Doria et al. have proved a virial
theorem for the equilibrium Ginzburg-Landau equa-
tions, which shows that the integral that appears in Eq.
(3.6) is precisely equal to 2H B. Therefore, we find that

(50TH o „
(3.10)

The Ettingshausen coefficient is defined as
6 =(BT/By )/HJ under the conditions

Jy Jy 0T /Bx =0. Using the Onsager relations, it is
possible to show that ( = Tv/Ir, , where ~„ is the
thermal conductivity.

nU& = —2(B—H) B=—8irM. B, (3.7)

with M=(B—H)/4ir the spatially averaged equilibrium
magnetization of the sample. Therefore, the transport
energy is

(3.8)

where the second line is in conventional units.
Sufficiently close to H, 2, we can substitute for M the
Abrikosov value for the magnetization to obtain the
mean-field transport energy

IV. FLUCTUATIONS

Having calculated the transport properties in the
mean-field regime, we now turn to the study of the eAects
of thermal fluctuations of the flux lattice on the transport
properties. To do this, one first assumes that the flux
lines are located at r (z) =R,+s,(z), where IR ] are the
positions of the flux lines in mean-field theory (which
form a triangular lattice), and Is,(z)] are the deviations
from the mean-field positions. Expanding about the
mean-field solution, and then taking the continuum limit
by replacing s (z) by s(r), the free energy becomes
F=Fo +F ] where Fo is the free energy of the mean-field
Abrikosov state and F,~

is the elastic free energy given by

d kF„=—,
' I s, ( —k)I[c„(k)—c66(k)]k, k +5; [c66(k)ki+c44(k)k, ]]s (k),

(2ir )
(4. 1)

where c», c44, and c66 are the uniaxial compression
modulus, tilt modulus, and shear modulus, respectively.
The derivation of the nonlocal elastic moduli from
Cxinzburg-Landau theory was first carried out by

I

Brandt his results have recently been generalized to the
case of anisotropic superconductors by Houghton, Pel-
covits, and Sudbgf. The current must now be averaged
with respect to an ensemble specified by the elastic free
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energy; as shown by Vecris and Pelcovits, ' this is
equivalent to replacing the spatial average of the square
of the mean-field order parameter, (co(r) ), which appears
in the expression for the mean-field conductivities, Eq.
(2.35), by the spatial and ensemble average of the square
of the order parameter, ((co(r)),„), where ( ),„ is
the ensemble average (we will drop the superscript on co

for simplicity). Therefore, in the presence of thermal
fiuctuations the longitudinal conductivity (first obtained
by Vecris and Pelcovits) becomes, in conventional units,

o „„=o „'"'+y, e "( ( co( r ) ),h ) /B,
and the Hall conductivity (our new result) becomes

(4.2)

«co»,„=(co,& 1 —0.49

1/2
27TE G 7?lz

1 b

(1 —t )' (1 b)— (4 4)

where (coo) is the value of the mean-square order param-
eter in mean-field theory, b =B/H, 2(T) is the reduced
magnetic field, t = T/T, (0) is the reduced critical tem-
perature, m, and m are the effective masses along the z
axis and in the x-y plane, respectively, and eG is the

(4.3)

The quantity ((co(r)),„) has been calculated in the
large-~ limit by Maki and Thompson and by Ikeda and
co-workers, ' with the result

Ginzburg parameter given by

16m v (k~T, )

.2(0)
(4.5)

There are two points worth noting. First, the Auctua-
tions in the fiux lattice state reduce ((co),h) below its
mean-field value, in contrast to the normal state. Second,
since the high-T, superconductors typically have
(rom, /m )' of 0(1) or larger, ' these fiuctuations are
relatively large in these materials as compared to the low
temperature superconductors. These Auctuations lead to
a reduction of the conductivity and a significant rounding
of the resistive transition in a magnetic field.

The calculations of Maki and Thompson and of Ike-
da and co-workers ' made use of the fact that the spa-
tially averaged mean-square order parameter is equal to
the derivative of the free energy with respect to the
coefficient of the quadratic term in the Ginzburg-Landau
Hamiltonian. Here we will repeat the calculation using a
rather diA'erent method, which is to thermally average
the order parameter directly (this approach was motivat-
ed by a suggestion in the work of Vecris and Pelcovits)
we hope that some readers will find this alternative
method of calculation instructive. We start with a gen-
eralized form for the square of the order parameter in the
mixed state of anisotropic superconductors, which was
suggested by Brandt' for isotropic superconductors (the
anisotropic generalization is implicit in the work of
Houghton, Pelcovits, and Sudbd). The order parame-
ter is

dk d'k
co(r) =N(B)exp —4~ g f dz' f fHz (2~)2 k2+, y2k2+ k2

L

(4.6)

where N(B) is a magnetic-field-dependent normalization constant, y =m /m, is the mass anisotropy, with m the
effective mass in the plane and m, the effective mass along the z axis, ki= (k, k» ), BZ denotes an integration over the
first Brillouin zone, and k&=2(1 —b)/g, b(T) in conventional units, with g, b the in-plane coherence length. As argued
by Brandt, this form of the square of the order parameter has the proper second-order zeros at the vortex positions
I r„), and reduces to the. correct forms for both large and small inductions. Expanding the exponent to first order in s,
and taking the continuum limit, we obtain

dk, d'k, k.s(k)e i" r
co(r) =coo(r)exp i4vrn

2& k + k+k (4.7)

where coo(r) is the square of the mean-field order parameter with zeros at IR, I, and n is the vortex density; the ki in-
tegration is now over a circular Brillouin zone of radius

kaz=(4mn )' =(2b)' /g, b(T)

(this choice preserves the volume of the Brillouin zone). Performing the thermal average, we obtain

(~(r) ),„=~0(r)e

where 8'is a suppression factor, given by

dkz d kg 1W= —,'(4mn) f ' f k, k. (s,.(k)s ( —k)),h .2' Hz (2~) (ki+y k +k~)
The fluctuation propagator is given by

(s, (k)s, (
—k) ),„=k~TIP,,Gr(k)+P; GL (k)],

(4.8)

(4.9)

(4.10)
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where P,"=6; —k, k /k~ and P, =k, k /k~ are the transverse and longitudinal projection operators, respectively, and
where the transverse and longitudinal propagators are given by

Gz-(k) = 1
GL (k) = 1

c«(k)k J +c44(k)k, ci, (k)ki+c44(k)k,

Carrying out the implicit summation in Eq. (4.9), we obtain

(4.1 1)

18'= —ks T(4mn )
2m k +yk +k c kk +c kk

The spatial average is trivial; our final result is

« (.)»,„=&,(.)&.
—

(4.12)

(4.13)

with & coo(r) & the spatial average of the square of the mean-field order parameter given in Eq. (2.36).
In order to calculate the suppression factor 8'we first rescale the momenta by the Brillouin-zone radius by introduc-

ing a dimensionless variable q=k/kBz. Then we have

1

qz+y q, +m&

g 2 1
c4„(q)= may 1+

q2~+y2q, 2+@2m ~

16~k~T g2 1
dq, dq~

Po~kBz 4~ 0
'

0 [qi2+y'q, +m&] c»(q)qi+c44(q)q,

where m&=(k&/kBz) =(1—b)/b. The nonlocal, anisotropic elastic coefficients are given by

g 2 q +pm&
C i 1 (q)—

4~ (q +mi )(qi+y q, +y mi )

(4.14)

(4.15)

(4.16)

an interesting scaling behavior in this limit; i.e.,

Ary(1 t)'"—
W(B, T)=V.

lr g,bb
(1 b) . ,— (4.19)

where Ar =go/16vr ks T is a thermal length, ' and where
the scaling function V(x ) =0.34x ~ . Therefore the
conductivities near H, 2 exhibit a scaling behavior identi-
cal to the scaling behavior that is inherent in transport
calculations which use the lowest Landau-level Hartree
approximation. ' This scaling behavior has recently
been observed in measurements on the high-T, supercon-
ductors. Finally, note that our result in this limit is
quite close to the result of Maki and Thompson and of
Ikeda and co-workers, Eq. (4.4). This can be seen by not-
ing that in order for the harmonic approximation to be
valid, the suppression factor 8'must be small; expanding
the exponential in Eq. (4.13) for small S; and using our
result for 6'in Eq. (4.18), we obtain

2'ATE' G APE I 5/2

p„ (4.17)
(1 t )' (—1 b)—

where we have used g=g, b(0)(1 —t )

(ii) m& ((1; i.e., 1/(21~ ) &&1 &&b/(1 —b). This is the
appropriate limit for fields near the mean-field upper crit-
ical field H, 2. We obtain for the suppression factor

1 1/2
2&EG mz

j /2
27TE G fez« co»,„=&co,& 1 —0.34

1 b

(1 —t )' (1 b)—(4.20)

1 b

(1 t )' (1 —b)—We see that aside from the numerical factor, our result is
identical to Eq. (4.4).

The importance of nonlocal eAects in setting the scale
for thermal fluctuations that may melt the Aux lattice was
pointed out by Brandt. ' This can also be observed in the
amplitude Auctuations. In the isotropic limit (y =1) the

(4.18)

Again, we note the appearance of the Ginzburg parame-
ter eG. We would also like to point out that 8'exhibits

with mi =(1—b)/2f1„a b. The integral is rather for-
midable, and we have not succeeded in evaluating it in a
general form. However, progress is possible if we consid-
er the limit mi &(1, i.e., I/(2a ) (&b/(1 —b ), which is
easily satisfied for most of the mixed state in the high-T,
superconductors. In this limit it is possible to take to
nonlocal limit of the elastic coefficients, i.e., take m& ~0
in the expressions for c» and c44, Eqs. (4.15) and (4.16).
In this limit the anisotropy factor y only enters when
multiplied by q„so it may be scaled out of the integral.
The integral on q, can be performed analytically, al-
though the result is quite complicated. The remaining q~
integral can then be performed in the limits m&))1 or
m

&
((1. We will consider these cases in turn.

(i) m~))1; i.e., I/(2~ ) (&b/(1 b) &&1. In thi—s lim-

it, which applies to most of the mixed state, we obtain
1/2
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suppression factor in the local limit is easily calculated;
we find

(4.21)

which lacks the important factor of ~, which appears in
the nonlocal expression.

There are several features of our result for the thermal-
ly averaged order parameter that are noteworthy. First,
note that there are no divergences in the amplitude fluc-
tuations that we consider here. The amplitude fluctua-
tions, while suppressing the conductivity below the
mean-field value, do not drive the flux-flow contribution
to the conductivity to zero. This is in contrast to the
phase fluctuations, which diverge with the system
size. ' ' This divergence is often taken as an indica-
tion of the absence of off-diagonal long-range order in the
flux-lattice state ' although this interpretation is still
subject to some controversy. Second, the amplitude
fluctuations are longitudinal, unlike the phase fluctua-
tions, which are transverse. As a result, our expression
for 8' does not involve the shear modulus c66. It would
then appear that the conductivities are relatively insensi-
tive to a vortex lattice melting transition, ' ' at which
the shear modulus would be abruptly driven to zero in
crossing the liquid-solid phase boundary. However,
this observation may be significantly modified once we
account for vortex pinning. '

V. CONCLUSIONS

To summarize, we have calculated the transport
coef5cients in the mixed state using a generalized TDGL
theory. Our calculations have explicitly incorporated
"backflow" effects, yielding a current that is properly
divergenceless. However, the results which we obtain are
wholly equivalent to the Schmid-Caroli-Maki solution of
the TDGL equations, since the backflow current has zero
spatial average. Therefore, at least within the framework
of TDGL theory, the backflow currents associated with
vortex motion have little bearing on the question of the
sign change of the Hall conductivity. We also calculated
the thermomagnetic transport properties in mean-field
theory, and found that under quite general circumstances
the transport energy is proportional to the equilibrium
magnetization. Finally, we find that elastic fluctuations
of the vortex lattice tend to suppress the conductivities
below their mean-field values.
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