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Hybrid Monte Carlo spin-dynamics simulation of metallic spin-glass alloys
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We study a dilute system of the isotropic classical Heisenberg spins coupled via the Ruderman-Kittel-
Kasuya-Yosida interaction using a hybrid Monte Carlo spin-dynamics method. We find strong evidence
of the occurrence of a spin-glass phase at finite, nonzero temperatures, contrary to previous predictions.
We suggest that the spin-glass phase of this system can be characterized by a power-law decay of spin

correlations.

I. INTRODUCTION

Dilute magnetic alloys such as CuMn and AuFe have
been extensively investigated in the last decade. The ex-
perimental consensus has been that the spin-glass transi-
tion observed in these alloys is a thermodynamic phase
transition.! To explain this, a dilute magnetic system in
which the Heisenberg spins are coupled via the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
has been investigated both analytically and numerically.
However, the low-temperature properties of the model
are not yet understood. In particular, even whether or
not the spin-glass phase occurs in the isotropic RKKY
model has remained controversial. Theoretical studies®3
have predicted that the RKKY model is at its lower criti-
cal dimension d; =3, and anisotropy, which always exists
in real materials, induces the spin-glass transition at a
finite, nonzero temperature. Although the prediction has
been widely accepted, it is not very reliable because these
studies were made based on the replica method.* Numeri-
cal studies have also been made by various authors: Wal-
stedt and Walker® suggested that the model does not
show any transition at finite temperatures without anisot-
ropy. Their results cannot be considered conclusive,
however, because they calculated only the spin-glass or-
der parameter, which always vanishes in finite systems
because of a uniform rotation of all the spins. Fernandez
and Streit®” calculated the spin-glass susceptibility of the
model with up to 169 spins and suggested that a phase
transition occurs at a finite, nonzero temperature even
when the anisotropy is absent. Chakrabarti and Dasgup-
ta®? also calculated the spin-glass susceptibility of the
same model with up to 312 spins and suggested that,
from a finite-size scaling analysis, T, =0 and the correla-
tion length diverges as a power law. They also suggested
that a weak anisotropy induces the spin-glass phase tran-
sition at a finite, nonzero temperature.”!® On the other
hand, Reger and Young!' studied a RKKY-like model
with up to 4096 spins, where every lattice site is occu-
pied by the Heisenberg spin and the strength of the in-
teractions falls off with the inverse third power of the dis-
tance between the spins, and obtained a result which is
not incompatible with the prediction of d;,=3; i.e., the
correlation length diverges exponentially at T, =0. How-
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ever, their result also was not conclusive because they
could not rule out the possibility of 7.70. Moreover,
their model is different from the RKKY model.

It is the purpose of the present paper to discuss wheth-
er or not a spin-glass phase occurs in the RKKY model
without anisotropy. We make a computer simulation of
the model using a hybrid Monte Carlo spin-dynamics
(HMCSD) method,'? which was proved to be very
effective for studying the low-temperature properties of
+J Heisenberg models.!*!* The method is also very
effective in this model and enables us to simulate it with
up to 1600 spins within reasonable computer CPU time.
We find from a finite-size scaling analysis that, even when
anisotropy is absent, the spin-glass susceptibility diverges at
a finite, nonzero temperature T,, contrary to the previous
prediction. The spin-glass phase realized below T, is sug-
gested to be characterized by a power-law decay of spin
correlations, like that in the two-dimensional XY mod-
el.!> A brief report of this result is given in Ref. 16.

In Sec. II the model and method are described. Re-
sults are presented in Sec. III. Section IV is devoted to
conclusions and discussions.

II. MODEL AND METHOD

We start with the model described by the Hamiltonian
H=—JOZ[COS(ZkFrij)/ri:;]S,-'Sj ) (1)

i<j
where the S;’s are classical Heisenberg spins of |S;|=1
randomly distributed on the sites of an L XL XL fcc lat-
tice with concentration ¢, J, is an energy constant, kK is
the Fermi wave vector of the host metal, and rij is the
distance between the ith and jth spins. Parameters of the
interaction are chosen representing CuMn, i.e,,
krag=4.91, where a, is the lattice constant. The tem-
perature T is measured in units of J,/agky =1. Periodic
boundary conditions are imposed. Since the exchange in-
teraction decreases oscillatorily as a power of (r; )73,
each of the spins is not affected strongly from the indivi-
dual spins separated far from it. Then we consider the in-
teractions only between the spins for lr,»jl <ro. Of course,
ro should be chosen to be long enough for each spin being
coupled by a large number of the spins, and the sum of
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the contributions from the other spins being almost
offset, even when all the spins point the same direction.
To determine r(, we calculate the sum R(r),

R(r)=— 3 J(ry) . (2)

Ir()i[Zr

where J(r;) is the coupling constant between the spins
on the ith and jth lattice sites. As seen in Fig. 1, R (7) al-
most vanishes for r /a;=3.0,3.7,4.2, . . . . Since already
for r /ay=3.0 the number of the lattice sites for |r;| <r,
is about 400, we chose ry=3.0a, for simplicity. We be-
lieve this will not affect the conclusion given here that a
spin-glass phase transition occurs in this model.

The simulation is made using the HMCSD method!?
with #,=0.2 measured in units of #ia3 /J,=1. Special at-
tention is paid to whether or not the system reaches its
thermal equilibrium. To examine it, we consider the
spin-glass susceptibility xgg defined by

Xso= 3 S4(8,8)3). , )
Lj

where ( ---); is the thermal average and ( ---),
means the sample average. We calculate it in two
different ways as follows.!” After K; Monte Carlo steps
per spin (MCS) are discarded, data of the next K MCS
were used to calculate the average. But the average is
taken first over the former K /2 MCS, and then it is taken
over the latter K /2 MCS, which are denoted as { - - - >T1

and ( - - )y, respectively. We first estimate ysg from
X$g» where
1
Xngj_V"z(<Si‘Sj>T1<Si'Sj>T2)c . )
Lj

The other estimation is made as follows. We prepare two
lattices 4 and B with the same distribution of spins. The
simulation is made starting from different initial spin
configurations. After K; MCS are discarded, the aver-
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FIG. 1. Sum of the maximum contribution R (r) from the
spins ignored in the simulation.
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ages are taken independently over K MCS, which are
denoted as -+ )# and ( - - - )&, respectively. Second,
we estimate Ygg from yig, where

1
Xso =7 24(8;°8,) #(8;-8,)%), . (5)
L

When X is not large enough, y§s will be larger than yg
because some correlation still remains between the two
averages of ( -+ ) and {---)r,. When K, is not
large enough, i is smaller than Xsc because the systems
do not reach their thermal equilibrium, which will be the
same. Only when yig and y¥; coincide with each other
can we regard them as the equilibrium value. In Fig. 2 a
typical example of these quantities is presented together
with those calculated by using the conventional MC
method. The thermal equilibrium is already reached for
K;~1000. We need only several thousands of MCS to
get the equilibrium value. In contrast to this, in the MC
method, we could not equilibrate the system within
reasonable MCS.

The simulation is made in the case of ¢=5.0 at. %.
The linear sizes of the lattice are L =6-20; i.e., the num-
bers of the spins are about N =43-1600. The numbers of
the samples prepared in this simulation are 47, 36, 36, 16,
10, and 6 for L =6, 8, 10, 12, 16, and 20, respectively.
We use the set of (K;,K) as (2000,4000) for L <10,
(4000,8000) for L =12, (5000,10000) for L =16, and
(6000,15 000) for L =20.

We calculate such physical quantities as the energy,
specific heat, magnetization, and susceptibility as well as
the spin-glass susceptibility to study equilibrium proper-
ties of the model. We also calculate the spin-glass order
parameter Q (K),!81°

Q(K)=%2_((S,»>2T)c : ©)

to study time-dependent properties of the model.
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FIG. 2. Upper and lower bounds of the spin-glass susceptibil-
ity.
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III. RESULTS

A. Energy and specific heat

We first present results of the thermodynamic quanti-
ties. In Fig. 3 the energy is shown for different sizes of
the lattice. The energy for smaller lattices exhibits a
large sample dependence. This is because the energy de-
pends largely on the number of nearest-neighbor spin
pairs because the nearest-neighbor coupling is extremely
larger than the other couplings. The deviation of the
number is proportional to V' N, which leads to a devia-
tion of the energy per spin of the order of J,/V'N, where
N is the number of spins. The specific heat is shown in
Fig. 4. It exhibits a broad maximum around 7 ~0.07.
Although the height of the maximum increases a little
with increasing lattice size, its shape remains broad.

B. Magnetization and susceptibility

Since the average of the magnetization M= 3§, van-
ishes as K increases because of a uniform rotation of all
the spins, we calculate the average of its absolute value
IM|. The results for different sizes of the lattice are
shown in Fig. 5. These are almost constant in the tem-
perature and decrease in proportion to 1/V'N as the size
of the lattice increases. This clearly reveals the absence
of the ferromagnetic phase. Moreover, the above fact in-
dicates that the spin directions are uniformly distributed.
We also calculate the susceptibility. Because of a very
slow fluctuation of the magnetization, we could not get
any equilibrium value at low temperatures within the
MCS performed in this simulation. However, we may ex-
pect that the susceptibility exhibits a size-independent
Curie law of

E/N

0.0 0.1 0.2

FIG. 3. Temperature dependences of the energy for different
sizes of the lattice. Error bars indicate probable errors of aver-
aged values.
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FIG. 4. Temperature dependences to the specific heat for
different sizes of the lattice. Error bars indicate probable errors
of averaged values.
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because (M) +=0 will hold for K — . To confirm this,
we calculate the susceptibility assuming (M) ;=0 for
L =10 and present it in Fig. 6 together with that given by
Eq. (7) with {{|M]);),/V'N ~1.85, which is estimated
from the results in Fig. 5. The agreement is fairly good.
It should be mentioned that this fact never means the ab-
sence of the phase transition because the Curie law also
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FIG. 5. Temperature dependences to the absolute magnetiza-
tion for different sizes of the lattice. Error bars indicate prob-
able errors of averaged values.
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X/N

20

FIG. 6. Temperature dependence of the susceptibility for
L =10. The solid curve represents the result of Eq. (7).

results from a fluctuation of the total magnetization. To
see whether or not the phase transition occurs, we calcu-
late the magnetization in a small magnetic field. This is
planned to be discussed in a separate paper.

C. Spin-glass susceptibility

In Fig. 7 we present the temperature dependence of
Xsg for different sizes of the lattice. At low temperatures,
Xsg exhibits a marked size dependence. In Fig. 8 the
data are plotted as a function of L in a log-log form for
different temperatures. For T =0.08, the results reveal
an exponential decay of the pair-spin correlations
((S,-8;)%), with increasing r;;. On the other hand, for
T =0.07, the data seem to lie on a straight line, suggest-
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FIG. 7. Temperature dependence of ysg for different sizes of
the lattice. Open and solid symbols represent lower and upper
bounds of ysg, respectively. Error bars indicate probable errors
of averaged values.
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FIG. 8. Lattice size dependences of ysg at different tempera-
tures. Error bars indicate probable errors of averaged values,
and lines are guides for the eye. The slope of the line at
T=0.07 is about 1.25, which leads to n~2—1.25=0.75.

ing a power-law decay of the correlations. We expect
that a phase transition takes place at T'~0.07.

To confirm this, we make a finite-size scaling plot.?® If
d; <3 and the phase transition occurs at some finite tem-
perature T, the pair-spin correlation functions may be
expressed using two critical exponents 1 and v as

exp(—r; /§)
riz]{—2+n

((S;'$;)3).~ (TRT,), (8)

where d =3 and the correlation length £ is given by
E~(T—T,)". )]

The finite-size scaling hypothesis predicts that ygg will
behave as

Xsg=L* "™Y(LY(T—T,)) . (10)

The scaling plot is shown in Fig. 9. When we put
T.=0.068+0.008, we can scale all the data well. Values
of the exponents determined in this analysis are
7=0.691+0.20 and v=0.74%0.05. T, obtained here is
compatible with that suggested from the size dependence
of Xsg, and the value of 7~0.7 is also compatible with
17 ~0.75 estimated from the slope of the plot in Fig. 8.
Note that we also examined the possibility of T, =0 and
found that the data cannot be scaled well even when
different types of the scaling functions are assumed.'® We
may conclude, hence, that the spin-glass phase transition
occurs at T, ~0.068.

It is desirable to know the nature of the spin-glass
phase realized in this model. Our results presented in
Fig. 8 strongly suggest that for T'< T, long-range order is
absent, but the pair-spin correlations decay according to
the power law, ie., £=o and 7> —1 in Eq. (8), like
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FIG. 9. Finite-size scaling of ysg.

those in the Kosterlitz-Thouless phase!® in the two-
dimensional xy model. We roughly estimate values of 7
for T < T, from the slopes of the lines and present them
in Fig. 10. Note that 7 decreases almost linearly with
temperature and seems to reach a certain value greater
than —1 at 7=0. This suggests that the ground state of
the mzoldel is degenerate, as predicted by Walker and Wal-
stedt.

D. Order parameter Q (K)

Next, we consider the Edwards-Anderson order pa-
rameter Q (K). In finite systems, this quantity will vanish
for large enough MCS as a result of the uniform rotation
even when some long-range order is realized. Here we
consider its K dependence to study temporal properties of
the model. In Fig. 11 we present the temperature depen-
dence of Q(K) for different sizes of the lattice. As the
temperature is decreased, Q(K) increases, indicating a
slowing down of the fluctuation of the spin structure.
For T <0.09, the size dependence becomes considerable.
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FIG. 10. Value of 1 estimated from the slope of the line in
Fig. 8. The symbol X is the value obtained from the scaling
analysis in Fig. 9.

FIG. 11. Temperature dependences of the order parameter
Q(K) for different sizes of the lattice. Error bars indicate prob-
able errors of averaged values.

This is because the spin correlations develop at low tem-
peratures, as seen in Sec. III C. In Figs. 12(a) and 12(b),
Q(K) are plotted as functions of K at both higher and
lower temperatures of T,, respectively. Even at T<T,,
Q(K) decreases as K increases. At low temperatures, a
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FIG. 12. K dependences of Q (K) for different sizes of the lat-
tice: (a) those in the paramagnetic phase and (b) those in the

spin-glass phase.
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FIG. 13. K dependences of Q(K) plotted in different scales.
The data in (a) and (b) are the same as those in (a) and (b) in Fig.
12, respectively. Here C'=C(In10)*" !,

size dependence is seen even for larger lattices, but not
very large. This size dependence supports our suggestion
that the correlations decay according to the power law.
Because if some long-range order occurs, the system
would exhibit a large size dependence for some charac-
teristic time scale. And if the spin correlations decay ex-
ponentially, the size dependence would vanish rapidly as
the lattice size is increased.

To see the K dependence quantitatively, we examine
several functions of K and find that the data at high tem-
peratures can be fitted well by the function

Q(K)~exp[ —C(InK)*] . (11)

which is shown in Fig. 13(a). At low temperatures, as the
size of the lattice is increased, the data seem to approach
to the same function with different values of C and «, as
seen in Fig. 13(b). We suggest, hence, that the relaxation
of Q(K) is described by Eq. (11) for both higher and
lower temperatures of T,. Of course, further studies are
necessary to confirm this suggestion.

1IV. CONCLUSIONS AND DISCUSSIONS

We have studied the equilibrium behavior in a dilute
model of the classical Heisenberg spins coupled via the
RKKY interaction using the HMCSD method. We have
found that, even when anisotropy is absent, the model ex-
hibits a spin-glass phase transition at a finite, nonzero tem-
perature. We have suggested that the spin-glass phase of
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this model is characterized by a power-law decay of the
spin correlations, like that in the Kosterlitz-Thouless
phase in the two-dimensional xy model. We have also
studied time-dependent behaviors of the model, calculat-
ing the order parameter Q(K), and found that the spin
structure slowly changes even below the transition tem-
perature.

Our finding is incompatible with the idea widely ac-
cepted that finite-range Heisenberg models do not exhibit
any spin-glass phase at finite, nonzero temperatures
without anisotropy. Heisenberg spin-glass models exten-
sively studied so far are, however, the short-range bond
models,'>'%2272% in which different bonds are randomly
distributed between neighboring spins. In contrast with
those models, the RKKY model is a long-range site mod-
el in which the coupling constant between the spins is
uniquely determined by their relative positions. The
spin-glass phase will be stabilized either by the long-range
nature of the interactions or by the effect of the site dilu-
tion. One has thought that, if a difference between the
RKKY model and short-range spin-glass model exists, it
would come from the difference in the interaction
range.>®> In fact, Reger and Young'' studied a bond
model with long-range interactions and found that the
model is in a different universality class from short-range
models. They suggested, however, that the spin-glass
phase does not appear at finite, nonzero temperatures. If
their suggestion is true, the spin-glass phase would be sta-
bilized by the effect of the site dilution. We think this is
very probable because the distribution of bonds around
each of the spins depends on the distribution of the mag-
netic atoms, and hence frustration is partly relieved.?
Especially, in the RKKY model, different clusters of
strongly coupled spins are formed everywhere in the lat-
tice. Frustration will occur between the spin arrange-
ments of those clusters. Hence frustration in the RKKY
model will be much weaker than that in the bond models.
To confirm this, it is desirable to study site models with
short-range interactions. It is to be noted that in this pa-
per we have examined the spin ordering in a rather dense
RKKY model, i.e., c=5.0 at. %, in which the clustering
effect will be enhanced. It is interesting to examine
whether or not the spin-glass phase also occurs in more
dilute RKKY models. This problem is currently under
study, and the results are planned to be reported else-
where.

Finally, we must emphasize that many spin-glass ma-
terials are well described by site models and the present
study has predicted that a prototype of the spin-glass
models exhibits the spin-glass phase at finite, nonzero
temperatures. It is very interesting to study also different
realistic spin-glass models such as a dilute Heisenberg
model with only the ferromagnetic nearest-neighbor and
antiferromagnetic next-nearest-neighbor interactions, i.e.,
a proposed model of Eu, Sr;_,S.%¢
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